## On the Optimality of General Reinforcement Learners

Jan Leike and Marcus Hutter

http://jan.leike.name/

Australian National University

EWRL'15 — 10 July 2015

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

#### Outline

#### What is AIXI?

The Dogmatic Prior

Notions Of Optimality

References

- ◆ □ ▶ → 個 ▶ → 注 ▶ → 注 → のへぐ

How to do RL in an unknown computable (non-Markovian) environment?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

How to do RL in an unknown computable (non-Markovian) environment? Idea of *AIXI* [Hut05]:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

How to do RL in an unknown computable (non-Markovian) environment?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Idea of AIXI [Hut05]:

Disregard computation time ;)

How to do RL in an unknown computable (non-Markovian) environment?

Idea of AIXI [Hut05]:

- Disregard computation time ;)
- Take a Bayesian mixture  $\xi$  over all computable environments

How to do RL in an unknown computable (non-Markovian) environment?

Idea of AIXI [Hut05]:

- Disregard computation time ;)
- Take a Bayesian mixture  $\xi$  over all computable environments
- Weigh environments according to their Kolmogorov complexity

How to do RL in an unknown computable (non-Markovian) environment?

Idea of AIXI [Hut05]:

- Disregard computation time ;)
- Take a Bayesian mixture  $\xi$  over all computable environments
- Weigh environments according to their Kolmogorov complexity

Maximize expected rewards in the mixture

How to do RL in an unknown computable (non-Markovian) environment?

Idea of AIXI [Hut05]:

- Disregard computation time ;)
- Take a Bayesian mixture  $\xi$  over all computable environments
- Weigh environments according to their Kolmogorov complexity
- Maximize expected rewards in the mixture

#### Is AIXI optimal?

#### Outline

What is AIXI?

The Dogmatic Prior

Notions Of Optimality

References

▲□▶ ▲□▶ ▲国▶ ▲国▶ 三国 - のへで

#### Hell

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

### Hell

hell reward = 0

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Policy  $\pi_{Lazy}$ :

while (true) { do\_nothing(); }



Policy  $\pi_{Lazy}$ :

```
while (true) { do_nothing(); }
```

Dogmatic prior  $\xi'$ :

if not acting according to  $\pi_{Lazy}$ , go to hell with high probability

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Policy  $\pi_{Lazy}$ :

```
while (true) { do_nothing(); }
```

Dogmatic prior  $\xi'$ :

if not acting according to  $\pi_{Lazy}$ , go to hell with high probability

Theorem

Al $\xi'$  acts according to  $\pi_{Lazy}$  as long as  $V_{\xi}^{\pi_{Lazy}} > \varepsilon > 0$  (future expected reward does not get close to 0).

Policy  $\pi_{Lazy}$ :

```
while (true) { do_nothing(); }
```

Dogmatic prior  $\xi'$ :

if not acting according to  $\pi_{Lazy}$ , go to hell with high probability

#### Theorem

Al $\xi'$  acts according to  $\pi_{Lazy}$  as long as  $V_{\xi}^{\pi_{Lazy}} > \varepsilon > 0$  (future expected reward does not get close to 0).

• Can be made universal ( $\rightarrow$  UTM)

```
Policy \pi_{Lazy}:
```

```
while (true) { do_nothing(); }
```

Dogmatic prior  $\xi'$ :

if not acting according to  $\pi_{Lazy}$ , go to hell with high probability

#### Theorem

Al $\xi'$  acts according to  $\pi_{Lazy}$  as long as  $V_{\xi}^{\pi_{Lazy}} > \varepsilon > 0$  (future expected reward does not get close to 0).

- Can be made universal ( $\rightarrow$  UTM)
- Applies to MDPs

```
Policy \pi_{Lazy}:
```

```
while (true) { do_nothing(); }
```

```
Dogmatic prior \xi':
```

if not acting according to  $\pi_{Lazy}$ , go to hell with high probability

#### Theorem

Al $\xi'$  acts according to  $\pi_{Lazy}$  as long as  $V_{\xi}^{\pi_{Lazy}} > \varepsilon > 0$  (future expected reward does not get close to 0).

- Can be made universal ( $\rightarrow$  UTM)
- Applies to MDPs
- Applies to ergodic MDPs for bounded horizon

#### Outline

What is AIXI?

The Dogmatic Prior

Notions Of Optimality

References

### Pareto Optimality

Pareto optimality = no other policy Pareto-dominates my policy

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

### Pareto Optimality

Pareto optimality = no other policy Pareto-dominates my policy Theorem ([Hut02]) AIXI is Pareto Optimal.

