
Approximate Universal Artificial Intelligence
A Monte-Carlo AIXI Approximation

Joel Veness Kee Siong Ng Marcus Hutter Dave Silver

UNSW / NICTA / ANU / UoA

September 8, 2010

General Reinforcement Learning Problem

Worst case scenario. Environment is unknown. Observations
may be noisy. Effects of actions may be stochastic. No explicit
notion of state. Perceptual aliasing. Rewards may be sparsely
distributed.

Notation:

I Agent interacts with an unknown environment µ by making
actions a ∈ A.

I Environment responds with observations o ∈ O and rewards
r ∈ R. For convenience, we often use x ∈ O × R.

I The goal of the agent is to maximize its expected total future
reward.

Optimality Notions and Reinforcement Learning

I What does it mean for an agent to “solve” the general
reinforcement learning problem?

I The AIXI agent provides one such notion of optimality. It is
a purely mathematical notion and ignores computational
concerns.

I In what sense can we approximate AIXI computationally?
Can we do this efficiently? Will it lead to interesting and
practical agent algorithms? These questions are the focus
of my research.

The AIXI agent in one simple equation...

aAIXI
t = arg max

at

∑

ot rt

. . .max
at+m

∑

ot+mrt+m

[rt + · · ·+ rt+m]
∑

q:U(q,a1...at+m)=o1r1...ot+mrt+m

2−`(q)

Where:
I U(q,a1:n) is a Universal Turing Machine, running program

q with the agent action sequence a1:n as input
I q is some “environment program”
I l(q) gives the length of program q

Caveat: Incomputable

Where we are headed...

I AIXI provides practical guidance to constructing real-world
RL algorithms.

I Will introduce the MC-AIXI-CTW agent, a real world,
efficient, model based RL agent that can be viewed as a
scaled down AIXI agent.

I MC-AIXI-CTW is the extension and synthesis of two
powerful algorithms: CTW and UCT.

I Even if AIXI theory doesn’t interest you, the empirical
results might.

AIXI as a principle

An alternative characterization of the AIXI agent:

aAIXI
t = arg max

at

∑

xt

. . .max
at+m

∑

xt+m


t+m∑

i=t

ri


∑

ρ∈M
2−K(ρ)ρ(x1:t+m |a1:t+m),

Note:
I Uses a Bayesian Sequence Prediction method
I Kolmogorov Complexity used as an Ockham prior
I Immediately suggestive of a direct approximation!

What does MC-AIXI-CTW inherit from AIXI theory

I Uses same problem setup: i.e. general reinforcement
learning problem.

I Uses same definition of environment model, a probabilistic
predictor describing what an agent will experience next,
given everything that it has already experienced.

I Uses a computationally efficient combination of
approximate Expectimax planning with Bayesian
Sequence Prediction.

I No exploration/exploitation issue.
Value of information implicitly captured just like in AIXI!

I Inherits strong theoretical results from Bayesian Sequence
Prediction theory.

Overview of proposed agent architecture

Environment

Update Bayesian Mixture of Models

a1
a2 a3

o1 o2 o3 o4

future reward estimate

Record Action

Simple Complex

Large Prior Small Prior

+

.......

- - +
-

-

Observation/Reward... Past

Decide on best action

Action... Past Observation/Reward

Perform action in real world

Record new sensor information

Refine environment model

AIXI-MC
An approximate AIXI agent

Background

Two main areas:

I Learning - online sequence prediction / model building

I Planning/Control - search / sequential decision theory

The hard parts:

I Large model class required for Bayesian mixture predictor to
have general prediction capabilities.

I Fortunately, an efficient and general class exists: all learning
Prediction Suffix Trees of maximum finite depth D. Class
contains over 22D−1 models!

I If details hard to follow, just think of the model class as all
D-Markov models, with a prior that favours “less complex”
models.

Sequence Prediction with Bayes Mixtures

Consider a class of modelsM and some (binary) data x1:n
generated by an unknown model µ ∈ M. Consider the mixture
ξ(xn+1 | x1:n) :=

∑
ν∈M ν(xn+1 | x1:n)wn

ν , where ∀n > 0, posterior
wn
ν is updated using Bayes Rule and w0

ν is the prior on ν.

