
Sparse Adaptive Dirichlet-Multinomial-like

Processes

Marcus Hutter

Research School of Computer Science
Australian National University

Canberra, ACT, 0200, Australia

http://www.hutter1.net/

May 2013

Abstract

Online estimation and modelling of i.i.d. data for short sequences over
large or complex “alphabets” is a ubiquitous (sub)problem in machine learn-
ing, information theory, data compression, statistical language processing, and
document analysis. The Dirichlet-Multinomial distribution (also called Polya
urn scheme) and extensions thereof are widely applied for online i.i.d. estima-
tion. Good a-priori choices for the parameters in this regime are difficult to
obtain though. I derive an optimal adaptive choice for the main parameter
via tight, data-dependent redundancy bounds for a related model. The 1-line
recommendation is to set the ‘total mass’ = ‘precision’ = ‘concentration’ pa-
rameter to m/[2 lnn+1

m], where n is the (past) sample size and m the number
of different symbols observed (so far). The resulting estimator (i) is simple,
(ii) online, (iii) fast, (iv) performs well for all m, small, middle and large, (v)
is independent of the base alphabet size, (vi) non-occurring symbols induce
no redundancy, (vii) the constant sequence has constant redundancy, (viii)
symbols that appear only finitely often have bounded/constant contribution
to the redundancy, (ix) is competitive with (slow) Bayesian mixing over all
sub-alphabets.

Contents
1 Introduction 2
2 Preliminaries 4
3 The Main Model 5
4 Redundancy of Sβ for General β 6
5 Redundancy for Approximate Optimal β∗ 9
6 Redundancy for Variable ~β∗ 12
7 Comparison to Other Methods 13
8 Conclusion 15
References 16

1

A Approximations of the (Di)Gamma Function 17
B Proof of Theorem 2 18
C Derivation of Approximate Optimal β∗ 19
D Proof of Theorem 4 22
E Proof of Theorem 5 22
F Improvement on β∗ 25
G Bayesian sub-alphabet weighting 26
H Algorithms & Applications & Computation Time 27
I Experiments 28
J List of Notation 31

Keywords

sparse coding; adaptive parameters; Dirichlet-Multinomial; Polya urn; data-
dependent redundancy bound; small/large alphabet; data compression.

1 Introduction

The problem of estimating or modelling the probability distribution of data se-
quences sampled from an unknown source is central in machine learning [Bis06], in-
formation theory [CT06], and data compression [Mah12]. I consider the case where
the data items are complex and/or are drawn from a large space. Many approaches
to language modelling and document analysis [MS99] fall into this regime, where
data items are words. Typical documents comprise a small fraction of the available
100’000+ English words, and words have different length/complexity/frequency.

Online estimation of i.i.d. data. More formally, I consider i.i.d. data with base
alphabet X much larger than the sequence length, which implies that only a small
fraction of symbols (which in case of text are words) appear in the sequence. I focus
on online algorithms that at any time can predict the probability of the next symbol
given only the past sequence and without knowing the actually used alphabet A
and/or symbol occurrence frequencies in advance.

While real-word data like text are often not i.i.d, i.i.d. estimators are often a
key component of more sophisticated models. For instance, in n-gram models, the
subsequence of words that have the same length-n context is (assumed) i.i.d. Since
these subsequences can be very short, good i.i.d. estimators for short sequences and
huge alphabet are even more important. The same holds for variable-order models
like large-alphabet context tree weighting [TSW93], and in addition, the employed
i.i.d. estimators need to be online.

Performance measures. Performance can be measured in many different ways:
code length [CT06], perplexity [MS99], redundancy [Wal05], regret [Grü07], and oth-
ers. The most wide-spread (across disciplines) performance measures are transfor-
mations of the (estimated) data likelihood(s). If Q(x1:n) is the estimated probability
of sequence x1:n≡x1...xn, then log1/Q(x1:n) is the optimal code length andQ(x1:n)1/n

the perplexity of x1:n. If P is some reference measure, then log1/Q−log1/P is the

2

redundancy of Q relative to P . For log-loss, this is also its regret, though many
variations are used. Many other performance measures can be upper bounded by
(expected) code length [Hut03]. I therefore concentrate on −log-likelihood = code
length and redundancy.

Dirichlet-multinomial and parameter choice. The Dirichlet-multinomial
distribution is defined as DirM(xn+1 = i|x1:n) = ni+αi

n+α+
, which can be motivated

in many ways, e.g. by the Polya urn scheme or as below. This process and
extensions thereof like the Pitman-Yor process are widely studied and applied
[BH10], in particular for language processing and document analysis. Theo-
retically motivated choices for the Dirichlet parameters αi are αi = 1/2 for the
Krichevsky-Trofimov (KT) estimator [KT81] and Jeffreys/Bernardo/MDL/MML
prior [Jef46, Jef61, Ber79, Grü07, Wal05], αi=0 for Frequentist and Haldane’s prior
[Hal48], αi=1 for the uniform/indifference/Bayes/Laplace prior [Bay63, Lap12], and
αi = 1/|X | for Perks’ prior [Per47]. They are all problematic for large base alpha-
bet X , so α+ is sometimes optimized or sampled experimentally or averaged with a
hyper-prior. The following table summarizes these choices:

Dirichlet Laplace KT&others Perks Haldane Hutter

αi =
α+

|X | 1
1

2

1

|X | 0
m

2|X | ln n+1
m

(1)

The last column is a glimpse of the results in this paper, where m is the number of
different symbols that appear in x1:n. For continuous spaces X , the Dirichlet process
is usually parameterized by a base distribution H() and a critical concentration
parameter β=̂α+.

Main contribution. In this paper I introduce an estimator S [Eq.(2)], which
essentially estimates the probability of the next symbol by its past relative frequency,
but reserves a small (or large!) “escape” probability to new symbols that have
not appeared so far. Such escape mechanisms are well-known and used in data
compression such as prediction by partial match (PPM) [CW84, Mah12]. This is
(somewhat) different from how the Dirichlet-multinomial regularizes zero frequency
with αi>0 or β>0.

The main contribution is to derive an “optimal” escape parameter β∗ [Eq.(16) of-
fline and Eq.(21) online]. The key to improve upon existing estimators like the
minimax optimal KT estimator is to consider data-dependent redundancy bounds,
rather than expected or worst-case redundancy, and find its minimizing β. While
the KT estimator and many of its companions have 1

2
logn redundancy per symbol

in X , whether the symbol occurs in the sequence or not, our new estimator Sβ
∗

suf-
fers zero redundancy for non-occurring symbols, and essentially only 1

2
logni+O(1)

for symbols i appearing ni times. This is never much worse and often significantly
better than KT. This also leads to an “optimal” variable Dirichlet parameter ~β∗.
While knowing ~β∗ is practically useful, the derived redundancy bounds themselves
are of theoretical interest.

3

Contents. After establishing notation in Section 2, I motivate and state my primary
model Sβ in Section 3. I derive exact expressions and upper and lower bounds for the
redundancy of Sβ for general constant β in Section 4, and show how they improve
upon the minimax redundancy. I approximately minimize the redundancy w.r.t. β
in Section 5. There are various regimes for the optimal β∗ and the used alphabet size
|A|, even with negative redundancy. To convert this into an online model, I make
β∗ time-dependent in Section 6, causing very little extra redundancy. In Section 7
I theoretically compare my models to the Dirichlet-multinomial distribution, and
Bayesian sub-alphabet weighting. Section 8 concludes.

Proofs of the lower and two upper bounds can be found in Appendices B, D, and
E, a derivation of β∗ in Appendix C with improvements in Appendix F, details of
Bayesian subset-alphabet weighting in Appendix G, algorithmic considerations in
Appendix H, and an experimental evaluation in Appendix I. Used properties of the
(di)Gamma functions can be found in Appendix A, and a list of used notation in
Appendix J.

2 Preliminaries

All global notation is introduced in this section and summarized in Appendix J.

Base alphabet (X , D). Let X be the base alphabet of size D= |X | from which
a sequence of symbols is drawn. If not otherwise mentioned, I assume X to be
finite. I have a large base alphabet in mind, but this is not a technical requirement.
The alphabet could literally consist of e.g. ASCII symbols, could be the set of (over
100’000) English words, or just bits {0,1}. Indeed, even finiteness of X is nowhere
crucially used and all results generalize easily to countable and even continuous X
as we will see.

Total sequence (n, x1:n, ni). I consider sequences x1:n≡(x1,...,xn)∈X n of length
n drawn from X . Let ni be the number of times, i appears in x1:n. I have in mind
that the sequences are sampled independent and identically distributed (i.i.d), but I
actually never use this assumption. All results in this paper hold for any individual
fixed sequence x1:n, and only depend on the order statistics n=(ni)i∈X . The crucial
parameters are n, D, the number m of non-zero counts, and model parameter β
introduced later, which induces several different regimes, second by the counts ni.