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Pareto optimality = no other policy Pareto-dominates my policy Theorem ([Hut02]) AIXI is Pareto Optimal. Theorem ([LH15]) Every policy is Pareto optimal.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

*Intelligence* of policy  $\pi$  [LH07]:

$$\Upsilon_{\xi}(\pi):=\sum_{
u} w_{
u}V^{\pi}_{
u}=V^{\pi}_{\xi}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

*Intelligence* of policy  $\pi$  [LH07]:

$$\Upsilon_{\xi}(\pi) := \sum_{
u} w_{
u} V^{\pi}_{
u} = V^{\pi}_{\xi}$$



*Intelligence* of policy  $\pi$  [LH07]:

$$\Upsilon_{\xi}(\pi) := \sum_{
u} w_{
u} V^{\pi}_{
u} = V^{\pi}_{\xi}$$



・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

*Intelligence* of policy  $\pi$  [LH07]:

$$\Upsilon_{\xi}(\pi) := \sum_{\nu} w_{\nu} V_{\nu}^{\pi} = V_{\xi}^{\pi}$$



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

*Intelligence* of policy  $\pi$  [LH07]:

$$\Upsilon_{\xi}(\pi) := \sum_{
u} w_{
u} V^{\pi}_{
u} = V^{\pi}_{\xi}$$



▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

*Intelligence* of policy  $\pi$  [LH07]:

$$\Upsilon_{\xi}(\pi) := \sum_{
u} w_{
u} V^{\pi}_{
u} = V^{\pi}_{\xi}$$



▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

*Intelligence* of policy  $\pi$  [LH07]:

$$\Upsilon_{\xi}(\pi) := \sum_{
u} w_{
u} V^{\pi}_{
u} = V^{\pi}_{\xi}$$



#### $\implies$ Legg-Hutter intelligence is highly subjective

#### The Optimality of AIXI AIXI is ...

# The Optimality of AIXI AIXI is ...

Pareto optimal [Hut02]

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- AIXI is ...
  - Pareto optimal [Hut02]
    - Trivial: every policy is Pareto optimal

- AIXI is ...
  - Pareto optimal [Hut02]
     Trivial: every policy is Pareto optimal

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

balanced Pareto optimal [Hut02]

AIXI is ...

Pareto optimal [Hut02]
 Trivial: every policy is Pareto optimal

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

balanced Pareto optimal [Hut02]
 maximal Legg-Hutter intelligence

AIXI is ...

- Pareto optimal [Hut02]
   Trivial: every policy is Pareto optimal
- balanced Pareto optimal [Hut02]
   maximal Legg-Hutter intelligence highly subjective

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

AIXI is ...

- Pareto optimal [Hut02]
   Trivial: every policy is Pareto optimal
- balanced Pareto optimal [Hut02]
   maximal Legg-Hutter intelligence highly subjective

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

self-optimizing [Hut02]

AIXI is ...

- Pareto optimal [Hut02]
   Trivial: every policy is Pareto optimal
- balanced Pareto optimal [Hut02]
   maximal Legg-Hutter intelligence highly subjective
- self-optimizing [Hut02] not applicable to the class of all computable environments

AIXI is ...

- Pareto optimal [Hut02]
   Trivial: every policy is Pareto optimal
- balanced Pareto optimal [Hut02]
   maximal Legg-Hutter intelligence highly subjective
- self-optimizing [Hut02] not applicable to the class of all computable environments

#### $\implies$ No formal argument for AIXI's optimality

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

AIXI is ...

- Pareto optimal [Hut02]
   Trivial: every policy is Pareto optimal
- balanced Pareto optimal [Hut02]
   maximal Legg-Hutter intelligence highly subjective
- self-optimizing [Hut02] not applicable to the class of all computable environments

#### $\implies$ No formal argument for AIXI's optimality

**Problem:** Bayesian RL agents do not explore enough to lose the prior's bias

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

AIXI is ...

- Pareto optimal [Hut02]
   Trivial: every policy is Pareto optimal
- balanced Pareto optimal [Hut02]
   maximal Legg-Hutter intelligence highly subjective
- self-optimizing [Hut02] not applicable to the class of all computable environments

#### $\implies$ No formal argument for AIXI's optimality

**Problem:** Bayesian RL agents do not explore enough to lose the prior's bias

**Solution:** Add exploration through knowledge-seeking [OLH13, Lat13] or optimism [SH12]

#### $\implies$ weak asymptotic optimality

Answer: probably, but biased by the prior



Answer: probably, but biased by the prior

But: AIXI will wirehead [RO11] and then kill everyone

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

#### Outline

What is AIXI?

The Dogmatic Prior

Notions Of Optimality

#### References

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三 のへの

#### References I



#### Marcus Hutter.

Self-optimizing and Pareto-optimal policies in general environments based on Bayes-mixtures.

In Computational Learning Theory, pages 364–379. Springer, 2002.

#### Marcus Hutter.

Universal Artificial Intelligence: Sequential Decisions Based on Algorithmic Probability.

Springer, 2005.



Tor Lattimore.

Theory of General Reinforcement Learning.

PhD thesis, Australian National University, 2013.



Universal intelligence: A definition of machine intelligence. *Minds & Machines*, 17(4):391–444, 2007.

#### References II



#### Jan Leike and Marcus Hutter.

Bad universal priors and notions of optimality.

In Conference on Learning Theory, pages 1244–1259, 2015.

Laurent Orseau, Tor Lattimore, and Marcus Hutter. Universal knowledge-seeking agents for stochastic environments. In *Algorithmic Learning Theory*, pages 158–172. Springer, 2013.

Mark Ring and Laurent Orseau.

Delusion, survival, and intelligent agents.

In Artificial General Intelligence, pages 11-20. Springer, 2011.

Peter Sunehag and Marcus Hutter.

Optimistic agents are asymptotically optimal.

In Australasian Joint Conference on Artificial Intelligence, pages 15–26. Springer, 2012.