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A Generic Reinforcement Learning Agent

M := class of finitely many deterministic environments
Sunehag and Hutter (2012): Optimistic agent picks policy
π and environment ν ∈M that promise highest reward and
follows π until contradictions

Number of ε-errors ≤ |M|1−γ log 1
ε(1−γ) .

Sunehag and Hutter (2013, 2014): Extension to growing
classesM: agent switches policy if newly introduced
environment promises more reward
true environment µ ∈M =⇒ number of ε-errors
≤ const + Nt

1−γ log 1
ε(1−γ) where Nt is number environments

introduced at time t
=⇒ weakly asymptotically optimal agent



Optimistic Reinforcement Learning Localization and Factorization Conclusion References

A Generic Reinforcement Learning Agent

M := class of finitely many deterministic environments
Sunehag and Hutter (2012): Optimistic agent picks policy
π and environment ν ∈M that promise highest reward and
follows π until contradictions
Number of ε-errors ≤ |M|1−γ log 1

ε(1−γ) .

Sunehag and Hutter (2013, 2014): Extension to growing
classesM: agent switches policy if newly introduced
environment promises more reward
true environment µ ∈M =⇒ number of ε-errors
≤ const + Nt

1−γ log 1
ε(1−γ) where Nt is number environments

introduced at time t
=⇒ weakly asymptotically optimal agent



Optimistic Reinforcement Learning Localization and Factorization Conclusion References

A Generic Reinforcement Learning Agent

M := class of finitely many deterministic environments
Sunehag and Hutter (2012): Optimistic agent picks policy
π and environment ν ∈M that promise highest reward and
follows π until contradictions
Number of ε-errors ≤ |M|1−γ log 1

ε(1−γ) .

Sunehag and Hutter (2013, 2014): Extension to growing
classesM: agent switches policy if newly introduced
environment promises more reward
true environment µ ∈M =⇒ number of ε-errors
≤ const + Nt

1−γ log 1
ε(1−γ) where Nt is number environments

introduced at time t

=⇒ weakly asymptotically optimal agent



Optimistic Reinforcement Learning Localization and Factorization Conclusion References

A Generic Reinforcement Learning Agent

M := class of finitely many deterministic environments
Sunehag and Hutter (2012): Optimistic agent picks policy
π and environment ν ∈M that promise highest reward and
follows π until contradictions
Number of ε-errors ≤ |M|1−γ log 1

ε(1−γ) .

Sunehag and Hutter (2013, 2014): Extension to growing
classesM: agent switches policy if newly introduced
environment promises more reward
true environment µ ∈M =⇒ number of ε-errors
≤ const + Nt

1−γ log 1
ε(1−γ) where Nt is number environments

introduced at time t
=⇒ weakly asymptotically optimal agent



Optimistic Reinforcement Learning Localization and Factorization Conclusion References

Combining Deterministic Laws

hypothesis class wasM = set of
environments
Instead, a class of laws T is more
efficient (Sunehag and Hutter, 2013,
2014): partial (factorization)
predictions under some
circumstances (localization).

Example: Newton’s three laws of motion and the law of
universal gravitation forms Newton’s mechanical universe
Contradiction of a law is a contradiction of a lot of
environments
|M| is replaced by |T | in the error bound
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Semi-determinism: Deterministic Laws and
Probabilistic Background Knowledge

Combining laws making partial deterministic predictions
and separately learnt correlations between the entries
within a feature vector (background knowledge)

Predict as much as possible with deterministic laws and
conditioning on background knowledge
truth is in the class =⇒ optimistic agent has the same error
bounds as before
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Stochastic Laws: Learning Correlations

Here we introduce the formal notion of stochastic laws

Under a domination assumption stochastic laws merge
with the truth
Using dominant stochastic laws replaces the need to
provide correlations as background
Example: Context Tree Weighting can be broken up into
laws for each context
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Mixing Stochastic and Deterministic Laws

New hypothesis class = mix of deterministic and stochastic
laws
Fall back on dominant stochastic laws when all
deterministic laws fail

deterministic learning: exclusion
stochastic learning: merging
Relying only on determinism when there noise breaks the
agent

Combining stochastic laws with deterministic laws (predictions)
for each context and that are used until contradictions is highly
beneficial if some aspects of the environment are deterministic

but others are not
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Conclusions

Starting with axioms of rational and optimistic general RL
agents; error bounds, localization, and factoring (as in e.g.
Baum’s economy of agents) through relying on laws.
Here we added dominant stochastic laws

The rest is just coming out in a journal paper (Sunehag
and Hutter, 2015)
Peter is now in perfect position at Google DeepMind to
implement, but instead tries to serve YouTube
recommendations with Deep-RL
If that sounds like more fun and you got strong
CS/math/stat/ML (DL and/or RL), email Peter at
sunehag@google.com. We are hiring!
If that sounds like less fun than mathematical theory,
Marcus Hutter is also hiring! Ask the speaker.
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