Used alphabet (m, A, i,j,k, ν, ν̄). Only a subset of symbols A:={x1,...,xn}⊆X
may actually appear in a sequence x1:n. Our model is primarily motivated for the
regime where the number m= |A| of used symbols is much smaller than D= |X |,
as e.g. any English text uses only a small fraction of all possible words. It turns
out that our model can be tuned to actually perform very well for all possible
1≤m≤min{n,D}: constant sequences (m= 1), every symbol appearing only once
(m=n), and all available symbols appear (m=D). Indices i,j,k are understood to
range respectively over symbols in X , A, and X\A. Without loss of generality I can

4

assume i∈X = {1,...,D}, j ∈A= {1,...,m}, and k∈X \A= {m+1,...,n}. I also use
ν̄ :=n/m for the average multiplicity of symbols in x1:n, and ν :=m/n is its inverse.

Current sequence and observed alphabet (t, x1:t, At, mt, xt+1, n
t
i, New,

Old). Let t be the current time ranging from 0 to n−1, with x1:t, At :={x1,...,xt}
and mt = |At| being respectively, the sequence, symbols, and number of different
symbols observed so far, and as usual x1:0 = ε is the empty string and A0 = {}
the empty set. The next symbol to be predicted or coded is xt+1 = i. Either xt+1

is a new symbol or an “old” symbol. Let New := {t = 0...n−1 : xt+1 6∈ At} and
Old := {t= 0...n−1 : xt+1 ∈At} be the sets of times for which the next symbol is
new/old. Note that |New| = |A| = m. Finally, let nti be the number of times, i
appears in x1:t. Note that most inroduced quantities ∗t depend on x1:t, but since I
consider an (arbitray but) fixed sequence x1:n it is safe to suppress this dependence
in the notation.

Probability and exchangeability and logarithms (P , Q, P param
name , ln). P and

Q will denote generic probability distributions over sequences, and P param
name specific

parameterized and named ones. For instance, P θiid denotes the model in which
symbols are i.i.d. with P (xt = i) = θi. Our primary prediction/compression models
defined below are S, Sβ

∗
, and S

~β∗. A distribution P (x1:n) is called exchangeable if it
is independent of the order of the symbols in a sequence x1:n. Many distributions
have this desirable property [Fin74]. Since the natural logarithm is mathematically
more convenient, I express all results in ‘nits’ rather than bits. Conversion to bits
is trivial by dividing results by ln2.

3 The Main Model

I am now ready to motivate and formally state our primary model.

Derivation of my main model. My main model is defined via predictive distri-
butions S(xt+1|x1:t) for t=0...n−1. If i has appeared nti times in x1:t, it is natural
to use the past relative frequency nti/t as the predictive probability that the next
symbol xt+1 is i. The problems with this are well-known and obvious: It assigns
probability zero and hence infinite log-loss or code length to any symbol that has
not yet been observed. This problem can be solved by reserving some small (or
not so small) “escape” probability αt that the next symbol xt+1 is new, taken from
nti/t by lowering it to (1−αt)nti/t. I have to somehow distribute the probability αt
among the new symbols xt+1∈X \At. The simplest choice would be uniform. More
generally assign probability αtw

t
k to k=xt+1∈X\At with

∑
k∈X\Atw

t
k≤1 and wtk>0.

One can show that the ansatz above for time-independent weights leads to an
exchangeable distribution if and only if αt=β/(t+β) for some constant β≥0.

5

Main model. This motivates our main model

S(xt+1 = i|x1:t) :=

nti
t+ β

for nti > 0

βwti
t+ β

for nti = 0

(2)

for t=0...n−1. Note that S(x1 =i)=w0
i is independent of β>0. The case conditions

can also be written as [ntxt+1
> 0] ≡ [xt+1∈At] ≡ [t∈Old] and [ntxt+1

= 0] ≡ [xt+1 6∈
At] ≡ [t∈New]. Other motivations and relations to other estimators are given in
Section 7.

Sub-probability. In general,
∑

i∈XS(xt+1 = i|x1:t)≤ 1, but not necessarily = 1.
Such sub-probabilities are benign extensions for many purposes including ours. It is
always possible to increase sub-probabilities to proper probabilities. For S we could
replace wti by wti/

∑
k∈X\Atw

t
k as long as X \At is not empty, and replace β by 0 if

ever all base symbols (mt=D) have appeared. Note that unless mt=D, we have to
assume β>0 to avoid the problems of frequentist estimation.

Sequence probability. The probability our model assigns to sequence x1:n is

S(x1:n) =
n−1∏

t=0

S(xt+1|x1:t) =
n−1∏

t=0

1

t+ β

∏

t∈Old

ntxt+1

∏

t∈New

βwtxt+1
(3)

= β|A|
Γ(β)

Γ(n+ β)

∏

t∈New

wtxt+1

∏

j∈A

Γ(nj) (4)

where Γ is the Gamma function. The symbol count ntj increases by 1 for each
occurrence of j in the sequence. Therefore

∏
t∈Old:xt+1=jn

t
j = 1·...·(nj−1) = Γ(nj),

which establishes the second line.

4 Redundancy of Sβ for General β

In this section I motivate and define the concepts of redundancy and (log-loss)
regret and present an exact expression for the redundancy of Sβ for general constant
β. Upper and lower bounds are easily derived by bounding the involved Gamma
functions. Finally I discuss the β-independent terms in the bound, and how they
improve upon the minimax redundancy.

Code length and redundancy/regret. If a data sequence is sampled from some
distribution P , then a lower bound on the expected code length is the entropy H(P)
of the source P , which can only be achieved by an encoder which encodes sequences
x1:n in −lnP (x1:n) nits [Sha48].

Arithmetic encoding [Ris76, WNC87] can (efficiently and online) achieve this
lower bound within 2 bits. It is therefore appropriate to call

CLP (x1:n) := ln 1/P (x1:n)

6

the (optimal) code length of x1:n (in nits w.r.t. P). Arithmetic coding also works
for sub-probabilities.

Usually, P is unknown, and one aims at compressors getting close to CLP for
all P that might be “true” and/or for all P for which it is feasible to do so. Let
M={P} be such a class of interest; then minP∈MCLP (x1:n) is an (infeasible) lower
bound on the best possible coding if x1:n is sampled from some P ∈M.

Most modern compressors are themselves based on a (predictive) distribution
Q used together with arithmetic coding [Mah12]. This motivates the concept of
redundancy or regret R as a performance measure for Q, which I define as the
difference in code length between the data coded with predictor Q and the infeasible
optimal code length in hindsight:

RQ(x1:n) := CLQ(x1:n)− min
P∈M

CLP (x1:n) = ln
maxP∈M P (x1:n)

Q(x1:n)
(5)

For comparing the code lengths of different Q, any quantity from which CLQ can
easily be recovered could be studied: log-loss regret CLQ−CLP or redundancy
CLQ−H(P) where P is the true distribution of entropy H(P), or CLQ−c for any
other “constant” c independent of Q, and of course code length CLQ itself. The
redundancy RQ w.r.t. class M defined above (c= minP∈MCLP (x1:n)) is just often
and also here the most convenient choice. Upper and lower bounds on redundancies
will be denoted by R and R.

I.i.d. reference class. As reference classM I choose the class of i.i.d. distributions
with symbol i∈X having probability θi∈ [0;1].

P θiid(x1:n) := θx1 · ... · θxn =
∏

i∈X

θnii =
∏

j∈A

θ
nj
j

The maximum is attained at θi= θ̂i :=ni/n; therefore

P θ̂iid(x1:n) = max
θ

P θiid(x1:n) = n−n
∏

j∈A

n
nj
j (6)

Redundancy of S. Subtracting the logarithm of (4) from the logarithm of (6) and
using abbreviation CLw(A):=

∑
t∈Newln(1/wtxt+1

) discussed below, one can represent
the redundancy of S as follows:

Proposition 1 (Redundancy of S for constant β) For any constant β>0, the
redundancy of Sβ relative to the i.i.d. class M= {P θiid} can be represented exactly
and bounded as follows:

Rβ
S(x1:n) ≤ Rβ

S(x1:n) ≤ Rβ
S(x1:n), where

Rβ
S = CLw(A)−m ln β +

∑

j∈A

ln
n
nj
j

Γ(nj)
+ ln

Γ(n+β)

nn Γ(β)
(7)

Rβ
S := CLw(A)−m ln β +

∑

j∈A

1
2

ln
nj
2π

+ n ln(1+
β

n
) + (β− 1

2
) ln(

n

β
+1) + 0.082(8)

Rβ
S := Rβ

S − 0.082(m+2) (9)

7

where A⊆X are the m (a-priori unknown) symbols appearing in x1:n ∈X n. The
lower bound only holds for β≥1. The 0.082 is actually 1−ln

√
2π.

The exact expression follows easily by rearranging terms in (4) and (6). The
bounds follow from this by inserting the upper and lower bounds (27) on the Gamma
function and collecting/cancelling matching terms. As can be seen, the upper and
lower bounds only differ by 0.082(m+2), hence are quite tight for small m, but loose
for large m.

In the following paragraphs I discuss the two β-independent terms. The β-
dependent terms will be discussed in the next section. Note that the following
interpretation of (7) only refers to code length. The actual way how arithmetic
coding works is very different from this “naive” interpretation of the origin of the
different terms in (7).

