
Optimistic AIXI

Peter Sunehag and Marcus Hutter

2012

Optimism

General Reinforcement Learning

An environment
$$\nu(h_t, a_t) = (o_t, r_t)$$

where $h_t = a_1 o_1 r_1, ..., a_t o_t r_t$.

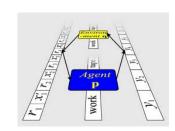
Maximize the discounted reward sum (return) $\sum_{i=t}^{\infty} r_i \gamma^{t-i}$ where $\gamma \in (0,1)$

A policy is a function $\pi(h_t) = a_t$

 $V_{\nu}^{\pi}(h_t) = \text{expected return (in } \nu)$ achieved by following policy π after h_t

Agent's goal is to maximize the total long-term reward

Agent


Observation
Other Reward
Other Re

 π is asymptotically optimal if for the true environment μ $\lim_{t\to\infty}(\max_{\tilde{\pi}}V_{\mu}^{\tilde{\pi}}(h_t)-V_{\mu}^{\pi}(h_t))=0$

AIXI

The rational policies are $\arg \max_{\pi} V_{\varepsilon}^{\pi}(h_t)$

- The AIXI agent defines ξ as a mixture $\sum w_{\nu}\nu$ over all lower semi-computable environments and $\omega_{\nu} > 0$ for all such ν
- The probability of generating a string as output from a Universal Turing Machine when choosing input by coin flips
- AIXI is optimal on average with respect to the prior used to define it.
- AIXI is rational (Sunehag and Hutter 2011)
- Orseau (2010): AIXI is not guaranteed asymptotic optimality
- Lattimore and Hutter (2011): no agent is but in a weaker sense it is possible though AIXI fail due to insufficient exploration

Optimism and Optimality

If $\max_{\pi} V_{\xi}^{\pi}(h) \geq \max_{\pi} V_{\mu}^{\pi}(h)$ for the true environment μ , we say that ξ is optimistic

If ξ is also dominant, i.e. if $\xi(\cdot) \ge w_{\mu}\mu(\cdot)$ then AIXI is guaranteed asymptotic optimality

We extend the AIXI agent by instead of picking just one ξ , we pick a compact class Ξ

- Optimistic AIXI acts according to a policy in $\arg \max_{\pi} \max_{\xi \in \Xi} V_{\xi}^{\pi}(h)$
- If there is at least one optimistic environment in
 \(\pi \) and if all are dominant, then asymptotic optimality is achieved
- Which environment is optimistic depends on the history
- Decreased dependence on the choice of reference machine by picking a class.
- NOT the same as combining many machines into one.
 More explorative

Optimism and Rationality

Decision Theoretic Rationality defined as being consistent

- Morgenstern, Von Neumann and later Savage provide axiomatization
- Consequence:
 Preferences are deemed consistent (rational)
 if there are beliefs and tastes that explain
 the preferences as maximizing expected utility
- Suggestion:
 Break the symmetry assumption that implies that you do not like both sides of a bet.
- Consequence:
 Leads to our class of optimistic agents
- The information gained from the experience makes this reasonable in reactive environments

Contracts

We are about to observe an event.

It consists of a letter from a finite alphabet.

We are offered a bet on what it is.

Definition (Contract)

A contract is an element $x = (x_1, ..., x_m)$ in \mathbb{R}^m and x_j is the reward received if the event (the truth) is the j:th symbol, under the assumption that the contract is accepted (see next definition).

Decision Maker, (Optimistic) Rationality

Definition (Decision Maker, Decision)

A decision maker (for some unknown environment) is a set $Z \subset \mathbb{R}^m$ which defines exactly the contracts that are acceptable (and \tilde{Z} rejectable) and this we can define using a function from \mathbb{R}^m to {accepted, rejected, either}. The function value is called the decision.

Definition (Rationality)

We say that a decision maker is rational if

- Every contract $x \in \mathbb{R}^m$ is either acceptable or rejectable or both;
- ② x is acceptable if and only if -x is rejectable; we replace iff with if and rationality with optimistic rationality
- $3 x, y \in Z, \lambda, \gamma \ge 0 \text{ then } \lambda x + \gamma y \in Z;$
- **③** If $x_k \ge 0 \ \forall k$ then $x = (x_1, ..., x_m) \in Z$ while if $x_k < 0 \ \forall k$ then $x \notin Z$.
 - Optimistic Rationality admits (leads to) optimistic agents

Including non-dominant environments

Consider a class of environments Ξ that are not all assumed to be dominant

- Environments might then need to be excluded at some point
- Exclude based on threshold on likelihood ratio
- Sunehag and Hutter (2012, AusAI) prove asymptotic optimality if the true environment is in the class
- This condition replace the assumption that all the environments are dominant and this environment is automatically optimistic (since it is relative to itself)

Conclusions

- Classical rationality axioms lead to Bayesian agents
- Bayesian agents can often fail to achieve asymptotic optimality in the active reinforcement learning setting because they are insufficiently explorative
- We weaken the assumption that one does not strictly like both sides of a bet which is motivated by the possibility of gaining experience to learn from
- Leads to optimistic agents that achieve asymptotic optimality for larger classes of environments
- Optimistic AIXI is less sensitive to the initial choice of reference machine