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Understanding AGI



Defining intelligence

“Intelligence is the ability to achieve a wide range of goals in a wide range of
environments” (Legg & Hutter, 2007)




Orthogonality & Convergence
goal r:’
<

P

o

For achieving almost any goal, it is helpful to
first:

intelligence

Increasing intelligence won’t make the e Acquire lots of resources

goal more “intelligent” e Self-improve
(Bostrom 2012, 2014) e Protect one’s utility function
Humans value very specific things (Omohundro, 2008)

(Yudkowsky, 2009)



Predicting AGI



Predicting AGI
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When human-level Al:
Several surveys, medians 2040-2050

Which trajectory:

Singularity: Kurzweil, Bostrom
Continuity: Hanson
Development stalls: Modis
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Problems AGI
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Clusters:
e Social consequences

e Value specification e Security
e Reliability e Safe learning
Intelligibility

e Corrigibility °



Problems AGI - Value Specification
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Problems AGI - Corrigibility
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Problems AGI - Reliability
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Value specification

“Design goals that are aligned with human values”



Value specification

Cooperative inverse reinforcement learning
(Hadfield-Menell, Russell et al.)

Infer human goals / values from behavior

e Potentially completely automatic
e May be hard to model human irrationality

Learning from human preferences
(Christiano, Leike, et al.)

Preference labels for pairs of episodes

Requires human oversight
In current formulation, only provides
information about past events

Left is better Right is better




Optimization Corruption

Even if reward function “correct”, the agent may
have incentives to

e Corrupt the reward function or the reward
signal

e Corrupt the data that trains the reward
function

e Corrupt the observations / the input to the
reward function

Everitt, Hutter et al. (2018) formalize problems

<
and describe solutions ’




“You can’t fetch the coffee if you're dead” -- Stuart Russell
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Corrigibility

Ensure agents can always be modified / interrupted



Corrigibility

Goal uncertainty (Hadfield-Menell et al.) Indifference (Armstrong, Orseau, et al.)

Give the agent a compensatory reward for being
switched off, exactly equalling the agent’s
expected reward if not switched off

The human’s act of switching the agent off is
evidence for the human wanting the agent to

shut off
R Off-policy agents automatically indifferent
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Alternative (safer?) ways of building AGI

Oracles (Armstrong et al.) Iterated distillation and amplification

(Christiano et al., Ought)
Question-answering systems.

Only goal: answer current question correct Train an ML system to emulate a human

boosted by ML assistant
Safer:

e No long-term plans

e Limited actuators Services (Drexler)

Dangers: A human using “narrow” Al services has no

disadvantage compared to an AGI agent

e Tempting to increasingly empower oracles

(Bostrom, 2014)
e Perverse incentives may hide in the details "

Human Machine Centaur




Summary

Understanding AGI Making AGI Safe
e Intelligence definition e Value specification
e Orthogonality e  Optimization corruption
e Self-Preservation e Corrigibility
e  Ultility preservation e Alternative usage
[ [

Problems with AGI

e Different organizations have slightly
different focus -- clusters can be identified



