Introduction Overview Results Summary

Reinforcement Learning via AIXI Approximation

Joel Veness^{†'} Kee Siong Ng* Marcus Hutter*['] David Silver [‡]

+ University of New South Wales
' National ICT Australia

The Australian National University
 ‡University College London

July 14, 2010

Model-based Bayesian agents

General Reinforcement Learning Problem

<u>Worst case scenario</u>: Environment is unknown. Observations may be noisy. Effects of actions may be stochastic. No explicit notion of state. Perceptual aliasing. Rewards may be sparsely distributed.

Notation:

- Agent interacts with an unknown environment μ by making actions $a \in \mathcal{A}$.
- ► Environment responds with observations $o \in O$ and rewards $r \in \mathcal{R}$. For convenience, we sometimes use $x \in O \times \mathcal{R}$.
- ► $x_{1:n}$ denotes $x_1, x_2, ... x_n, x_{< n}$ denotes $x_1, x_2, ... x_{n-1}$ and $ax_{1:n}$ denotes $a_1, x_1, a_2, x_2, ... a_n, x_n$.

Our work in context

Some approaches to (aspects of) the general reinforcement learning problem:

- Model-free RL with function approximation (e.g. TD)
- POMDP (assume an observation / transition model, maybe learn parameters?)
- Learn some (hopefully compact) state representation, then use MDP solution methods

Our approach:

Directly approximate Marcus Hutter's AIXI, a Bayesian optimality notion for general reinforcement learning agents.

AIXI: a Bayesian optimality notion

$$a_t^{AIXI} = \arg\max_{a_t} \sum_{x_t} \dots \max_{a_{t+m}} \sum_{x_{t+m}} \left[\sum_{i=t}^{t+m} r_i \right] \sum_{\rho \in \mathcal{M}} 2^{-K(\rho)} \rho(x_{1:t+m} \, | \, a_{1:t+m}),$$

- Expectimax + (generalised form of) Solomonoff Induction
- Model class M contains all enumerable chronological semi-measures.
- Kolmogorov Complexity used as an Ockham prior.
- ▶ m := b t + 1 is the "remaining search horizon", b is the maximum age of the agent

Caveat: Incomputable. Not an algorithm!

Describing environments, AIXI style

- ▶ A history h is an element of $(\mathcal{A} \times \mathcal{X})^* \cup (\mathcal{A} \times \mathcal{X})^* \times \mathcal{A}$.
- An environment ρ is a sequence of conditional probability functions $\{\rho_0, \rho_1, \rho_2, \ldots\}$, where for all $n \in \mathbb{N}$, $\rho_n \colon \mathcal{A}^n \to \text{Density } (\mathcal{X}^n)$ satisfies

$$\forall a_{1:n} \forall x_{< n} : \, \rho_{n-1}(x_{< n} \, | \, a_{< n}) = \sum_{x_n \in \mathcal{X}} \, \rho_n(x_{1:n} \, | \, a_{1:n}), \rho_0(\epsilon \, | \, \epsilon) = 1.$$

► The ρ-probability of observing x_n in cycle n given history $h = ax_{< n}a_n$ is

$$\rho(x_n \mid ax_{< n}a_n) := \frac{\rho(x_{1:n} \mid a_{1:n})}{\rho(x_{< n} \mid a_{< n})}$$

provided $\rho(x_{< n} | a_{< n}) > 0$.

Learning a model of the environment

We will be interested in agents that use a *mixture environment model* to learn the true environment μ .

$$\xi(x_{1:n} | a_{1:n}) := \sum_{\rho \in \mathcal{M}} w_0^{\rho} \rho(x_{1:n} | a_{1:n})$$

- $\mathcal{M} := \{\rho_1, \rho_2, \dots\}$ is the model class
- \mathbf{w}_0^{ρ} is the prior weight for environment ρ .
- Satisfies the definition of an environment model. Therefore, can predict by using:

$$\xi(x_n \mid ax_{< n}a_n) = \sum_{\rho \in \mathcal{M}} w_{n-1}^{\rho} \rho(x_n \mid ax_{< n}a_n), \ w_{n-1}^{\rho} := \frac{w_0^{\rho} \rho(x_{< n} \mid a_{< n})}{\sum\limits_{\nu \in \mathcal{M}} w_0^{\nu} \nu(x_{< n} \mid a_{< n})}$$

Theoretical Properties

<u>Theorem</u>: Let μ be the true environment. The μ -expected squared difference of μ and ξ is bounded as follows. For all $n \in \mathbb{N}$, for all $a_{1:n}$,

$$\sum_{k=1}^{n} \sum_{x_{1:k}} \mu(x_{< k} \mid a_{< k}) \left(\mu(x_{k} \mid ax_{< k} a_{k}) - \xi(x_{k} \mid ax_{< k} a_{k}) \right)^{2} \leq \min_{\rho \in \mathcal{M}} \left\{ -\ln w_{0}^{\rho} + D_{KL}(\mu(\cdot \mid a_{1:n}) \parallel \rho(\cdot \mid a_{1:n})) \right\},$$

where $D_{KL}(\cdot \| \cdot)$ is the KL divergence of two distributions.

