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General Reinforcement Learning Problem

Worst case scenario: Environment is unknown. Observations
may be noisy. Effects of actions may be stochastic. No explicit
notion of state. Perceptual aliasing. Rewards may be sparsely
distributed.

Notation:

I Agent interacts with an unknown environment µ by making
actions a ∈ A.

I Environment responds with observations o ∈ O and rewards
r ∈ R. For convenience, we sometimes use x ∈ O × R.

I x1:n denotes x1, x2, . . . xn, x<n denotes x1, x2, . . . xn−1 and
ax1:n denotes a1, x1,a2, x2, . . . an, xn.
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Our work in context

Some approaches to (aspects of) the general reinforcement
learning problem:
I Model-free RL with function approximation (e.g. TD)
I POMDP (assume an observation / transition model, maybe

learn parameters?)
I Learn some (hopefully compact) state representation, then

use MDP solution methods
Our approach:
I Directly approximate Marcus Hutter’s AIXI, a Bayesian

optimality notion for general reinforcement learning agents.
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AIXI: a Bayesian optimality notion

aAIXI
t = arg max

at

∑
xt

. . .max
at+m

∑
xt+m

t+m∑
i=t

ri

 ∑
ρ∈M

2−K(ρ)ρ(x1:t+m |a1:t+m),

I Expectimax + (generalised form of) Solomonoff Induction
I Model classM contains all enumerable chronological

semi-measures.
I Kolmogorov Complexity used as an Ockham prior.
I m := b − t + 1 is the ”remaining search horizon”, b is the

maximum age of the agent

Caveat: Incomputable. Not an algorithm!
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Describing environments, AIXI style

I A history h is an element of (A×X)∗ ∪ (A×X)∗ ×A.

I An environment ρ is a sequence of conditional probability
functions {ρ0, ρ1, ρ2, . . . }, where for all n ∈N,
ρn : An → Density (Xn) satisfies

∀a1:n∀x<n : ρn−1(x<n |a<n) =
∑
xn∈X

ρn(x1:n |a1:n), ρ0(ϵ | ϵ) = 1.

I The ρ-probability of observing xn in cycle n given history
h = ax<nan is

ρ(xn |ax<nan) :=
ρ(x1:n |a1:n)

ρ(x<n |a<n)

provided ρ(x<n |a<n) > 0.

Joel Veness, Kee Siong Ng, Marcus Hutter, David Silver Reinforcement Learning via AIXI Approximation



Introduction
Overview

Results
Summary

General Reinforcement Learning Problem
Background
AIXI as a principle
Model-based Bayesian agents

Learning a model of the environment

We will be interested in agents that use a mixture environment
model to learn the true environment µ.

ξ(x1:n |a1:n) :=
∑
ρ∈M

wρ0ρ(x1:n |a1:n)

I M := {ρ1, ρ2, . . . } is the model class
I wρ0 is the prior weight for environment ρ.
I Satisfies the definition of an environment model.

Therefore, can predict by using:

ξ(xn |ax<nan) =
∑
ρ∈M

wρn−1ρ(xn |ax<nan), wρn−1 :=
wρ0ρ(x<n |a<n)∑

ν∈M
wν0ν(x<n |a<n)
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Theoretical Properties

Theorem: Let µ be the true environment. The µ-expected
squared difference of µ and ξ is bounded as follows. For all
n ∈N, for all a1:n,

n∑
k=1

∑
x1:k

µ(x<k |a<k )

(
µ(xk |ax<k ak ) − ξ(xk |ax<k ak )

)2

≤

min
ρ∈M

{
− ln wρ0 + DKL (µ(· | a1:n) ∥ρ(· | a1:n))

}
,

where DKL (· ∥ ·) is the KL divergence of two distributions.

Roughly: The predictions made by ξ will converge to those of µ
if a model close (w.r.t. KL Divergence) to µ is inM.
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Model Class Approximation

Approximate model class of AIXI with a mixture over all
action-conditional Prediction Suffix Tree structures of maximum
depth D.

I PSTs are a form of variable order Markov model.
I Context Tree Weighting algorithm can be adapted to

compute a mixture of 22D
environment models in O(D)!