I The predictions made by ξ rapidly converge to µ.

I Pareto Optimality of ξ. No predictor can peform at least as
well as ξ for all ν ∈ M and strictly better for a least one
ν′ ∈ M.

I If µ <M, ξ rapidly converges to µ̂ ∈ M, where µ̂ is the best
(w.r.t KL-divergence) predictor inM.

Prediction Suffix Trees

A prediction suffix tree is a simple, tree based variable length Markov
model. For example, using the PST below, having initially been given
data 01:

Pr(010|01) = Pr(0|01) × Pr(1|010) × Pr(0|0101)
= (1 − θ1)θ2(1 − θ1)

= 0.9 ∗ 0.3 ∗ 0.9
= 0.243

θ1 = 0.1

◦
1

ÄÄÄÄ
ÄÄ

ÄÄ 0

ÂÂ?
??

??
?

θ2 = 0.3

◦
1

ÄÄÄÄ
ÄÄ

ÄÄ 0

ÂÂ?
??

??
?

θ3 = 0.5

Context Tree Weighting

Context Tree Weighting is an online prediction method that was
originally developed for data compression. It uses a mixture of
prediction suffix trees to make predictions. Smaller prediction
suffix trees are given initial higher weight, which helps to avoid
overfitting when data is limited. If we let CD denote the class of
all prediction suffix trees of maximum depth D, then CTW
computes:

Pr(x1:t) =
∑

M∈CD

2−ΓD(M) Pr(x1:t |M) (1)

in time O(D). ΓD(·) is a description length based prior. This is
truly amazing, as computing the sum naively would take time
double-exponential in D!

Connection to Bayesian Sequence Prediction

With a bit of simple algebra, one can show that the previous
mixture equation implies:

Pr(xt | x1:t−1) =
∑

M∈CD

Pr(xt |M, x1:t−1)Pr(M | x1:t−1) (2)

which makes the connection to Bayesian sequence prediction
explicit. i.e. Pr(M | x1:t−1) is the posterior weight of model M
given the data.

Expectimax - An optimality notion for planning

a∗ := arg max
a∈A

∑
(o1,r1)∈O×R

Pr(o1, r1) . . .max
a∈A

∑
(om ,rm)∈O×R

Pr(om, rm)

[
m∑

i=1
ri

]

I A natural optimality notion given we know the true environment.

I Intuitively: the expectation, with respect to all possible futures, if
we picked the best action at each (possible) future time point up
to a fixed horizon m.

I Yields a straightforward, brute force, decision theoretic
algorithm.

I However, branching factor enormous, and search horizon may
be large. Need a smarter approximation!

UCT - Bandit Based Monte Carlo Tree Search

I Online planning algorithm for finite horizon MDPs.
I Requires a generative model of the environment.
I Converges to the expectimax value defined previously.

a1
a2 a3

o1 o2 o3 o4

future reward estimate

What has been done...

I Generalise CTW to the agent setting (Action-conditional CTW)

I Generalise UCT from MDPs to our history based setting (µUCT)

I Shown that µUCT converges to the expectimax value

I Extended CTW with a ”revert” operation, required for the MCTS

Finally, the two most important steps:

I µUCT + Action-conditional CTW = MC-AIXI-CTW

I Implement it. :-)

Relationship to AIXI

One can show that MC-AIXI-CTW, given enough thinking time,
chooses:

at = arg max
at

∑

xt

· · ·max
at+m

∑

xt+m


t+m∑

i=t

ri


∑

M∈CD

2−ΓD(M) Pr(x1:t+m |M,a1:t+m)

In contrast, AIXI chooses:

at = arg max
at

∑

xt

. . .max
at+m

∑

xt+m


t+m∑

i=t

ri


∑

ρ∈M
2−K(ρ) Pr(x1:t+m |a1:t+m, ρ),

Algorithmic considerations

I Restricted the model class to gain the desirable computational
properties of CTW

I Approximated the finite horizon expectimax operation with a
MCTS procedure

I O(Dm log(|O||R|)) operations needed to generate m
observation/reward pairs (for a single simulation)

I O(tD log(|O||R|)) space overhead for storing the context tree.

