AGI Safety Literature Review

Tom Everitt, Gary Lea, Marcus Hutter Australian National University

- Understanding AGI
 - Definition & Formalization
 - Orthogonality Instrumental Convergence
 - Alternative views
- Predicting AGI Surveys
 - Singularity (sooner problems)
- Problems with AGI
 - Big figure -- will it fit on a slide?

- Proposed solutions
 - Value specification
 - Reward learning
 - Reward corruption
 - IDA Corrigibility
 - Uncertainty
 - Indifference
 - Intelligibility?
 - Oracles
- Public Policy?

0

Understanding AGI

Defining intelligence

"Intelligence is the ability to achieve a wide range of goals in a wide range of environments" (Legg & Hutter, 2007)

Orthogonality & Convergence

goal

Increasing intelligence won't make the goal more "intelligent" (Bostrom 2012, 2014)

Humans value very specific things (Yudkowsky, 2009)

For achieving almost any goal, it is helpful to first:

- Acquire lots of resources
- Self-improve
- Protect one's utility function

(Omohundro, 2008)

Predicting AGI

Predicting AGI

fast take-off

development

AGI Safety Research Problems

Problems AGI

Ciusiers.

- Value specification
- Reliability
- Corrigibility

- Security
- Safe learning
- Intelligibility

Social consequences

Problems AGI - Value Specification

Problems AGI - Corrigibility

Problems AGI - Reliability

Value specification

"Design goals that are aligned with human values"

Value specification

Cooperative inverse reinforcement learning (Hadfield-Menell, Russell et al.)

Infer human goals / values from behavior

- Potentially completely automatic
- May be hard to model human irrationality

Learning from human preferences (Christiano, Leike, et al.)

Preference labels for pairs of episodes

- Requires human oversight
- In current formulation, only provides information about past events

Optimization Corruption

Even if reward function "correct", the agent may have incentives to

- Corrupt the reward function or the reward signal
- Corrupt the data that trains the reward function
- Corrupt the observations / the input to the reward function

Everitt, Hutter et al. (2018) formalize problems and describe solutions

"You can't fetch the coffee if you're dead" -- Stuart Russell

Corrigibility

Ensure agents can always be modified / interrupted

Corrigibility

Goal uncertainty (Hadfield-Menell et al.)

The human's act of switching the agent off is evidence for the human wanting the agent to shut off

Indifference (Armstrong, Orseau, et al.)

Give the agent a compensatory reward for being switched off, exactly equalling the agent's expected reward if not switched off

Off-policy agents automatically indifferent

Alternative (safer?) ways of building AGI

Oracles (Armstrong et al.)

Question-answering systems.

Only goal: answer current question correct

Safer:

- No long-term plans
- Limited actuators

Dangers:

- Tempting to increasingly empower oracles (Bostrom, 2014)
- Perverse incentives may hide in the details

Iterated distillation and amplification (Christiano et al., Ought)

Train an ML system to emulate a human boosted by ML assistant

Services (Drexler)

A human using "narrow" Al services has no disadvantage compared to an AGI agent

Summary

Understanding AGI

- Intelligence definition
- Orthogonality
- Self-Preservation
- Utility preservation
-

Problems with AGI

 Different organizations have slightly different focus -- clusters can be identified

Making AGI Safe

- Value specification
- Optimization corruption
- Corrigibility
- Alternative usage
-