Asymptotically Optimal Agents

Tor Lattimore¹ Marcus Hutter^{1,2}

October 7, 2011

¹Australian National University

The Questions

- 1. What is a reasonable definition of optimality for a general *learning* agent?
- 2. Do such optimal learning agents exist?

Environments

Let \mathcal{Y} , \mathcal{O} , and $\mathcal{R} \subset \mathbb{R}^+$ be sets of actions, observations and rewards respectively. Let $\mathcal{X} = \mathcal{R} \times \mathcal{O}$. A deterministic environment μ is a function

$$\mu: (\mathcal{Y} \times \mathcal{X})^* \times \mathcal{Y} \to \mathcal{X}$$

Environments

Definition A *policy* is a function $\pi : (\mathcal{Y} \times \mathcal{X})^* \to \mathcal{Y}$ Definition The value of policy π after history $h_{\leq n}$ in environment μ is

$$V^{\pi}_{\mu}(h_{< n}) = \frac{1}{\Gamma_n} \sum_{k=n}^{\infty} \gamma_k r_k$$

where \mathbf{r}_k is the reward obtained at time k when π interacts with μ and

$$\sum_{t=1}^{\infty} \gamma_t < \infty \qquad \qquad \Gamma_n := \sum_{t=n}^{\infty} \gamma_t$$

Definition

The optimal policy π^*_μ in environment μ is

$$\pi^*_\mu := rg\max_\pi V^\pi_\mu \qquad \qquad V^*_\mu := V^{\pi^*_\mu}_\mu$$

Optimality

What does it mean to be optimal? In the planning problem, policy π is optimal in environment μ if

$$V^*_\mu(h_{< t}) - V^\pi_\mu(h_{< t}) = 0, \qquad orall h_{< t}$$

This is unreasonable for learning algorithms because they need time to explore.

Optimality

Definition (Strong/Weak Asymptotic Optimality)

Let ${\mathcal M}$ be a set of environments then π is strong/weak asymptotically optimal in ${\mathcal M}$ if

$$\lim_{n \to \infty} \left[V_{\mu}^{*}(h_{< n}) - V_{\mu}^{\pi}(h_{< n}) \right] = 0, \forall \mu \in \mathcal{M}$$
Strong
$$\lim_{n \to \infty} \frac{1}{n} \sum_{t=1}^{n} \left[V_{\mu}^{*}(h_{< t}) - V_{\mu}^{\pi}(h_{< t}) \right] = 0, \forall \mu \in \mathcal{M}$$
Weak

- 1. A strong asymptotically optimal agent eventually makes no errors.
- 2. A weak asymptotically optimal agent makes a fraction of errors that decreases to zero in the limit.
- 3. The larger the class \mathcal{M} , the more powerful is policy π .

Results

Let \mathcal{M} be the class of all deterministic computable environments, which aside from the restriction to deterministic environments is an extremely large class.

Does there exist a single policy π that is computable/incomputable and weak/strong asymptotically optimal in \mathcal{M} .

	Computable	Incomputable
Weak	No	Depends on discounting
Strong	No	No

No Computable Asymptotically Optimal Agents

Theorem

If \mathcal{M} is the class of all computable deterministic environments then no computable deterministic policy is weak/strong asymptotically optimal.

Computability of policy means the worst possible (very adversarial) environment is also computable. This implies any weak/strong asymptotically optimal policy is necessarily incomputable.

No Strong Asymptotically Optimal Agents

Theorem

There does not exist a strong asymptotically optimal agent for \mathcal{M} .

Proof sketch (geometric discounting).

To be strong asymptotically optimal in μ_1 , π must eventually only go up. Let *H* be the time-step at which it stops exploring.

Weak Asymptotically Optimal Agents

Theorem

Let $\mathcal{M} = \{\mu_1, \mu_2, \cdots\}$ be a countable class of deterministic environments. There exists a weak asymptotically optimal policy π in \mathcal{M} if discounting is geometric.

Proof sketch.

- π must explore infinitely often and arbitrarily deep.
- π cannot explore too much.
- π must be unpredictable.
- π is defined as follows.
 - At time t, π uses for its model μ_{ti} which is the first environment consistent with the history seen so far.
 - With probability $\frac{t-1}{t}$, $\pi(h_{< t}) = \pi^*_{\mu_{t_i}}(h_{< t})$.
 - With probability ¹/_t, π enters an exploration phase, exploring randomly for log t time-steps.

Theorem

Let \mathcal{M} be the class of all computable deterministic environments. There does not exist a weak asymptotically optimal policy if discounting is $\gamma_t := \frac{1}{t(t-1)}$.

- 1. This discount function has a growing effective horizon.
- 2. To find the true model an agent must explore for too long, which wrecks weak asymptotic optimality.

Summary

- Strong asymptotic optimality is too strong.
- Existence of weak asymptotically optimal agents depends on discounting.
- Weak asymptotically optimal agents in the class of all deterministic computable environments must be stochastic (or incomputable). The one defined here is both stochastic and incomputable.
- Smaller, but still interesting, classes of environments admit computable weak asymptotically optimal agents.
- There should exist weak asymptotically optimal agents in the class of computable stochastic environments.
- Theorems apply only to computable discount functions.
- We also care about non asymptotic behaviour.