Roughly: The predictions made by ξ will converge to those of μ if a model close (w.r.t. KL Divergence) to μ is in \mathcal{M} .

Introduction Overview Results Summary

Main Idea Expectimax Approximation Agent Architecture Relationship to AIXI Algorithmic considerations

Model Class Approximation

Approximate model class of AIXI with a mixture over *all* action-conditional Prediction Suffix Tree structures of maximum depth *D*.

- PSTs are a form of variable order Markov model.
- Context Tree Weighting algorithm can be adapted to compute a mixture of 2^{2^D} environment models in O(D)!
- Inductive bias: smaller PST structures favoured.
- PST parameters are learnt using KT estimators.
 KL-divergence term in previous theorem grows O(log n).
- Intuitively, efficiency of CTW is due to clever exploitation of shared structure.

ρUCT - MCTS Expectimax Approximation

- Adaptation of UCT for (mixture) environment models
- With sufficient time, converges to the expectimax solution
- "Value of Information" correctly incorporated when instantiated with a mixture environment model.
- ► Gives Bayesian solution to the exploration/exploitation dilemma

Agent Architecture

Relationship to AIXI

Given enough thinking time, MC-AIXI(CTW) will choose:

$$a_t = \arg \max_{a_t} \sum_{x_t} \cdots \max_{a_{t+m}} \sum_{x_{t+m}} \left[\sum_{i=t}^{t+m} r_i \right] \sum_{M \in C_D} 2^{-\Gamma_D(M)} \Pr(x_{1:t+m} | M, a_{1:t+m})$$

In contrast, AIXI chooses:

$$a_t = \arg \max_{a_t} \sum_{x_t} \dots \max_{a_{t+m}} \sum_{x_{t+m}} \left[\sum_{i=t}^{t+m} r_i \right] \sum_{\rho \in \mathcal{M}} 2^{-K(\rho)} \Pr(x_{1:t+m} | a_{1:t+m}, \rho)$$

Algorithmic considerations

- Restricted the model class to gain the desirable computational properties of CTW
- Approximated the finite horizon expectimax operation with a MCTS procedure
- ▶ $O(Dm \log(|O||\mathcal{R}|))$ operations needed to generate m observation/reward pairs (for a single simulation)
- ► $O(tD \log(|O||\mathcal{R}|))$ space overhead for storing the context tree.
- Anytime search algorithm
- Search can be parallelized
- ▶ $O(D \log(|O||R|))$ to update the context tree online

Experimental Setup

- Agent tested on a number of POMDP domains, as well as TicTacToe and Kuhn Poker.
- Agent required to both learn and plan.
- The context depth and search horizon were made as large as possible subject to computational constraints.
- lacktriangleright ϵ -Greedy training, with a decaying ϵ
- Greedy evaluation

Results

Resources required for (near) optimal performance

Domain	Experience	Simulations	Search Time
Cheese Maze	5×10^{4}	500	0.9s
Tiger	5×10^{4}	10000	10.8s
4×4 Grid	2.5×10^{4}	1000	0.7s
TicTacToe	5×10^{5}	5000	8.4s
Biased RPS	1×10^{6}	10000	4.8s
Kuhn Poker	5×10^{6}	3000	1.5s
Kuhn Poker	5 × 10 ⁶	3000	1.5s

- Timing statistics collected on an Intel dual quad-core 2 53Ghz Xeon
- Toy problems solvable in reasonable time on a modern workstation.
- General ability of agent will scale with better hardware.

Limitations and Future Work

- PSTs inadequate to represent many simple models compactly. For example, it would be unrealistic to think that our current AIXI approximation could cope with real-world image or audio data.
- Exploration/exploitation needs more attention. Can something principled and efficient be done for general Bayesian agents using large model classes?

Future Work

- ▶ Uniform random rollout policy used in ρ UCT. A learnt policy should perform much better.
- All prediction was done at the bit level. Fine for a first attempt, but no need to work at such a low level.
- Mixture environment model definition can be extended to continuous model classes.
- Incorporate more (action-conditional) Bayesian machinery.
- Richer notions of context.

For the curious...

For more information, see:

A Monte-Carlo AIXI Approximation, J. Veness, K.S. Ng, M. Hutter, W. Uther, D. Silver http://jveness.info/publications/default.html

Highlights: a direct comparison to U-Tree / Active-LZ, improved model class approximation (FAC-CTW) and more relaxed presentation.

- Video of the latest version playing Pacman http://www.youtube.com/watch?v=yfsMHtmGDKE
- Source code at: http://jveness.info/software/default.html

Learning Scalability - Cheese Maze

Learning Scalability - Tiger

Learning Scalability - Kuhn Poker

Learning Scalability - Rock-Paper-Scissors

Learning Scalability - 4x4 Grid

Questions?

► Thanks for coming, I hope you enjoyed my talk.