Reinforcement Learning via AIXI Approximation

Joel Veness† Kee Siong Ng∗ Marcus Hutter∗ ′ David Silver ‡

† University of New South Wales
′ National ICT Australia
∗ The Australian National University
‡ University College London

July 14, 2010
General Reinforcement Learning Problem

Worst case scenario: Environment is unknown. Observations may be noisy. Effects of actions may be stochastic. No explicit notion of state. Perceptual aliasing. Rewards may be sparsely distributed.

Notation:

- Agent interacts with an unknown environment μ by making actions $a \in \mathcal{A}$.
- Environment responds with observations $o \in \mathcal{O}$ and rewards $r \in \mathcal{R}$. For convenience, we sometimes use $x \in \mathcal{O} \times \mathcal{R}$.
- $x_{1:n}$ denotes x_1, x_2, \ldots, x_n, $x_{<n}$ denotes $x_1, x_2, \ldots, x_{n-1}$ and $ax_{1:n}$ denotes $a_1, x_1, a_2, x_2, \ldots, a_n, x_n$.
Our work in context

Some approaches to (aspects of) the general reinforcement learning problem:

- Model-free RL with function approximation (e.g. TD)
- POMDP (assume an observation / transition model, maybe learn parameters?)
- Learn some (hopefully compact) state representation, then use MDP solution methods

Our approach:

- Directly approximate Marcus Hutter’s AIXI, a Bayesian optimality notion for general reinforcement learning agents.
AIXI: a Bayesian optimality notion

\[
a^\text{AIXI}_t = \arg\max_{a_t} \sum_{x_t} \ldots \max_{a_{t+m}} \sum_{x_{t+m}} \left[\sum_{i=t}^{t+m} r_i \right] \sum_{\rho \in M} 2^{-K(\rho)} \rho(x_{1:t+m} \mid a_{1:t+m}),
\]

- Expectimax + (generalised form of) Solomonoff Induction
- Model class \(M \) contains all enumerable chronological semi-measures.
- Kolmogorov Complexity used as an Ockham prior.
- \(m := b - t + 1 \) is the ”remaining search horizon”, \(b \) is the maximum age of the agent

Caveat: Incomputable. Not an algorithm!
Describing environments, AIXI style

- A history h is an element of $(\mathcal{A} \times \mathcal{X})^* \cup (\mathcal{A} \times \mathcal{X})^* \times \mathcal{A}$.

- An environment ρ is a sequence of conditional probability functions $\{\rho_0, \rho_1, \rho_2, \ldots\}$, where for all $n \in \mathbb{N}$,
 $\rho_n : \mathcal{A}^n \rightarrow \text{Density} (\mathcal{X}^n)$ satisfies
 $$\forall a_1:n \forall x_{<n} : \rho_{n-1}(x_{<n} | a_{<n}) = \sum_{x_n \in \mathcal{X}} \rho_n(x_{1:n} | a_{1:n}), \rho_0(\epsilon | \epsilon) = 1.$$

- The ρ-probability of observing x_n in cycle n given history $h = ax_{<n}a_n$ is
 $$\rho(x_n | ax_{<n}a_n) := \frac{\rho(x_{1:n} | a_{1:n})}{\rho(x_{<n} | a_{<n})}$$
 provided $\rho(x_{<n} | a_{<n}) > 0$.

Joel Veness, Kee Siong Ng, Marcus Hutter, David Silver

Reinforcement Learning via AIXI Approximation
Learning a model of the environment

We will be interested in agents that use a *mixture environment model* to learn the true environment μ.

$$\xi(x_{1:n} | a_{1:n}) := \sum_{\rho \in \mathcal{M}} w_{0}^{\rho} \rho(x_{1:n} | a_{1:n})$$

- $\mathcal{M} := \{\rho_1, \rho_2, \ldots\}$ is the model class
- w_{0}^{ρ} is the prior weight for environment ρ.
- Satisfies the definition of an environment model.