Code length of used alphabet A. The first term in the redundancy (7)

CLw(A) :=
∑

t∈New

ln(1/wtxt+1
) (10)

can be interpreted as follows: Whenever we see a new symbol xt+1 6∈At, we need to
code the symbol itself. This can be done in ln(1/wtxt+1

) nits, which together leads
to code length (10) for the used alphabet A.

A natural choice for the new symbol weights is the uniform distribution wti=1/D
with CLw(A) =mlnD. Since at time t there are only D−mt new symbols left, we
could use normalized uniform weights wtk=1/(D−mt) with smaller

CLw(A) = ln(D) + ...+ ln(D −m+ 1) = ln[D!/(D −m)!] (11)

For large, structured, and/or infinite alphabet, a more natural choice is wti =
exp(−CL(i)) with

CLw(A) =
∑

t∈New

CL(xt+1) =
∑

j∈A

CL(j) (12)

were new symbols j are somehow coded (prefix-free) in CL(j) nits. For intstance if
X consists of English words, each word i with ` letters could be represented as a
byte-string of length ` plus a 0 terminating byte, hence CL(i)=8`+8. Choice (12)
is interesting since it makes the redundancy completely independent of the size of
the base alphabet, and hence leads to finite redundancy even for infinite alphabet
X .

For all examples of weights above, CLw(A) is independent of order and timing of
new symbols, which justifies suppressing the dependence on New. This holds more
generally for all wti of the form wti =u(i)v(mt)

CLw(A) =
∑

j∈A

ln
1

u(j)
+

m−1∑

m′=0

ln
1

v(m′)
(13)

8

For ease of discussion, I will only consider weights of this form, and indeed mostly
the normalized uniform (11) and code-length based (12) ones. Then also Rβ

S only
depends on the counts ni but not on the symbol order, as intended.

Code length of relative frequencies ni/n. Oracle P θ̂iid predicts symbol j with
empirical frequency nj/n, so j can be coded in ln(n/nj) nits. I label an estimator
Oracle if it relies on extra information, here, knowing the empirical symbol fre-
quencies in advance. Technically, P θ̂(x1:n)

iid (x1:n) is an inadmissible super-probability.
To get a feasible (but offline) predictor one needs to encode the counts ni in advance.
Arithmetic coding w.r.t. Sβ does not work like that but imagine it did. The ln(n/nj)
terms would cancel in the redundancy leaving a code length for all ni. CL(A) tells
us which ni are zero, so only nj for j ∈A need to be coded, which can be done in
lnn nits per j ∈A, and the upper bound (8) suggests possibly even in 1

2
ln(nj/2π)

nits.

Improvement over minimax redundancy. It is well known that the minimax
redundancy of i.i.d. sources is 1

2
lnn+O(1) per base alphabet symbol [Ris84, Wal05].

My model improves upon this in two significant ways. Consider the asymptotics
n→∞ in (8). First, all symbols k that do not appear in x1:n induce zero redundancy.
Second, each symbol j that appears only finitely often, induces finite bounded re-
dundancy CL(j)+ 1

2
ln

nj
2π

plus β-terms discussed later. Only symbols appearing with
non-vanishing frequency ni/n 6→ 0 have asymptotic redundancy 1

2
lnn+O(1). This

improvement (a) is possible (only) for specific choices of β such that the β-terms
are small and (b) was possible by refraining from deriving a uniform minimax re-
dundancy over all sequences, but one which depends on the symbol counts.

β-independent lower redundancy bound. In Appendix B I derive a β-
independent lower bound on the redundancy that cannot be beaten, whatever β
is chosen. The following lower bound has the same structure as the upper bounds I
derive later, so the terms will be discussed there.

Theorem 2 (β-independent lower redundancy bound) For any constant β>
0, the redundancy of Sβ is lower bounded uniformly in β by:

Rβ
S(x1:n) ≥ CLw(A)−m lnm+

∑

j∈A

1
2

ln
nj
2π
− 1

2
lnn− 0.45m− 0.43 (14)

5 Redundancy for Approximate Optimal β∗

I am now in a position to approximately minimize the redundancy of Sβ w.r.t. β.
Even when only considering asymptotics n→∞, I need to distinguish six different
regimes for β∗ depending on how m scales with n. I discuss the more interesting
regimes, in particular the unusual situation of negative redundancy.

9

Optimal constant β. I now optimize Sβ w.r.t. to β. The redundancy Rβ
S is

minimized for

0
!

=
∂Rβ

S

∂β
= − m

β
+ Ψ(n+β)−Ψ(β) (15)

where Ψ(x) := dlnΓ(x)/dx is the diGamma function. Neither this equation nor
∂Rβ

S/∂β=0 have closed-form solutions, and even asymptotic approximations are a
nuisance. It seems natural to derive expressions for n→∞ and/or m→∞, but since
β is inside the diGamma functions it turns out that considering β-limits leads to
fewer cases. Still one has to separate the regimes β→∞, β→c≶∞0, β→0, β/n→∞,
β/n→ c≶∞0, and β/n→ 0. I do this in Appendix C with further discussion and
improvements in Appendix F and stitch together the results, leading to a surprisingly
neat result:

Theorem 3 (Optimal constant β) The β which minimizes Rβ
S (7) and solves

(15) is

βmin =
m

cn(m
n

) ln n
m

,
where c∞(ν) := limn→∞ cn(ν) is smooth and

monotone increasing from c∞(0) = 1 to c∞(1) = 2.

For n�m we have cn(m/n)≈1, which suggests the approximation

β∗ :=
m

ln n
m

(16)

This has the same asymptotics as βmin in all regimes of interest and turns out to
lead to excellent experimental results. In practice, cn(m/n) is closer to 2, so halving
β∗ leads to slightly better results unless m is extremely small. This is due to a quite
peculiar shape of c∞(ν), plotted and discussed in more detail in Appendix F. The
performance difference between Sβ

∗
, Sβ

∗/2, and βmin are very small though. I hence
use β∗ (16) for most of the theoretical analysis but recommend β∗/2 (1) in practice.
Since no formal result in this paper explicitly uses that β∗ is an approximate solution
of (15), we can simply take β∗ on faith value and explore its implications.

Discussion of β∗. The value of β∗ can be intuitively understood in this way: if m
is much larger than lnn, then we will often be coding new symbols, and therefore
we should reserve more probability mass for them by making β large. If however
m is much smaller than lnn, coding a new symbol is a rare occurrence, so we use a
small β to increase the efficiency of coding already previously seen symbols. More
quantitatively, β∗ (and βmin) scale with n→∞ for various m as follows (where
0<c<∞ and 0≤α<1)

m → c ∝ lnn ∝ nα ∝ n ≥ n− c = n
β∗ ∼ c/ lnn → c ∝ nα/ lnn ∝ n ∝ n2 ∞ (17)

Besides the mentioned m��lnn divide, note that if most symbols appear only once,
then β∝n2 grows very rapidly. On the other hand β∗ is never very small: 1/lnn is

10

a lower bound, even if m=1. If no symbol appears twice, then β∗=∞ is obviously
the best choice. Appendix I shows that Sβ

∗
works very well in all six regimes.

I also tried “minor” modifications but theory breaks down for some, and exper-
iments for others. The only leeway, apart from replacing cn() by a constant in [1;2]
I could find is adding or subtracting small constants from m and/or n in (16). This
will later be used to regularize β∗ for m=n. Note that β∗ depends on the a-priori
unknown n and m, so Sβ

∗
is not online. This will be rectified in Section 6. In

Appendix D I prove the following redundancy bound:

Theorem 4 (Redundancy of S for “optimal” constant β∗) The redundancy
of Sβ

∗
with β∗=m/ln n

m
is bounded by

Rβ∗

S (x1:n) ≤ CLw(A)− (m− 1
2
)lnm+

∑

j∈A

1
2

lnnj− 1
2

lnn+m lnln
en

m
+ 0.56m+ 0.082

(18)

Discussion of Rβ∗

S . The first and third term have already been discussed. The
second term is the most important one for large m. It is about −lnΓ(m)−m+1 by
(27). Therefore for uniform normalized weights (11) we get

CLw(A)− (m− 1
2
) lnm = ln

(
D

m

)
−m+ lnm+ 1

{−0.082

+0
(19)

There are
(
D
m

)
ways of choosing m symbols out of D, therefore ln

(
D
m

)
corresponds

to the optimal uniform code length for the used unordered alphabet. At first, Sβ
∗

seemed to be more wasteful, coding the m′th new symbol in ln(D−m′+1) nits, hence
codes A including order in CLw(A) nits. But through the back door by a suitable
choice of β, it actually achieves the theoretically optimal uniform code length ln

(
D
m

)

for the used alphabet, plus other smaller terms. For large m, this can be significantly
smaller than CLw(A).