I Anytime search algorithm

I Search is embarassingly parallel

I O(D) to update the context tree online

Experimental Results

I MC-AIXI-CTW agent applied to a number of toy problems.
I Agent needs to learn from scratch a model of the

environment dynamics.
I Model is then used by µUCT to choose best action.
I Some domains have noisy observations, perceptual

aliasing, etc.
I Most domains come from the POMDP literature. However,

learning and solving a POMDP is much more difficult than
solving a POMDP given an explicit POMDP model.

Domain description - Cheese Maze

A = { north, south, east, west }
O = { wall-north, wall-south, wall-east, wall-west }

R = { -1, 10, -10 }

Performance versus age

10
2

10
3

10
4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

Age

A
ve

ra
ge

 R
ew

ar
d

pe
r

T
im

es
te

p

Cheese Maze − Reward versus Age

Empirical
Optimal

Performance versus time

10
2

10
3

10
4

−1

−0.5

0

0.5

1

1.5

Number of Simulations

A
ve

ra
ge

 R
ew

ar
d

pe
r

T
im

es
te

p

Search Scalability − Cheese Maze

Empirical
Optimal

Domain description - Tiger

A = { listen, open-left, open-right }
O = { none, tiger-left, tiger-right }

R = { -1, 10, -100 }

Performance versus age

10
2

10
3

10
4

−1.5

−1

−0.5

0

0.5

1

1.5

Age

A
ve

ra
ge

 R
ew

ar
d

pe
r

T
im

es
te

p

Tiger − Reward versus Age

Empirical
Optimal

Performance versus time

10
2

10
3

10
4

−4

−3

−2

−1

0

1

2

Number of Simulations

A
ve

ra
ge

 R
ew

ar
d

pe
r

T
im

es
te

p

Search Scalability − Tiger

Empirical
Optimal

Domain description - Extended Tiger

I Similar to Tiger domain, except agent now starts sitting on
a chair

I Agent has an additional action: stand
I Listening whilst sitting provides information, listening while

standing doesn’t.
I Opening the correct door now gives a reward of 30.

Performance versus age

10
2

10
3

10
4

−5

−4

−3

−2

−1

0

1

2

3

4

5

Age

A
ve

ra
ge

 R
ew

ar
d

pe
r

T
im

es
te

p

Extended Tiger − Reward versus Age

Empirical
Optimal

Performance versus time

10
2

10
3

10
4

−10

−5

0

5

Number of Simulations

A
ve

ra
ge

 R
ew

ar
d

pe
r

T
im

es
te

p

Search Scalability − Extended Tiger

Empirical
Optimal

Domain description - TicTacToe

I TicTacToe
I Observations: 18 bit encoding of the board state
I Reward: +2 for a win, +1 draw, 0 game continuing, -2 loss,

-3 illegal move
I Actions: Mark a cross in one of 9 cells.

Performance versus age

10
2

10
3

10
4

10
5

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Age

A
ve

ra
ge

 R
ew

ar
d

pe
r

T
im

es
te

p

TicTacToe − Reward versus Age

Empirical
Upper Bound on Optimal

Performance versus time

10
2

10
3

10
4

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of Simulations

A
ve

ra
ge

 R
ew

ar
d

pe
r

T
im

es
te

p

Search Scalability − TicTacToe

Empirical
Upper Bound on Optimal Value

Performance on a challenging domain - Pocman

10
3

10
4

10
5

10
6

−12

−10

−8

−6

−4

−2

0

2

Number of Timesteps

A
ve

ra
ge

 R
ew

ar
d

pe
r

T
im

es
te

p

Scaling Properties − Partially Observable Pacman

500 simulations
1000 simulations
2000 simulations

I Show video after 2.5 million steps of interaction.

Summary

I Similar results on other well-known toy POMDPs: 4x4 grid,
Windy grid world, 1d Maze, HeavenHell etc.

I Approximately optimal performance on toy problems, given
enough thinking time.

I Although problems are modest, these results represent
state of the art performance in this difficult setting.

I A validation of AIXI? I think so, but you don’t have to.
I Agent has been designed with scalability in mind. How will

it go on more challenging problem domains?

Limitations

I Prediction Suffix Trees are obviously simplistic models - a
long way from the AIXI ideal.