Therefore, can predict by using:

$$\xi(x_{n} | ax_{<n}a_{n}) = \sum_{\rho \in \mathcal{M}} w_{n-1}^{\rho} \rho(x_{n} | ax_{<n}a_{n}), \quad w_{n-1}^{\rho} := \frac{w_{0}^{\rho} \rho(x_{<n} | a_{<n})}{\sum_{\nu \in \mathcal{M}} w_{0}^{\nu} \nu(x_{<n} | a_{<n})}$$
Theoretical Properties

Theorem: Let μ be the true environment. The μ-expected squared difference of μ and ξ is bounded as follows. For all $n \in \mathbb{N}$, for all $a_{1:n}$,

$$\sum_{k=1}^{n} \sum_{x_{1:k}} \mu(x_{<k} | a_{<k}) \left(\mu(x_{k} | ax_{<k}a_{k}) - \xi(x_{k} | ax_{<k}a_{k}) \right)^2 \leq \min_{\rho \in \mathcal{M}} \left\{ -\ln w_0^\rho + D_{KL}(\mu(\cdot | a_{1:n}) \| \rho(\cdot | a_{1:n})) \right\},$$

where $D_{KL}(\cdot \| \cdot)$ is the KL divergence of two distributions.

Roughly: The predictions made by ξ will converge to those of μ if a model close (w.r.t. KL Divergence) to μ is in \mathcal{M}.
Model Class Approximation

Approximate model class of AIXI with a mixture over all action-conditional Prediction Suffix Tree structures of maximum depth D.

- PSTs are a form of variable order Markov model.
- Context Tree Weighting algorithm can be adapted to compute a mixture of 2^{2^D} environment models in $O(D)!$
- Inductive bias: smaller PST structures favoured.
- PST parameters are learnt using KT estimators. KL-divergence term in previous theorem grows $O(\log n)$.
- Intuitively, efficiency of CTW is due to clever exploitation of shared structure.
\(\rho \text{UCT} - \text{MCTS Expectimax Approximation} \)

- Adaptation of UCT for (mixture) environment models
- With sufficient time, converges to the expectimax solution
- "Value of Information" correctly incorporated when instantiated with a mixture environment model.
- Gives Bayesian solution to the exploration/exploitation dilemma.
Agent Architecture

MC-AIXI
An approximate AIXI agent

- **Update Bayesian Mixture of Models**
 - Simple
 - Large Prior
 - Complex
 - Small Prior

- **Record new sensor information**

- **Refine environment model**

- **Perform action in real world**

- **Determine best action**

- **Record Action**

- **Future reward estimate**

- **Environment**

Joel Veness, Kee Siong Ng, Marcus Hutter, David Silver
Given enough thinking time, MC-AIXI(CTW) will choose:

\[a_t = \arg \max_{a_t} \sum_{x_t} \ldots \max_{a_{t+m}} \sum_{x_{t+m}} \left[\sum_{i=t}^{t+m} r_i \right] \sum_{M \in C_D} 2^{-\Gamma_D(M)} \Pr(x_{1:t+m} | M, a_{1:t+m}) \]

In contrast, AIXI chooses:

\[a_t = \arg \max_{a_t} \sum_{x_t} \ldots \max_{a_{t+m}} \sum_{x_{t+m}} \left[\sum_{i=t}^{t+m} r_i \right] \sum_{\rho \in M} 2^{-K(\rho)} \Pr(x_{1:t+m} | a_{1:t+m}, \rho) \]
Algorithmic considerations

- Restricted the model class to gain the desirable computational properties of CTW
- Approximated the finite horizon expectimax operation with a MCTS procedure
 - $O(Dm \log(|O||R|))$ operations needed to generate m observation/reward pairs (for a single simulation)
 - $O(tD \log(|O||R|))$ space overhead for storing the context tree.
- Anytime search algorithm
- Search can be parallelized
 - $O(D \log(|O||R|)))$ to update the context tree online
Experimental Setup

- Agent tested on a number of POMDP domains, as well as TicTacToe and Kuhn Poker.
- Agent required to both learn and plan.
- The context depth and search horizon were made as large as possible subject to computational constraints.
- ϵ-Greedy training, with a decaying ϵ
- Greedy evaluation
Results

