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General Reinforcement Learning

How to do RL in an unknown computable (non-Markovian)
environment?

Idea of AIXI [Hut05]:

I Disregard computation time ;)

I Take a Bayesian mixture ξ over all computable environments

I Weigh environments according to their Kolmogorov complexity

I Maximize expected rewards in the mixture

Is AIXI optimal?
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The Dogmatic Prior

Policy πLazy :

while (true) { do nothing(); }

Dogmatic prior ξ′:

if not acting according to πLazy ,
go to hell with high probability

Theorem
AIξ′ acts according to πLazy as long as V

πLazy

ξ > ε > 0
(future expected reward does not get close to 0).

I Can be made universal (→ UTM)

I Applies to MDPs

I Applies to ergodic MDPs for bounded horizon
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Pareto Optimality

Pareto optimality = no other policy Pareto-dominates my policy

Theorem ([Hut02])

AIXI is Pareto Optimal.

Theorem ([LH15])

Every policy is Pareto optimal.
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Legg-Hutter Intelligence

Intelligence of policy π [LH07]:

Υξ(π) :=
∑
ν

wνV
π
ν = V π

ξ

0 1

image of Υ Υξ

(maximal
intelligence)

Υξ

(minimal
intelligence)

random AIξAIξ′

=⇒ Legg-Hutter intelligence is highly subjective
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The Optimality of AIXI
AIXI is . . .

I Pareto optimal [Hut02]
Trivial: every policy is Pareto optimal

I balanced Pareto optimal [Hut02]
= maximal Legg-Hutter intelligence
highly subjective

I self-optimizing [Hut02]
not applicable to the class of all computable environments

=⇒ No formal argument for AIXI’s optimality

Problem: Bayesian RL agents do not explore enough to lose the
prior’s bias
Solution: Add exploration through
knowledge-seeking [OLH13, Lat13] or optimism [SH12]

=⇒ weak asymptotic optimality
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Answer: probably, but biased by the prior

But: AIXI will wirehead [RO11] and then kill everyone
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