In the extreme case of m=D, we have ln
(
D
D

)
=0�DlnD. If also n=m, we have

CLw(A)=lnn! and ni=1∀i and hence

Rβ∗

S ≤ lnn!− n lnn+ 0.56n+ 0.082 ≤ 1
2

lnn− 0.44n+ 1.082

which is negative for n> 4. This is not a contradiction. It just says that in this
case S codes better than oracle P θ̂iid = (1

n
)n. Indeed, if we know that every symbol

appears exactly once, we can code their permutation in lnn! rather than nlnn nits.
The +0.56n slack is an artefact of our bound, not of Sβ

∗
, and can be improved to

0.082n. The argument generalizes to large m<n.
In the other extreme of a constant sequence xt = j∀t, we have m= 1, P θ̂iid = 1,

β∗ = 1/lnn and CLSβ∗ =Rβ∗

S →CLw(j)+1 for n→∞, i.e. 1 nit above theoretical
optimum from (7) and Rβ∗

S ≤CLw(j)+lnln(en)+0.65 from (18), i.e. asymptotically
there is only lnlnn nits slack in the bound. This argument generalizes to constant
m>1.

11

The S
~β∗-probability of xt+1 = i∈X given x1:t∈X t is defined as

S
~β∗(xt+1 = i|x1:t) :=

nti
t+ β∗t

for nti > 0

β∗tw
t
i

t+ β∗t
for nti = 0

(20)

β∗t :=
mt

ln t+1
mt

, t ≥ 1, 0 < β∗0 <∞ (any), ~β := (β0, β1, β2, ...) (21)

∑

k∈X\At

wtk ≤ 1, e.g. wti =
1

D −mt

or wti = e−CL(i)

mt = |At|, At = {x1, ..., xt}, nti = |{τ ∈ {1, ..., t} : xτ = i}|

6 Redundancy for Variable ~β∗

Since the optimal β∗ =m/ln n
m

depends on m and n, Sβ
∗

cannot be used online,
which defeats one of its purposes and significantly limits its application as discussed
in the introduction. I rectify this problem by allowing a time-dependent β in my
model, and by adapting β∗ in (nearly) the most obvious way. I derive a redundancy
bound for this variable ~β∗which for small m is only slightly worse than the previous
one for constant β∗.

Choice of ~β∗. A natural way to arrive at an online algorithm is to replace n by t
and m by mt, both known at time t and converging to n and m respectively. This
leads to a time-dependent ‘variable’ βt=mt/ln

t
mt

. This works fine except if mt= t,
in which case βt =∞ assigns zero probability that the next symbol is an old one.
This is unacceptable, since mt= t is typical for small t.

If we are at time t, we use βt to predict xt+1 so should assume that the sequence
has (at least) length t+1, which suggests βt=mt+1/ln

t+1
mt+1

. The problem here is that

mt+1 depends on the unknown xt+1, and technically S becomes an (unusable) super-
probability. Since mt+1 =mt if xt+1 is old anyway, a natural choice is β∗t =mt/ln

t+1
mt

,
which still has the same asymptotics (17) as β∗, except for mt = t it is finite and
grows with t2. For t=0 I define S(x1 =i)=wti or equivalently choose any 0<β∗0<∞.
For convenience I summarize the adaptive model with parameters and definitions in
the box on the next page.

Note that compact representation (4) does not hold anymore: The resulting
process S

~β∗(x1:n) is no longer exchangeable, but close enough in the sense that a
comparable upper bound as for β∗ holds. The constants are somewhat worse, but
mostly due to the crude proof (see Appendix E).

Theorem 5 (Redundancy of S for “optimal” variable ~β∗) The redundancy

12

of S
~β∗ with β∗t =mt/ln

t+1
mt

is bounded by

R
~β∗

S (x1:n) ≤ CLw(A)− (m−1) lnm+
∑

j∈A

1
2

lnnj − 1
2

lnn+ 3
2
m ln ln 2n

m
+ 2.33m+ 0.86

(22)

The bounds (7), (8), (18), and (22), except for the first term, are independent of
the base alphabet size D. For wti =2−CL(i), the bounds are completely independent
of D. They therefore also hold for countably infinite alphabet. Analogous to the
Dirichlet-multinomial generalizing to the Chinese restaurant process, S can also
be generalized to continuous spaces X . The weights wti become (sub)probability
densities (

∫
X\Aw

t
idi≤ 1). The bounds remain valid, we only lose the code length

interpretation of CLw(A).

Proof idea. Unlike in (7) for constant β, R
~β∗
S depends on the order of symbols and

cannot be expressed in terms of Gamma functions bound by (27). Furthermore, β∗t
is generally not monotone in t, nor does it factor into monotone increasing and/or
decreasing functions, which makes the analysis cumbersome but not impossible due
to a different special property of β∗t . I show that by swapping two consecutive
symbols, xt being Old and xt+1 being New, the redundancy always increases. It
is therefore sufficient to upper bound R

~β∗
S for sequences in which all new symbols

come first before they repeat. For such a sequence, by separating t≤m for which
mt= t and t≥m for which mt=m, it is then possible to upper bound the handfull
of resulting sums.

7 Comparison to Other Methods

In this section I theoretically (and in Section I experimentally) compare our models
to various other more or less related ones, namely, the Dirichlet-multinomial with KT
and Perks prior, and Bayesian sub-alphabet weighting. An experimental comparison
can be found in Appendix I.

Dirichlet-multinomial distribution. The Dirichlet distribution

Dirα(θ) :=
Γ(α+)∏
i Γ(αi)

D∏

i=1

θαi−1
i

with parameters αi>0 and α+ :=α1+...+αD used as a Bayesian prior for P θiid leads
to joint and predictive Dirichlet-multinomial distribution

DirMα(x1:n) :=

∫
P θiid(x1:n)Dirα(θ)dθ =

Γ(α+)
∏

i Γ(ni+ αi)

Γ(n+α+)
∏

i Γ(αi)
,

DirMα(xt+1 = i|x1:t) =
nti + αi
t+ α+

with redundancy

13

RαDirM(x1:n) =
D∑

i=1

ln
nnii Γ(αi)

Γ(ni+ αi)
− ln

nnΓ(α+)

Γ(n+α+)
(23)

ni→∞−→ D−1

2
ln

n

2π
+
∑

i

(1
2
−αi) ln

ni
n

+
∑

i

ln Γ(αi)− ln Γ(α+)(24)

If we choose constant weights wti =αi/α+ and β=α+ in S, we see that DirM(xt+1 =
i|x1:t) is the sum of both cases in (2), hence DirM(xt+1 = i|x1:t)≥ S(xt+1 = i|x1:t).
Therefore, the upper redundancy bound in Proposition 1 also holds for DirM:
RαDirM≤Rα+

S [wti := αi/α+]≤ Eq.(8). The analysis in Section 5 suggests to set the
Dirichlet parameters to α∗i :=w0

i β
∗ for which Rα

∗
DirM≤Rβ∗

S [wti :=αi/α+]≤ Eq.(18). If
we allow for time-dependent αi, Section 6 suggests to set αi=αt∗i :=wtiβ

∗
t for which

R~α∗

DirM≤R
~β∗
S ≤ Eq.(22), but note that weights wti must normalize over X rather than

At for DirM to form a (sub)probability. This can harm performance but only for
large m. Note that for continuous X and weight density w(), S and DirM coincide.

The overall suggestion if using the (adaptive) Dirichlet-multinomial for predic-
tion or compression or estimation is to choose variable parameters

αi = αt∗i :=
mt

D ln t+1
mt

or
2−CL(i)mt

ln t+1
mt

(25)

The KT estimator. As can be seen from (24), for αi=
1
2

the DirM redundancy (23)
is asymptotically independent of the counts (ni), and indeed it is well-known that
asymptotically this is essentially also the best choice for the worst counts [KT81,
Kri98, Wal05]. This so-called KT-estimator has minimax redundancy [BEY06]

R
1/2
DirM ≤

D − 1

2
lnn+ lnD (26)

Asymptotically, this bound is essentially tight. We can compare this to our bound
(18). For m�n, the dominant term in (18) is

∑
j

1
2
lnnj. This can be bounded by

Jensen’s inequality as

∑

j∈A

1
2

lnnj − 1
2

lnn ≤ m− 1

2
ln
n

m
≤ m− 1

2
lnn ≤ D − 1

2
lnn

so is clearly much smaller than (26) due to symbols that do not appear (gap in the
third inequality) and symbols that appear rarely (gap in the first+second inequality).
The latter happens often in particular for large m, but then the other terms in (18)
gain relevance.

Sparse KT estimators. If we knew the used alphabet A in advance, we could
employ the KT estimator on this sub-alphabet without reference to the base alpha-
bet X and achieve much smaller redundancy ≤ m−1

2
lnn+lnm. In absence of such an

oracle, we could code unordered A in advance in ln
(
D
m

)
nits, which gives an off-line

14

estimator with ≤mln eD
m

extra redundancy above the oracle. We can even get online
versions: A light-weight way is at time t to use KT on At but reserve an escape
probability of 1

t+1
for and uniformly distribute it among the unseen symbols X \At,

which leads to a similar but larger extra redundancy of lnn+mlnD+m+ln2 [VH12].
A heavy-weight Bayesian solution is to take a weighted average over the KTA′ esti-
mators for all A′⊆X [TSW93]. As prior one could take a uniform distribution over
the size m′ of A′, and then for each m′ a uniform distribution over all A′ of size m′

with extra redundancy ≤mln eD
m

+lnD. The resulting exponential mixture can be
computed in linear time in D as discussed in Appendix G. This is still a factor of D
slower than all other estimators considered in this paper. Otherwise the linear-time
update rule has a similar structure to (20), and hence S

~β∗ may be derivable as an
approximation to Bayesian sub-alphabet weighting.