![Graph showing normalized average reward per cycle versus experience for various games](image)

- **Optimal**
- **Cheese Maze**
- **Tiger**
- **4x4 Grid**
- **TicTacToe**
- **Biased RPS**
- **Kuhn Poker**
- **Pacman**
Resources required for (near) optimal performance

<table>
<thead>
<tr>
<th>Domain</th>
<th>Experience</th>
<th>Simulations</th>
<th>Search Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cheese Maze</td>
<td>5×10^4</td>
<td>500</td>
<td>0.9s</td>
</tr>
<tr>
<td>Tiger</td>
<td>5×10^4</td>
<td>10000</td>
<td>10.8s</td>
</tr>
<tr>
<td>4 \times 4 Grid</td>
<td>2.5×10^4</td>
<td>1000</td>
<td>0.7s</td>
</tr>
<tr>
<td>TicTacToe</td>
<td>5×10^5</td>
<td>5000</td>
<td>8.4s</td>
</tr>
<tr>
<td>Biased RPS</td>
<td>1×10^6</td>
<td>10000</td>
<td>4.8s</td>
</tr>
<tr>
<td>Kuhn Poker</td>
<td>5×10^6</td>
<td>3000</td>
<td>1.5s</td>
</tr>
</tbody>
</table>

- Toy problems solvable in reasonable time on a modern workstation.
- General ability of agent will scale with better hardware.
PSTs inadequate to represent many simple models compactly. For example, it would be unrealistic to think that our current AIXI approximation could cope with real-world image or audio data.

Exploration/exploitation needs more attention. Can something principled and efficient be done for general Bayesian agents using large model classes?
Future Work

- Uniform random rollout policy used in ρUCT. A learnt policy should perform much better.
- All prediction was done at the bit level. Fine for a first attempt, but no need to work at such a low level.
- Mixture environment model definition can be extended to continuous model classes.
- Incorporate more (action-conditional) Bayesian machinery.
- Richer notions of context.
For the curious...

- For more information, see:

 A Monte-Carlo AIXI Approximation,
 J. Veness, K.S. Ng, M. Hutter, W. Uther, D. Silver
 http://jveness.info/publications/default.html

 Highlights: a direct comparison to U-Tree / Active-LZ, improved model class approximation (FAC-CTW) and more relaxed presentation.

- Video of the latest version playing Pacman
 http://www.youtube.com/watch?v=yfsMHtmGDKE

- Source code at: http://jveness.info/software/default.html
Learning Scalability - Cheese Maze

- MC-AIXI
- U-Tree
- Active-LZ
- Optimal

Average Reward per Cycle vs Experience (cycles)
Learning Scalability - Tiger

- MC-AIXI
- U-Tree
- Active-LZ
- Optimal

Average Reward per Cycle vs Experience (cycles)

Joel Veness, Kee Siong Ng, Marcus Hutter, David Silver

Reinforcement Learning via AIXI Approximation
Learning Scalability - Kuhn Poker

- MC-AIXI
- U-Tree
- Active-LZ
- Optimal

Average Reward per Cycle vs Experience (cycles)
Learning Scalability - Rock-Paper-Scissors

- MC-AIXI
- U-Tree
- Active-LZ
- Optimal

Average Reward per Cycle
Experience (cycles)

Joel Veness, Kee Siong Ng, Marcus Hutter, David Silver
Reinforcement Learning via AIXI Approximation
Learning Scalability - 4x4 Grid

- MC-AIXI
- U-Tree
- Active-LZ
- Optimal

Experience (cycles) vs. Average Reward per Cycle
Learning Scalability - TicTacToe

- MC-AIXI
- U-Tree
- Optimal

Average Reward per Cycle vs Experience (cycles)

Joel Veness, Kee Siong Ng, Marcus Hutter, David Silver
Reinforcement Learning via AIXI Approximation
Questions?

- Thanks for coming, I hope you enjoyed my talk.