I If the environment is not n-Markov, one cannot expect
good performance

I The playout policy used for the MCTS doesn’t incorporate
or learn any domain knowledge.

I However, a general agent framework now is in place. How
can we scale it up?

Predicate CTW

I Natural generalisation of the notion of ”context”.
I Context is a vector of predicate values.
I Predicates are arbitrary boolean functions on the agent’s

history.
I In principle, a way to enrich the model class.
I Also a way to incorporate domain knowledge.
I For example, one could add a “is the last move legal”

predicate to TicTacToe...

Some results on TicTacToe

10
4

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Age

A
ve

ra
ge

 R
ew

ar
d

pe
r

T
im

es
te

p

Predicate CTW versus CTW on TicTacToe

CTW
PCTW

Future work

I Easy to extend the model class to improve general
prediction ability.

I However, not so easy to do this in a computationally
efficient manner.

I My current research involve looking at efficient ways of
using more expressive mixtures; i.e. I want to move well
beyond n-Markov predictors.

I Need to understand that MC-AIXI-CTW is pushing the
limits of what can be done on present day desktop
machines. Motivation to finish PhD: access to more
resources!

Learning heuristic playout policies

I Agent builds an internal model of its own search-enhanced
behaviour.

I The action model attempts to predict the actions
recommended by the MCTS.

I This action model can then be used as the heuristic
playout policy by µUCT.

I Intuitive idea, does it work? Promising initial results.

Results on Cheese Maze

10
2

10
3

10
4

10
5

−7

−6

−5

−4

−3

−2

−1

0

1

2

Age

A
ve

ra
ge

 R
ew

ar
d

pe
r

T
im

es
te

p
Impact of Bootstrapped Playouts on Cheese Maze

Uniform playouts (100 sims)
Uniform playouts (500 sims)
Learned playouts (100 sims)
Learned playouts (500 sims)

Comments

I Obviously a long way to go before we can contruct truly
powerful, general agents.

I If Moore’s Law continues to hold, AI has an interesting
future!

I AI is an arms race. Pointless working on it without access
to state of the art hardware.

I Hopefully it will be become more culturally acceptable to
do serious research on general agent architectures... if
not, well, there are plenty of people who want automated
trading agents...

Questions?

I Thanks for coming, I hope you enjoyed my talk.

I For more information, see:

A Monte Carlo AIXI Approximation,
Joel Veness, Kee Siong Ng, Marcus Hutter, David Silver
http://arxiv.org/abs/0909.0801

�������
�����
�

�		 �			 �				 �					
 ��
���� ���
� �
�
� ��� �

���������� �!�"�#$

%&'()*)+ ,-'.'/*.*01 2 34&&5& 6'7&89�:;<; =�>?@@ :ABCD@�EF GHB CIJK

������������������
�

�		 �			 �				 �					
 ��
���� ���
� �
�
� ��� �

���������� �!�"�#$

%&'()*)+ ,-'.'/*.*01 2 3*+&(45�6787 9�:;<< 6=> ?@<�AB CD> ?EFG

�������������������������	
	�� 	��� 	���� 	����� 	������
 ��
���� ���
� �

�
� ��� �
���������� �!� "�#$

%&'()*)+ ,-'.'/*.*01 2 345) 678&(9:�;<=< >�?@AA ;BCDEA�FG HICDJKL

����������������������	���

��� ���� ����� ������ �������� �
���
�
���� �

�� ���

�������� � ! " #�$%

&'()*+*, -.(/(0+/+12 3 45.637(8')3-.+995)9:;�<=>= ?�@ABB <CD EFB�GH IJD EKLM

���������������������	
��� ���� ����� ������
 ��
���� ���
� �

�
� ��� �
���������� �!�"�#$

%&'()*)+ ,-'.'/*.*01 2 343 5(*6789:;<; =9>?@@ :AB CD@9EF GHB CIJK

�����������������
��� ���� ����� ������ �������	
��
��� ��
�� �

��� ��� �
���������� �� �!�"#

$%&'()(* +,&-&.)-)/0 1 2),2&,23%45�6787 9�:;<< =>?@ABC

Questions?

I Thanks for coming, I hope you enjoyed my talk.

