Death & Suicide in Universal Artificial Intelligence

J.Martin T.Everitt M.Hutter

Artificial General Intelligence, 2016

Defining Death for Agents

- Motivations
- Agents and Environments
- Death as a Death-state
- Death-probability and Semimeasure Loss

Results

- Known Environments: $AI\mu$
- Unknown Environments: AIXI

3 Conclusion

1 Defining Death for Agents

Motivations

- Agents and Environments
- Death as a Death-state
- Death-probability and Semimeasure Loss

Results

- Known Environments: $AI\mu$
- Unknown Environments: AIXI

Conclusion

Motivations

Generally Intelligent Agents and Death

Why AIXI, and why agent death?

- Why do we need theoretical models of generally intelligent agents?
 - Guiding the construction of agents.
 - Understanding agent reasoning and behaviour.
 - Developing control strategies.
- Why study agent death?
 - Al safety and the shutdown problem.
 - Tripwire control strategies.
- Why a subjective definition of death?
 - Objective definition difficult (even for biological organisms).
 - Want to understand how the agent itself will reason about its death.

Defining Death for Agents

Motivations

Agents and Environments

- Death as a Death-state
- Death-probability and Semimeasure Loss

Results

- Known Environments: $AI\mu$
- Unknown Environments: AIXI

Conclusion

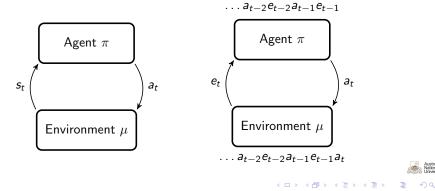
The Agent-Environment Model

States vs. History Sequences

- Agent is a policy π : maps a history $\boldsymbol{x}_{< t}$ to an action $\boldsymbol{a}_t \in \mathcal{A}$
- Environment μ : maps a history $\pmb{x}_{< t} \pmb{a}_t$ to a percept $\pmb{e}_t \in \mathcal{E}$

State Model (MDP)

History Model



Two Generally Intelligent Agents Alµ and AIXI

Definition (The Value Function)

The value (expected total future reward) of policy π in environment ν :

$$V_{\nu}^{\pi}(\boldsymbol{x}_{< t}\boldsymbol{a}_{t}) = \frac{1}{\Gamma_{t}}\sum_{k=t}^{\infty}\sum_{e_{t:k}}\gamma_{k}r_{k}\nu(\boldsymbol{e}_{t:k}\mid\boldsymbol{x}_{< t}\boldsymbol{a}_{t:k})$$

Definition (AI μ : knows the true environment)

For the true environment μ , the agent $AI\mu$ is a μ -optimal policy

$$\pi^{\mu}(\boldsymbol{x}_{< t}) := rg\max_{\pi} V^{\pi}_{\mu}(\boldsymbol{x}_{< t}).$$

Definition (AIXI: must learn the environment)

The agent AIXI models the environment using a mixture ξ . It is a ξ -optimal policy:

$$\pi^{\xi}(\boldsymbol{x}_{< t}) := rg\max_{\pi} V^{\pi}_{\xi}(\boldsymbol{x}_{< t}).$$

1 Defining Death for Agents

- Motivations
- Agents and Environments
- Death as a Death-state
- Death-probability and Semimeasure Loss

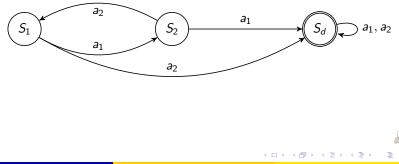
Results

- Known Environments: $AI\mu$
- Unknown Environments: AIXI

Conclusion

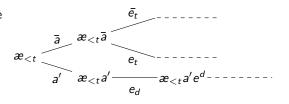
Defining a Death-State in an MDP

- In an MDP we can define a special accepting state as the death state.
- The agent remains in the death state no matter what actions it takes.



Defining a Death-State in a General Environment

- In general environments, we can't explicitly define a death state.
- Must instead define it via a death-percept $e^d \equiv (o^d, r^d).$



Definition (Death-state in a general environment)

Given a true environment μ and a history $\boldsymbol{x}_{\leq t}\boldsymbol{a}_t$, we say that the agent is in a *death-state at time t* if for all $t' \geq t$ and all $\boldsymbol{a}_{(t+1):t'} \in \mathcal{A}^*$,

$$\mu(e^d_{t'} \mid \boldsymbol{x}_{< t} \boldsymbol{x}^d_{t:t'-1} \boldsymbol{a}_{t'}) = 1.$$

An agent *dies at time t* if the agent is not in the death-state at t - 1 and is in the death-state at t.

Australia National Universit

Defining Death for Agents

- Motivations
- Agents and Environments
- Death as a Death-state
- Death-probability and Semimeasure Loss

Results

- Known Environments: $AI\mu$
- Unknown Environments: AIXI

Conclusion

(日) (同) (日) (日)

Semimeasures and Semimeasure Loss

Definition (Semimeasure)

A semimeasure over an alphabet $\mathcal X$ is a function $\nu:\mathcal X^* \to [0,1]$ such that

(1)
$$\nu(\epsilon) \leq 1$$
, and (2) $1 \geq \sum_{y \in \mathcal{X}} \nu(y \mid x)$.

- $\nu(x)$ is the probability that a sequence starts with the string x.
- ν may not be a proper probability measure as it need not sum to 1. There
 may be some probability the sequence will just terminate.