I Inductive bias: smaller PST structures favoured.
I PST parameters are learnt using KT estimators.

KL-divergence term in previous theorem grows O(log n).
I Intuitively, efficiency of CTW is due to clever exploitation of

shared structure.
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ρUCT - MCTS Expectimax Approximation

I Adaptation of UCT for (mixture) environment models
I With sufficient time, converges to the expectimax solution
I ”Value of Information” correctly incorporated when

instantiated with a mixture environment model.
I Gives Bayesian solution to the exploration/exploitation

dilemma.
a1

a2 a3

o1 o2 o3 o4

future reward estimate
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Agent Architecture

Environment

Update Bayesian Mixture of Models

a1
a2 a3

o1 o2 o3 o4

future reward estimate

Record Action

Simple Complex

Large Prior Small Prior

+

.......

- - +
-

-

Observation/Reward... Past

Determine best action

Action... Past Observation/Reward

Perform action in real world

Record new sensor information

Refine environment model

MC-AIXI
An approximate AIXI agent
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Relationship to AIXI

Given enough thinking time, MC-AIXI(CTW) will choose:

at = arg max
at

∑
xt

· · ·max
at+m

∑
xt+m

t+m∑
i=t

ri

 ∑
M∈CD

2−ΓD(M) Pr(x1:t+m |M, a1:t+m)

In contrast, AIXI chooses:

at = arg max
at

∑
xt

. . .max
at+m

∑
xt+m

t+m∑
i=t

ri

 ∑
ρ∈M

2−K(ρ) Pr(x1:t+m |a1:t+m, ρ)
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Algorithmic considerations

I Restricted the model class to gain the desirable computational
properties of CTW

I Approximated the finite horizon expectimax operation with a
MCTS procedure

I O(Dm log(|O||R|)) operations needed to generate m
observation/reward pairs (for a single simulation)

I O(tD log(|O||R|)) space overhead for storing the context tree.

I Anytime search algorithm

I Search can be parallelized

I O(D log(|O||R|))) to update the context tree online
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Experimental Setup

I Agent tested on a number of POMDP domains, as well as
TicTacToe and Kuhn Poker.

I Agent required to both learn and plan.

I The context depth and search horizon were made as large
as possible subject to computational constraints.

I ϵ-Greedy training, with a decaying ϵ

I Greedy evaluation
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Resources required for (near) optimal performance

Domain Experience Simulations Search Time
Cheese Maze 5 × 104 500 0.9s
Tiger 5 × 104 10000 10.8s
4 × 4 Grid 2.5 × 104 1000 0.7s
TicTacToe 5 × 105 5000 8.4s
Biased RPS 1 × 106 10000 4.8s
Kuhn Poker 5 × 106 3000 1.5s

I Timing statistics collected on an Intel dual quad-core
2.53Ghz Xeon.

I Toy problems solvable in reasonable time on a modern
workstation.

I General ability of agent will scale with better hardware.
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Limitations and Future Work

I PSTs inadequate to represent many simple models
compactly. For example, it would be unrealistic to think that
our current AIXI approximation could cope with real-world
image or audio data.

I Exploration/exploitation needs more attention. Can
something principled and efficient be done for general
Bayesian agents using large model classes?
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Future Work

I Uniform random rollout policy used in ρUCT. A learnt policy
should perform much better.

I All prediction was done at the bit level. Fine for a first
attempt, but no need to work at such a low level.

I Mixture environment model definition can be extended to
continuous model classes.

I Incorporate more (action-conditional) Bayesian machinery.

I Richer notions of context.
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For the curious...

I For more information, see:

A Monte-Carlo AIXI Approximation,
J. Veness, K.S. Ng, M. Hutter, W. Uther, D. Silver
http://jveness.info/publications/default.html

Highlights: a direct comparison to U-Tree / Active-LZ, improved
model class approximation (FAC-CTW) and more relaxed
presentation.

I Video of the latest version playing Pacman
http://www.youtube.com/watch?v=yfsMHtmGDKE

I Source code at: http://jveness.info/software/default.html
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Questions?

I Thanks for coming, I hope you enjoyed my talk.
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