8 Conclusion

I introduced and analyzed a model, closely related to the Dirichlet-multinomial
distribution, which predicts an Old symbol with its past frequency scaled down by
t

t+β
and a new symbol with its weight, scaled down by β

t+β
. Natural weight choices

are uniform and 2−CodeLength.

I derived exact expressions and for small m rather tight bounds for the code
length and redundancy. The bounds were data-dependent rather then expected or
worst-case bounds. This led to an (approximately) optimal choice of β different
from traditional recommendations. The constant offline β∗ (16) depends on the
total sequence length n and number of different used symbols m. The variable
online ~β∗ (21) depends on the current sequence length t and number of different
symbols observed so far mt.

The redundancy bounds additionally depend on the individual symbol counts
ni themselves. They show that Sβ

∗
has (at most) zero redundancy for unused

symbols and finite redundancy for symbols occurring only finitely often, unlike the
KT estimator and companions which have redundancy 1

2
lnn+O(1) per base symbol,

whether it occurs or not. Indeed, my bounds are independent of the base alphabet
size D, therefore also hold for denumerable and with suitable reinterpretation for
continuous X .

There seems to be not much leeway in choosing a globally good β. Experimen-
tally it seems that even slight changes in β∗ can significantly deteriorate performance
in some (m,n,D)-regime, but can only marginally and locally improve performance
in others. Empirically S

~β∗ seems superior to the other fast online estimators I com-
pared it to. See Appendix I for some results.

As a simple, online, fast, i.i.d. estimator, S
~β∗ should be a use-

ful alternative sub-component in more sophisticated (online) estima-
tors/predictors/compressors/modellers such as large-alphabet CTW [TSW93]
and others [VNHB12, OHSS12, Mah12]. The derived redundancy bounds are of

15

theoretical interest, not only for optimizing model parameters.

Acknowledgements. I thank the anonymous reviewers for valuable feedback, and
in particular one reviewer for providing the efficient representation of the Bayesian
sub-alphabet estimator in Appendix G.

References

[Bay63] T. Bayes. An essay towards solving a problem in the doctrine of chances. Philo-
sophical Transactions of the Royal Society, 53:370–418, 1763. [Reprinted in
Biometrika, 45, 296–315, 1958].

[Ber79] J. M. Bernardo. Reference posterior distributions for Bayesian inference (with
discussion). Journal of the Royal Statistical Society, B41:113–147, 1979.

[BEY06] R. Begleiter and R. El-Yaniv. Superior guarantees for sequential prediction and
lossless compression via alphabet decomposition. Journal of Machine Learning
Research, 7:379411, 2006.

[BH10] W. Buntine and M. Hutter. A Bayesian view of the Poisson-Dirichlet process.
Technical Report arXiv:1007.0296, NICTA and ANU, Australia, 2010.

[Bis06] C. M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

[CT06] T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley-
Intersience, 2nd edition, 2006.

[CW84] J. G. Cleary and I. H. Witten. Data compression using adaptive coding and par-
tial string matching. IEEE Transactions on Communications, COM-32(4):396–
402, 1984.

[Fin74] B. de Finetti. Theory of Probability : A Critical Introductory Treatment. Wiley,
1974. Vol.1&2, transl. by A. Machi and A. Smith.

[Grü07] P. D. Grünwald. The Minimum Description Length Principle. The MIT Press,
Cambridge, 2007.

[Hal48] J. B. S. Haldane. The precision of observed values of small frequencies.
Biometrika, 35:297–300, 1948.

[HP05] M. Hutter and J. Poland. Adaptive online prediction by following the perturbed
leader. Journal of Machine Learning Research, 6:639–660, 2005.

[Hut03] M. Hutter. Optimality of universal Bayesian prediction for general loss and
alphabet. Journal of Machine Learning Research, 4:971–1000, 2003.

[Jef46] H. Jeffreys. An invariant form for the prior probability in estimation problems.
In Proc. Royal Society London, volume Series A 186, pages 453–461, 1946.

[Jef61] H. Jeffreys. Theory of Probability. Clarendon Press, Oxford, 3rd edition, 1961.

[Kri98] R. E. Krichevskiy. Laplace’s law of succession and universal encoding. IEEE
Transactions on Information Theory, 44(1):296–303, 1998.

[KT81] R. Krichevsky and V. Trofimov. The performance of universal encoding. IEEE
Transactions on Information Theory, 27(2):199–207, 1981.

16

[Lap12] P. Laplace. Théorie analytique des probabilités. Courcier, Paris, 1812. [En-
glish translation by F. W. Truscott and F. L. Emory: A Philosophical Essay on
Probabilities. Dover, 1952].

[Mah12] M. Mahoney. Data Compression Explained. Dell, Inc,
http://mattmahoney.net/dc/dce.html, 2012.

[MS99] C. D. Manning and H. Schütze. Foundations of Statistical Natural Language
Processing. MIT Press, 1999.

[OHSS12] A. O’Neill, M. Hutter, W. Shao, and P. Sunehag. Adaptive context tree weight-
ing. In Proc. Data Compression Conference (DCC’12), pages 317–326, Snowbird,
Utah, USA, 2012. IEEE Computer Society.

[Per47] W. Perks. Some observations on inverse probability including a new indifference
rule. Journal of the Institute of Actuaries, 73:285–334, 1947.

[Ris76] J. J. Rissanen. Generalized Kraft inequality and arithmetic coding. IBM Journal
of Research and Development, 20(3):198–203, 1976.

[Ris84] J. J. Rissanen. Universal coding, information, prediction, and estimation. IEEE
Transactions on Information Theory, I(4):629–636, 1984.

[Sha48] C. E. Shannon. A mathematical theory of communication. Bell System Technical
Journal, 27:379–423, 623–656, 1948.

[TSW93] T. J. Tjalkens, Y. M. Shtarkov, and F. M. J. Willems. Sequential weighting
algorithms for multi-alphabet sources. Proc. 6th Joint Swedish-Russian Intl.
Workshop on Information Theory, pages 22–27, 1993.

[VH12] J. Veness and M. Hutter. Sparse sequential Dirichlet coding. Technical Report
arXiv:1206.3618, UoA and ANU, 2012.

[VNHB12] J. Veness, K. S. Ng, M. Hutter, and M. Bowling. Context tree switching. In
Proc. Data Compression Conference (DCC’12), pages 327–336, Snowbird, Utah,
USA, 2012. IEEE Computer Society.

[Wal05] C. S. Wallace. Statistical and Inductive Inference by Minimum Message Length.
Springer, Berlin, 2005.

[WNC87] I. H. Witten, , R. M. Neal, and J. G. Cleary. Arithmetic coding for data
compression. Communications of the ACM, 30(6):520–540, 1987.

A Approximations of the (Di)Gamma Function

(x− 1
2
) lnx− x+ ln

√
2π ≤

↑
∀x>0

ln Γ(x) ≤
↑
∀x≥1

(x− 1
2
) lnx− x+ 1 (27)

The lower bound is asymptotically sharp for x→∞ but a factor of 2 too small
for x→ 0. The absolute error of upper and lower bound for all x≥ 1 is at most
1−ln

√
2π =̇ 0.081. Some other used identities, asymptotics, and bounds are:

n−1∑

t=1

ln t = ln Γ(n) (28)

17

1− 1/x ≤ lnx ≤ x− 1 [= iff x = 1] (29)

Ψ(z) =
d ln Γ(z)

dz
∼ ln z −O

(1

z

)
(30)

Γ(z) ≤ 1

z
for z ≤ 1 (31)

B Proof of Theorem 2

I start with the lower bound (9) rewritten as

Rβ
S = CLw(A)−m lnβ+

∑

j∈A

1
2
lnnj +n ln(1+

β

n
) + (β−1

2
)ln(

n

β
+1)−m− [1− ln

√
2π]

(32)
which is valid for β≥1. Let

R(β) := −m ln β + n ln(1+
β

n
) + (β− 1

2
) ln(

n

β
+1)

be the β-dependent terms in (32).

For 1≤β≤n,

R(β) ≥ −m ln β + (β− 1
2
) ln 2 ≥ −m lnm+m ln ln 2

The last inequality follows from minimizing the first w.r.t. β by differentiation and
inserting the minimizer β=m/ln2 and dropping the second term.

