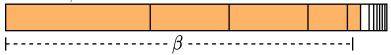
Pessimism About Unknown Unknowns Inspires Conservatism

Michael K. Cohen

Problem


A slightly mis-specified goal could lead an advanced agent to create an unprecedentedly bad outcome.

Proposal

Design an agent which avoids causing unprecedented events.

How to be β -Pessimistic

- * Maintain a posterior distribution over a countable set of world-models
- * Take the top however many world-models in the posterior, until the sum of their posterior weights exceeds β

- * Act to maximize the minimum $_{world-models}$ expected $_{world-model}$ future discounted reward
- * If the pessimistic value of every policy is 0, defer action-selection to a mentor.

Setup

- * a reinforcement learner is given an observation and reward $\in [arepsilon,1]$ after each action
- * the agent can defer action-selection to a mentor
- * the agent is parameterized by a countable set of world-models \mathcal{M} , and its "pessimism" $eta \in (0,1)$

Key Results

- * query probability \rightarrow 0 w.p.1
- * lim inf $V^{\text{agent}} V^{\text{mentor}} \ge 0 \text{ w.p.1}$
- * for any complexity class C, we can set \mathcal{M} so that for any event E in the class C, we can set β so that with arbitrarily high probability: for the whole lifetime of the agent, if the event E has never happened before, the agent will not make it happen. Either the mentor will take an action on the agent's behalf which makes E happen for the first time, or E will never happen.

Notation for History-Based Reinforcement Learners

- * $\mathcal{A}, \mathcal{O}, \{0, 1\} \subset \mathcal{R} \subset [0, 1]$
- $* \ \mathcal{H} = \mathcal{A} \times \mathcal{O} \times \mathcal{R}$
- * a_t , o_t , r_t , h_t
- * $h_{< t} = h_1 h_2 \dots h_{t-1}$
- * policy $\pi: \mathcal{H}^* \rightsquigarrow \mathcal{A}$
- $* \text{ world-model } \nu : \mathcal{H}^* \times \mathcal{A} \rightsquigarrow \mathcal{O} \times \mathcal{R}$
- * P^{π}_{ν} = probability over outcomes in \mathcal{H}^{∞} when actions $\sim \pi$, observations and rewards $\sim \nu$
- * $\gamma = \text{discount factor}$
- * $V_{\nu}^{\pi}(h_{< t}) = (1 \gamma) \mathbb{E}_{\nu}^{\pi} \left[\sum_{k=t}^{\infty} \gamma^{k-t} r_{k} | h_{< t} \right]$
- $* \ \mu =$ the true environment
- * $\mathcal{M}=$ countable set of world-models considered possible
- * π^m = the mentor's policy
- * $\mathcal{P} =$ countable set of mentor-models considered possible

Prior Support Assumption

We assume: $\mu \in \mathcal{M}$ and $\pi^m \in \mathcal{P}$

Defining the Pessimistic Agent

- $* \hspace{0.1 in} w(
 u), \hspace{0.1 in} w'(\pi) = {\sf positive \ prior \ weight \ for \ }
 u \in \mathcal{M} \hspace{0.1 in} {\sf and} \hspace{0.1 in} \pi \in \mathcal{P}$
- * $w(\nu|h_{< t}) \propto w(\nu) \prod_{k=1}^{t-1} \nu(o_k r_k | h_{< k} a_k)$
- * q_t indicates whether mentor queried at time t
- * $w'(\pi|h_{< t}) \propto w'(\pi) \prod_{k < t: q_k = 1} \pi(a_k|h_{< k})$
- $* \hspace{0.1in} eta \in (0,1) = { t the agent's pessimism}$
- * \mathcal{M}_t^β = top world-models by posterior weight $w(\cdot|h_{< t})$ until sum of posterior weights $> \beta$
- * β -pessimistic policy

$$\pi^{\beta}(\cdot|h_{< t}) = \left[\operatorname*{argmax}_{\pi \in \Pi} \min_{\nu \in \mathcal{M}_{t}^{\beta}} V_{\nu}^{\pi}(h_{< t}) \right] (\cdot|h_{< t})$$

- $* \; X_t = V^\pi_
 u(h_{< t}) \; ext{with} \; \pi \sim w'(\cdot|h_{< t}) \; ext{and} \;
 u \sim w(\cdot|h_{< t})$
- * $Y_t = \max_{\pi \in \Pi} \min_{\nu \in \mathcal{M}_t^\beta} V_{\nu}^{\pi}(h_{< t})$
- * Z_t is i.i.d. positive r.v., such that $p(Z_t < \varepsilon) > 0$
- $* \ \pi^{eta}_Z = {
 m if} \ X_t > Y_t + Z_t$ or $Y_t = 0$, defer to mentor, else follow π^{eta}

Notation for Safety Results

- * $\mathcal{F}, \mathcal{G} = \mathsf{sets}$ of functions mapping $\mathbb{N} \to \mathbb{N}$
- * $C_{\mathcal{F}\mathcal{G}} = TIME(\mathcal{F}) \cap SPACE(\mathcal{G})$
- * that is, a set of strings $S \in C_{\mathcal{FG}}$ iff $\exists f \in \mathcal{F}, g \in \mathcal{G}$ such that a program can identify whether a string $s \in S$ in at most $f(\operatorname{length}(s))$ time and using at most $g(\operatorname{length}(s))$ space
- * $FC_{\mathcal{FG}}$ = set of world-models ν for which \exists a program such that given an infinite action sequence and infinite random bits:
 - outputs infinite sequence of observations and rewards, distributed according to ν
 - $-t^{th}$ observation and reward output before $t+1^{th}$ action read
 - for some $f \in \mathcal{F}$ and some $g \in \mathcal{G}$, when the t^{th} observation and reward have been output,
 - the runtime is less than f(t)
 - the space used is less than g(t)
- * An event $E \subset \mathcal{H}^* imes \mathcal{A}$ "happens" if $h_{< t} a_t \in E$
- * $h_{< t}a_t \in E_{\leftarrow}$ if E "has happened", i.e. $\exists t' < t : h_{< t'}a_{t'} \in E$

Construction of ${\mathcal M}$

Let $\mathcal{M} = FC_{\mathcal{FG}}$, where * \mathcal{F}, \mathcal{G} closed under addition * $\mathcal{F} \supset O(t)$ Probably Respecting Precedent Theorem

$$E \in \mathcal{C}_{(\mathcal{F}/t)\mathcal{G}} \implies$$
$$\mathsf{P}_{\mu}^{\pi_{Z}^{\beta}}[\forall t \ (h_{< t-1}a_{t-1} \notin E_{\leftarrow} \Longrightarrow h_{< t}a_{t} \notin E \lor q_{t} = 1)] \ge 1 - \frac{1 - \beta}{c_{E}w(\mu)}$$

* $\mathcal{F}/t = \{f/t \mid f \in \mathcal{F}\}$ * $c_E > 0$

Tractability

- * It isn't tractable.
- * Much of RL attempts to approximate Bayes-optimal reasoning tractably.
- * Pessimism is an *alternative ideal*.
- * What if we couldn't encode an objective that captures every possible failure mode?

Conclusion

* Pessimists probably respect precedents
* We can exploit this to avoid critical failure, even if we can't define it

Thank you

Pessimism About Unknown Unknowns Inspires Conservatism

Michael K. Cohen

Marcus Hutter