Definition (Instantaneous measure loss)

The *instantaneous measure loss* of a semimeasure ν at time t given a history $\boldsymbol{x}_{< t} \boldsymbol{a}_t$ is:

$$\mathcal{L}_{\nu}(\boldsymbol{x}_{< t}\boldsymbol{a}_{t}) = 1 - \sum_{\boldsymbol{e}_{\star}} \nu(\boldsymbol{e}_{t} \mid \boldsymbol{x}_{< t}\boldsymbol{a}_{t})$$

イロト イポト イヨト イヨト

Measure Loss as Death-Probability

Definition (Semimeasure-death)

- An agent *dies at time t* in an environment μ if, given a history æ_{<t}a_t, μ does not produce a percept e_t (i.e. if the history sequence terminates).
- The μ -probability of death at t given a history $x_{<t}a_t$ is equal to $L_{\mu}(x_{<t}a_t)$, the instantaneous μ -measure loss at t.

Advantages of this definition:

- Simple/Intuitive: No need to define a bizarre death-percept or death-state.
- $\begin{array}{c} \overline{a} & \overline{a} \\ \overline{a} & \overline{a} \\ \overline{a'} & \overline{a} \\ \overline{a'} & \overline{a'} \\ \overline{a'} & \overline{a'} \end{array}$
- General: Any sequence of death-probabilities captured by losses of some semimeasure μ.
- Equivalence of Behaviour: agents behave identically w.r.t semi-measure death and death-state.

Known Environments: $AI\mu$

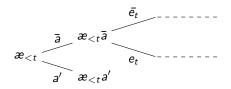
Outline

- Motivations
- Agents and Environments
- Death as a Death-state
- Death-probability and Semimeasure Loss

2 Results

- Known Environments: $AI\mu$
- Unknown Environments: AIXI

Variance of Behaviour under Reward Range Shifts



Theorem (Self-preserving $AI\mu$)

If rewards are bounded and non-negative, then given a history $\mathbf{z}_{< t} AI\mu$ avoids certain immediate death:

$$\exists a' \in \mathcal{A} \text{ s.t. } L_{\mu}(m{x}_{< t}a') = 1 \implies Al\mu ext{ will not take action } a' ext{ at t}$$

Theorem (Suicidal $AI\mu$)

If rewards are bounded and negative, then $AI\mu$ seeks certain immediate death. That is,

$$\mathcal{A}^{ ext{suicide}}
eq \emptyset \implies \mathsf{AI}\mu$$
 will take a suicidal action $\mathsf{a}' \in \mathcal{A}^{ ext{suicide}}.$

Unknown Environments: AIXI

Outline

Defining Death for Agents

- Motivations
- Agents and Environments
- Death as a Death-state
- Death-probability and Semimeasure Loss

2 Results

- Known Environments: $AI\mu$
- Unknown Environments: AIXI

Conclusion

Unknown Environments: AIXI Results

AIXI's Estimate of its Death-Probability

Definition (Safe and Risky Environments)

- μ is a *safe* environment if it is a proper measure with death-probability $L_{\mu}(\boldsymbol{x}_{< t}\boldsymbol{a}_{t}) = 0$ for all histories $\boldsymbol{x}_{< t}\boldsymbol{a}_{t}$. We call μ risky if it is not safe.
- The normalised measure μ_{norm} is thus a safe environment.

Theorem (AIXI's belief in risky environment is monotonically decreasing)

Let μ be risky s.t. $\mu \neq \mu_{\text{norm}}$. Then on any history $\boldsymbol{x}_{1:t}$ the ratio of the posterior belief in μ to the posterior belief in μ_{norm} is monotonically decreasing.

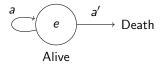
Theorem (Asymptotic ξ -probability of death in risky μ)

Let the true environment μ be computable and risky s.t. $\mu \neq \mu_{\text{norm}}$. Then given any action sequence $a_{1:\infty}$, the instantaneous ξ -measure loss goes to zero w. μ .p.1as $t \to \infty$.

$$\lim_{t\to\infty}L_{\xi}(\boldsymbol{x}_{< t}\boldsymbol{a}_t)=0.$$

Living Forever vs. Immortality

- In the semimeasure μ, action a means you stay alive with certainty and receive percept e (no measure loss).
- Action *a*' means that you 'jump off a cliff' and die with certainty without receiving a percept (full measure loss).



- In this environment, AIXI continues to believe that it might be in a risky environment μ, but only because on sequence it avoids exposure to death risk.
- It is only by taking risky actions and surviving that AIXI becomes sure it is immortal.

Conclusion

Contributions

- Two definitions of Death
 - Death-State.
 - Measure Loss and Semimeasure-Death.
 - These formalisations result in identical agent behaviour.
- Known Environments: $AI\mu$
 - Bounded Positive Rewards: $AI\mu$ avoids death.
 - Bounded Negative Rewards: $AI\mu$ seeks death.
- Unknown Environments: AIXI
 - AIXI's belief in its safety is monotonically increasing.
 - Asymptotically, AIXI's estimate of its death-probability vanishes.
 - Asypmtotically, AIXI learns it will live forever, but not that it is immortal.
- Outlook:
 - We hope this preliminary formal treatment of death will prove useful to future investigations into the shutdown problem and other problems in AI Safety related to agent termination.