For β≥n and with abbreviations z :=n/β≤1 and ν̄= n
m
≥1 we get

R(β) ≥ −m ln β + n ln
β

n
+
β

2
ln
(n
β

+ 1
)

= (n−m) ln β − n lnn+
n

2

ln(1 + z)

z

[
increasing in β

decreasing in z

]

≥ (n−m) lnn− n lnn+
n

2
ln 2

= −m lnm+m[ν̄ 1
2

ln 2− ln ν̄] [minimized for ν̄ = 2/ ln 2]

≥ −m lnm+m[1− ln 2 + ln ln 2]

≥ −m lnm+m ln ln 2

which is the same as for 1≤β≤n. Plugging this into (32) we get for β≥1

Rβ
S(x1:n) ≥ CLw(A)−m lnm+

∑

j∈A

1
2

lnnj −m[1− ln ln 2]− [1− ln
√

2π] (33)

18

For β≤1 we need to start with the exact expression (7):

∑

j∈A

ln
n
nj
j

Γ(nj)

(27)

≥
∑

j∈A

[1
2

lnnj + nj − 1] =
∑

j∈A

[1
2

lnnj] + n−m

−m ln β + ln
1

Γ(β)

(31)

≥ (m−1) ln
1

β
≥ 0

ln
Γ(n+ β)

nn

(27)

≥ (n+ β − 1
2
) ln(n+ β)− (n+ β) + ln

√
2π − n lnn

= n ln(1 +
β

n
) + (β − 1

2
) ln(n+ β)− (n+ β) + ln

√
2π

≥ −1
2

ln(2n)− n− 1 + ln
√

2π

Putting everything together we get for β≤1

Rβ
S(x1:n) ≥ CLw(A) +

∑

j∈A

1
2

lnnj − 1
2

lnn−m− [1− ln
√

2π + 1
2

ln 2] (34)

Pairing up terms (sometimes zero) in (33) and (34) and always taking the smaller
one, we get after some rewrite (14), valid for all β.

C Derivation of Approximate Optimal β∗

Exact implicit expression. The redundancy of S is minimized for

0
!

=
∂Rβ

S

∂β
= − m

β
+ Ψ(n+β)−Ψ(β) (35)

where Ψ(x) := dlnΓ(x)/dx is the diGamma function. Our goal is to approximately
solve this equation w.r.t. β. Since no formal result in this paper explicitly uses that
β∗ is an approximate solution of (35), I only motivate the form of β∗ by asymptotic
considerations without discussing the accuracy of the approximation for finite n.
With the following change in variables

0 < z :=
n

β
<∞ and 0 < ν :=

m

n
< 1

(35) can be written as

ν =
1

z

[
Ψ
(
n(1+

1

z
)
)
−Ψ

(n
z

)]

We need to solve this w.r.t. z for large n.

β→c>0 and β→∞.

β →∞ =⇒ n

z
→∞ 2×(30)

=⇒ ν → 1

z

[
ln
(
n(1+

1

z
)
)
− ln

(n
z

)]
=

1

z
ln(1 + z)

19

which is actually good for any n as long as z=o(n). Next consider

β → c > 0 =⇒ n

z
→ c

(30)
=⇒ ν→ 1

z

[
ln(1+z)︸ ︷︷ ︸
∼lnn→∞

+ ln
(n
z

)
−Ψ

(n
z

)
︸ ︷︷ ︸
→ln(c)−Ψ(c)=const.

]
∼ 1

z
ln(1 + z)

Therefore we need to solve

ν = g(z) :=
1

z
ln(1 + z) for z = O(n), 0 < z <∞, 0 < ν < 1

i.e. invert function g.

Lemma 6 (Inverse of ln(1+z)/z) The function g(z) := 1
z
ln(1+z) with domain

0 < z <∞ is strictly monotone decreasing and has inverse g−1(ν) = c(ν)
ν

ln 1
ν
with

domain 0<ν<1, where c(ν) is smooth and strictly monotone increasing from c(0+)=
1 to c(1−)=2.

Proof. Strict monotonicity of g and therefore existence of an inverse follows from

g′(z) =
1

z2

[z

1 + z
− ln(1 + z)

] (29)
< 0

I first study the asymptotics of ν=g(z) for z→0 and z→∞.

z → 0 =⇒ ν → 1, more precisely ν = 1− 1
2
z +O(z2) =⇒ z ≈ 2(1− ν)

z →∞ =⇒ ν → 0, and asymptotically z ≈ 1

ν
ln

1

ν

I got the last expression by fixed point iteration: Rewrite ν=g(z) as z= 1
ν
ln(1+z)

and now iterate zt+1 = 1
ν
ln(1+zt) starting from any 0 < z0 := c <∞. This gives

z1 = 1
ν
ln(1+c) and

z2 =
1

ν
ln
[
1 +

1

ν︸︷︷︸
→∞

ln(1+c)
]
∼ 1

ν
ln
[1

ν
ln(1+c)

]
=

1

ν

[
ln

1

ν︸︷︷︸
→∞

+ln ln(1+c)︸ ︷︷ ︸
finite

]
∼ 1

ν
ln

1

ν

No more iterations are needed! If we tentatively apply the ν→0 expression for ν→1
we get

z ∼ 1

ν
ln

1

ν
= (1−ν) +O((1−ν)2) → 0 for ν → 1

The limit value is right, but the slope is 1/2 of what it should be. 2
ν
ln 1
ν

would have
the right slope at ν=1. Therefore

z =
c(ν)

ν
ln

1

ν
for some function c(ν) with c(0+) = 1 and c(1−) = 2

which suggests that c(ν) might always lie in interval [1;2]. I prove this by showing
that c(ν) is a monotone increasing function of ν.

From g−1(ν) =
c(ν)

ν
ln

1

ν
we get c(ν) =

νg−1(ν)

ln(1/ν)

20

Since g(z) is smooth, also g−1(ν) and c(ν) are smooth. Since g() is monotone
decreasing, rather than proving c() to be increasing, it is equivalently to show that

f(z) := c(g(z)) = ... =
ln(1+z)

ln z − ln ln(1+z)

is monotone decreasing in z. For this, it is sufficient to show

0 > f ′(z) = ... =
ln z − ln ln(1+z)− 1+z

z
ln(1+z) + 1

(1+z)[ln z − ln ln(1+z)]2
=:

h(z)

denominator

Since h(0+)=0, it is sufficient to show h′(z)<0:

h′(z) = ... =
[ln(1+z)]2 − z2

1+z

z2 ln(1+z)
< 0 ⇐⇒ r(z) := ln(1+z)− z√

1+z
< 0

Since r(0+)=0, it is sufficient to show r′(z)<0:

r′(z) = ... =

√
1+z − (1 + 1

2
z)

(1+z)3/2
< 0, which is true, since 1+z < (1+ 1

2
z)2

Approximation of c(ν). In Appendix F I discuss approximations for c(ν). In the
main text I simply replace c(ν) by 1, i.e. z= 1

ν
ln 1
ν

which has the right asymptotics
for the ν→ 0 (m�n) regime I am primarily interested in and still the right limit
for ν→1. I also found that this choice is consistent with the other regimes in (17),
in particular with β→0. Back in (n,m,β) notation we get

β =
n

z
=

n
1
ν

ln 1
ν

=
m

ln n
m

=: β∗

β→ 0. I finally consider the β→ 0 regime. Using the general recurrence Ψ(β) =
Ψ(β+1)− 1

β
in (35) we get

0 = − m−1

β
+ Ψ(n+β)−Ψ(β+1) → − m−1

β
+ Ψ(n)−Ψ(1)

(30)∼ − m−1

β
+ lnn

Solving this w.r.t. β we get β = m−1
lnn

. This has not yet the right form but since
0≤ lnm

lnn
≤ m−1

lnn
=β→0, we can write this as

β =
m− 1

lnn
∼ m− 1

(1− lnm
lnn

) lnn
=

m− 1

ln n
m

which apart from the −1 is consistent with the β-expressions in the other regimes.

21

D Proof of Theorem 4

I first prove Theorem 4 for m<n. Inserting (16) into (8) and abbreviating ν̄ := n
m
>1

we get after rearranging terms

Rβ∗

S ≤ Rβ∗

S = CLw(A)−m lnm+
∑

j∈A

1
2

ln
nj
2π

+ 0.082 +m·f(ν̄)− 1
2

ln(ν̄ ln ν̄ + 1)

where f(ν̄) := ln ln ν̄ + ν̄ ln(1 +
1

ν̄ ln ν̄
) +

ln(ν̄ ln ν̄ + 1)

ln ν̄

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

ν

f(1ν)−h(1ν)

It is easy to see that f(ν̄) ∼ lnlnν̄ for ν̄ →∞ and
f(1+) = 1. This motivates the approximation h(ν̄) :=
1+ln(1+lnν̄), which has the correct ν̄→ 1 limit and
correct ν̄ → ∞ asymptotics. Next I upper bound
f(ν̄)−h(ν̄). Since f−h is continuous and tends to
zero at 0 and at 1, it is upper bounded by some finite
constant. It is easy to see graphically and numeri-
cally but quite cumbersome to show analytically that
f(1

ν
)−h(1

ν
) is concave for 0< ν < 1 with maximum 0.476... at ν = 0.284..., hence

f(ν̄)≤1.48+ln(1+lnν̄). Now using 1
2
ln

nj
2π

=̇ 1
2
lnnj−0.92 and −1

2
ln(ν̄lnν̄+1)≤−1

2
lnν̄

(use lnx≥1−1/x on the inner lnν̄) leads to the desired bound (18) for m<n.
For m = n, we have ni = 1∀i, hence P θ̂iid = (1

n
)n from (6), and β∗ = ∞,

hence S(xt+1 = i|x1:t) = wti from (2), so S(x1:n) = CL(A). Inserting this into
(5) gives R∞S (x1:n) = CL(A)−nlnn. On the other hand, (18) for m = n is
CL(A)−nlnn+0.56n+0.082, which is clearly larger.

1.48 is a quite crude upper bound on f(1+)=1. By introducing ugly other terms,
one can improve 1.48 to 1 and hence 0.56m to 0.082m in bound (18).

E Proof of Theorem 5

S and R for variable ~β. For variable ~β the joint S distribution and its redundancy
are

S
~β(x1:n) =

n−1∏

t=0

Sβt(xt+1|x1:t) =
n−1∏

t=0

1

t+ βt

∏

t∈Old

ntxt+1

∏

t∈New

βtw
t
xt+1

R
~β
S = CLw(A)

︸ ︷︷ ︸
(I)

+
n−1∑

t=1

ln(t+ βt)

︸ ︷︷ ︸
(II)

−
∑

t∈New\{0}

ln βt

︸ ︷︷ ︸
(III)

+
∑

j∈A

ln
n
nj
j

Γ(nj)
︸ ︷︷ ︸

(IV)

−n lnn

︸ ︷︷ ︸
(V)

(36)

In the redundancy I removed the ln(0+β0)−ln(β0) contribution. Note that S
~β and

R
~β
S are now not only dependent on the counts but also on exactly when new symbols

22

appear, i.e. on the New set. (for ~β∗=mt/ln
t+1
mt

the dependence is in a sense mild
though). The sums cannot be represented as Gamma functions anymore.

(I) and (IV) and (V) are independent of New, for (I) by assumption. (III)
obviously depends on New but also (II) via mt in βt.

Redundancy change when swapping two consecutive symbols. I first show
that the earlier new symbols appear, the larger is R

~β∗
S . This fact heavily relies on

the specific form of ~β∗, which makes the proof cumbersome. Assume at time t there
is an old symbol but at time t+1 there is a new symbol for some t∈ {1...n−1}.
That is, t∈Old and mt−1 =mt but t+1∈New and mt+1 =mt+1. Note that mt<t,
and xt+1 6=xt, since xt is old and xt+1 is new. I now swap xt with xt+1. I mark all
quantities that change by a prime ′. That is, x′t=xt+1 and x′t+1 =xt. Now xt is new
(t−1∈New′) and xt+1 is old (t∈Old′). Further m′t =mt+1, and β′∗t =m′t/ln

t+1
m′t

.

Quantities for all other t remain unchanged. Only one term in (II) and one term in
(III) are affected. The change in redundancy is therefore

∆R(t,mt) := R
~β′∗

S −R
~β∗

S = ln(t+β′∗t)− ln(t+β∗t)− ln β′∗t−1 + ln β∗t

= ln(t+
mt + 1

ln t+1
mt+1

)− ln(t+
mt

ln t+1
mt

)− ln
mt

ln t
mt

+ ln
mt

ln t+1
mt

where I have used m′t−1 =mt−1 =mt. Collecting terms we get

∆R(t,m) = ln
ln t

m
+ m+1

t

ln t
m

ln t+1
m

ln t+1
m

+ m
t

?
> 0 for 0 < m < t

This is positive, if the numerator is larger than the denominator. Rearranging terms
we can write this as

ft,m(0)
?
> ft,m(1), with ft,m(a) := ln

t+ a

m
− m+ a

t

ln t
m

ln t+a
m+a

Another change in variables gives us

fν̄(x) := ft,m(a) = ln[ν̄(1+x)]− (
1

ν̄
+x)

ln ν̄

ln 1+x
1/ν̄+x

, where a = x·t and ν̄ :=
t

m
> 1

By differentiation one can show that fν̄(x) is a decreasing function in x for all x>0
and ν̄ >1, which implies ft,m(0)>ft,m(1) and hence ∆R(t,m)>0.

Bounding the redundancy for all new symbols first. We can repeat swapping

symbols and thereby increasing R
~β
S until all symbols appear first before they repeat,

that is, mt=min{t,m} and New={0,...,m−1}. For this oder we have

β∗t =
t

ln t+1
t

≥ t2 for t ≤ m, and b∗t =
m

ln t+1
m

for t ≥ m

23

I now bound each of the 5 terms (I)-(V) in R
~β
S, where I split the sum in (II) and

merge in (III).

(I) = CLw(A) and (V) = −n lnn [nothing to do here]

(IIa)+(III) =
m−1∑

t=1

ln(t+β∗t)−
m−1∑

t=1

lnβ∗t =
m−1∑

t=1

ln(1+
t

β∗t
) ≤

m−1∑

t=1

t

β∗t
≤

m−1∑

t=1

1

t
≤ 1 + lnm

(IIb) =
n−1∑

t=m

ln(t+β∗t) =
n−1∑

t=m

ln t+
n−1∑

t=m

ln(1 +
m/t

ln t+1
m

)

Using (27) and (28), the first terms can be bound by

(IIb1) =
n−1∑

t=m

ln t = ln Γ(n)− ln Γ(m)

≤ (n− 1
2
) lnn− n+ 1− (m− 1

2
) lnm+m− ln

√
2π

I split the second term in (IIb) further into t<2m and t≥2m:

(IIb2) =

min{2m−1,n−1}∑

t=m

ln(1 +
m/t

ln t+1
m

)

ln t+1
m
≥1− m

t+1

↓
≤

2m−1∑

t=m

ln(1 +

>1︷ ︸︸ ︷
(t+1)m

t(t+1−m)
) ≤

2m−1∑

t=m

ln
2m(t+1)

t(t+1−m)

= m ln(2m) + ln 2m
m
− lnm! ≤ m ln(2m) + ln 2− (m+ 1

2
) lnm+m− ln

√
2π

If 2m<n

(IIb3) =
n−1∑

t=2m

ln(1 +
m/t

ln t+1
m

) ≤
n−1∑

t=2m

m/t

ln t+1
m

≤ 3

2

n−1∑

t=2m

1
t+1
m

ln t+1
m

where I have used t+1
t

=1+1/t≤1+1/2m≤3/2. If we upper bound the sum by an
integral and set x= t+1

m
, we get

≤ 3

2

∫ n−1

2m−1

dt
t+1
m

ln t+1
m

=
3

2

∫ n/m

2

mdx

x lnx
=

3

2
m[lnln

n

m
−lnln2] ≤ 3

2
m[ln ln

2n

m
−ln ln 2]

If 2m ≥ n, (IIb3)=0. We can stich both cases together by either using a max-
operation, or as I have done by increasing n; 2n, which ensures that the last
expression is never negative.

(IV) =
∑

j∈A

ln
n
nj
j

Γ(nj)
≤
∑

j∈A

[1
2

lnnj + nj − ln
√

2π] = n− m

2
ln(2π) +

∑

j∈A

1
2

lnnj

24

Putting everything together. We can now collect all underlined terms together
and get

R
~β∗

S (x1:n) ≤ CLw(A)− (m−1) lnm+
∑

j∈A
1
2

lnnj − 1
2

lnn

+ 3
2
m ln ln 2n

m
+m[2+ln 2− 3

2
ln ln 2−ln

√
2π] + [2− ln π]

Since the all-new-symbols-first order has maximal redundancy, the bound holds in
general.

F Improvement on β∗

Here I generalize β∗ to βc :=β∗/c. From Appendix C we know that for n→∞, the
exact optimal βc has 1≤c(ν)≤2.

0 0.2 0.4 0.6 0.8 1
1

1.2

1.4

1.6

1.8

2

ν

c(
ν
)

cexact(ν)

1+ν0.27

1+ ln(1−ln(ν))
ln(1/ν)

Discussion of c(ν). The figure on the right plots
the exact function c(ν) implicitly given by g(c

ν
ln 1
ν
)=ν.

While it is true that c→1 for ν→0, β1 only starts to
have lower redundancy than β2 for very small values
of ν, namely ν . 10−2. So in practice, c= 2 should
perform better except for m. n

100
. We could try to find

approximate c(ν) in various ways, e.g. c(ν) = 1+ν0.27

makes |g(c(ν)
ν

ln 1
ν
)−ν|< 0.002. c(ν) = 1+ ln(1−ln(ν))

ln(1/ν)
is

theoretically motivated by an extra iteration of g.

Constant βc. The proof of Theorem 4 in Appendix D still goes through for β∗;βc

with now

fc(ν̄) = ln(c ln ν̄) + ν̄ ln(1 +
1

cν̄ ln ν̄
) +

ln(cν̄ ln ν̄ + 1)

c ln ν̄
fc−1−ln(1+lnν̄) is still upper bounded by 1.48 for all 1≤c≤2, so the upper bound
in (18) is still valid for β∗;βc.

Variable ~βc. The proof of Theorem 5 in Appendix E breaks down for c>1. R still
increases when moving new symbols earlier if many symbols have already appeared
but actually decreases when only a few symbols have appeared so far. That is,
∆R(t,m)> 0 for large m as before, but ∆R(t,m)< 0 for small m. R is therefore
maximized if all new symbols appear somewhere in the middle of the sequence.
This may lead to a proof and bound analogous to the c=1 case.

Here is a simpler proof with a possibly cruder bound. I reduce R
~β~c

S to R
~β∗
S and

also allow for time-dependent c=ct. From expression (36) it is easy to see that

R
~β~c

S = R
~β∗

S +
n−1∑

t=1

ln
1 + βctt
1 + β∗t

+
∑

t∈New\{0}

ln ct ≤ (m−1) ln 2

where I have exploited ct ≤ 2 and βctt ≤ β∗t for ct ≥ 1. That is, if we add another
(m−1)ln2 to bound (22) it becomes valid for ~β~c for any choice of 1≤ct≤2.

25

G Bayesian sub-alphabet weighting

The Bayesian sub-alphabet weighting estimator [TSW93] averages over the KTA′
estimators for all possible A′⊆X with a prior uniform in |A′| and uniform in A′
given |A′|:

PBayes(x1:n) =
∑

A′:A⊆A′⊆X

Prior(A′)PKTA′
(x1:n) with Prior(A′) =

1

D
(
D
|A′|

) (37)

This mixture of exponential size 2D−m can be computed in time and space linear in
D [TSW93]:

PBayes(x1:n) =
D∑

i=1

1

D
Gi(x1:n) (38)

with the following sequential representation of Gi:

Gi(xt+1|x1:t) :=

0 if mt+1 > i

ntxt+1
+ 1

2

t+ i/2
if mt+1 ≤ i & xt+1 ∈ At

i−mt

D −mt

·
1/2

t+ i/2
if mt+1 ≤ i & xt+1 6∈ At

This is still a factor D slower than all other estimators considered in this paper.
A relation to S can be enforced as follows: First, generalize PKTA′

≡P 1/2
DirMA′

to
PαDirMA′

, then

Gα
β/α(xt+1|x1:t)

α→0−→ Sβ(xt+1|x1:t) for wti =
1

D −mt

While (37) mixes Gi’s, S
β∗ maximizes Sβ. So Sβ

∗
with uniform renormalized weights

might be an integer-relaxed, maximum-likelihood approximation of Bayesian sub-
alphabet weighting with Haldane prior. There are several caveats though.

An anonymous reviewer suggested the following alternative representation:

PBayes(xt+1|x1:t) ∝ PBayes(x1:t+1) =
∑

A′:At+1⊆A′⊆X

Prior(A′)PKTA′
(x1:t+1)

=
∑

A′:At+1⊆A′⊆X

Prior(A′) Γ(1
2
|A′|)

Γ(t+1+ 1
2
|A′|)

∏

i∈X

Γ(nt+1
i + 1

2
)

Γ(1
2
)

= (ntxt+1
+ 1

2
)

(∏

i∈X

Γ(nti+
1
2
)

Γ(1
2
)

)
1

D

∑

A′:At+1⊆A′⊆X

(
D

|A′|

)−1 Γ(1
2
|A′|)

Γ(t+1+ 1
2
|A′|)

∝ (ntxt+1
+ 1

2
)

D∑

m′=mt+1

(
D −mt+1

m′ −mt+1

)(
D

m′

)−1 Γ(1
2
m′)

Γ(t+1+ 1
2
m′)

26

The latter sum can have two values, depending on whether xt+1 is new (mt+1=mt+1)
or old (mt+1 =mt). We can hence write this as

PBayes(xt+1 = i|x1:t) ∝
{

(nti + 1
2
)γtmt if nti > 0,

1
2
γtmt+1 if nti = 0,

where γtm :=
D∑

m′=m

(
D −m
m′ −m

)(
D

m′

)−1 Γ(1
2
m′)

Γ(t+1+ 1
2
m′)

By summation, the normalizer can be worked out to be (t+ 1
2
mt)γ

t
mt + 1

2
(D−

mt)γ
t
mt+1, which allows us to rewrite the result as

PBayes(xt+1 = i|x1:t) =

nti+1/2

t+mt/2+βt
if nti > 0,

βt/(D−mt)
t+mt/2+βt

if nti = 0,
with βt :=

D −mt

2

γtmt+1

γtmt
(39)

This has the same structure as (20) apart from the +1/2 and +mt/2, which is due to
using the KT prior rather than a Haldane prior, and apart from a significantly more
complex expression for βt, which I expect to be approximately β∗t . An advantage
of (39) over (38) is that not only can it be used to compute PBayes(xt+1|x1:t) in
time O(D) but also the cumulative distribution PBayes(Xt+1<xt+1|x1:t), required for
arithmetic coding.

H Algorithms & Applications & Computation

Time

All estimators discussed in this paper, except for Bayesian sub-alphabet weighting
(SAW-Bayes) require just O(1) time and O(D) space for computing P (xt+1|x1:t)
and for updating the relevant parameters like counts ni, the number mt of symbols
seen so far, parameter β∗t , etc. Space can be reduced to O(m) by hashing. Only
SAW-Bayes requires O(D) time per t and O(D) space.

Knowledge of P (xt+1|x1:t) for all t allows to determine code length, likelihood,
and redundancy of x1:n, relevant and sufficient e.g. for model selection such as MDL.
Many other tasks like data compression via arithmetic encoding and Bayesian deci-
sion making require P (Xt+1 =i|x1:t) for all (or at least multiple) i∈X , which naively
requires O(D) time per t.

For arithmetic encoding, we actually only need the conditional distribution func-
tion P (Xt+1<xt+1|x1:t) at xt+1 for X ∼={1,...,D}. For DirM and S this can be com-
puted in time O(logD) as follows: Maintain a binary tree of depth dlog2De with
counts n1,n2,...,nD at the leafs in this order. Inner nodes store the sum of their two
children. In this tree, computing

∑
i<xt+1

ni and updating nxt+1 ;nxt+1 +1 can be
performed in time O(logD) by accessing/updating the single path from root to leaf
xt+1. It is clear how this allows to compute DirM(Xt+1<xt+1|x1:t) in time O(logD)

27

and space O(D). Time can be reduced to O(logm) and space to O(m) by main-
taining a self-balancing binary tree of only the non-zero counts, which is rebalanced
when inserting new non-zero counts.

To compute S
~β∗(Xt+1<xt+1|x1:t) in time O(logD), we have to additionally and

in the same way store and maintain w̃1,w̃2,...,w̃D at the leafs (and their sum at inner
nodes), where w̃i=w0

i if i 6∈At and w̃i=0 else.
Expectations

∑
if(i)P (Xt+1 = i|x1:t) can easily be updated in O(1) time with

O(m) space, hence Bayes-optimal decisions argminy∈Y
∑

iLoss(y,i)P (Xt+1 = i|x1:t)
can be updated in O(|Y|) time.

A similar tree construction can speed up SAW-Bayes (38) from O(D2) to
O(DlogD), or one uses (39), but time O(D) seems not further improvable. This
renders SAW-Bayes impractical for large-alphabet data compression.

Finally, if computation time is at a premium and the logarithm in β∗t too slow,
one can with virtually no loss in compression quality update 1/ln t+1

mt
only whenever

mt or t have changed by more than 10% since the last update.

I Experiments

I determined the code length of various estimators for various sequence lengths
n, used alphabet sizes m, and base alphabet sizes D on artificially generated data
sequences and the Calgary corpus. I consider the new estimator S and the Dirichlet-
multinomial with approximately optimal constant β∗/2 and variable ~β∗/2 and with
Perks prior, the KT estimator for the base and for the used alphabet, and Bayesian
sub-alphabet weighting, introduced in Section 7. I also compare against the true
distribution and the empirical entropy.

Data generation. I sampled θ1,...,θm uniformly from the m−1-dimensional prob-
ability simplex and set θm+1 = ...= θD = 0. I then sampled x1:n from P θiid. Unless
n�m or D�n, this usually results in sequences that actually contain less than m
symbols, and e.g. |A|=n is virtually impossible to achieve in this way. I therefore
generate sequences by first setting xt = t for t= 1...min{m,n}, then sample the re-
maining xt from P θiid, and then scramble the result. The resulting code lengths were
virtually indistinguishable from the “normal” i.i.d. sampling, when the latter was
also feasible.

I also generated sequences with a version of D’Hondt’s method for allocating seats
in party-list proportional representation, which ensures |ni−θi ·n|< 1 and adapted
it to also ensure ni> 0 if θi> 0 and i≤n by dividing by zero (rather than 1) first.
As expected, the results were a bit less noisy, but otherwise very similar.

In another experiment I chose θ to be Zipf-distributed, i.e. θi∝ i−γ with varying
Zipf exponent γ>0, which for γ≈1 mimics quite well the empirical distribution of
words in English texts. The larger γ, the smaller the used alphabet A.

My S-estimators. I determined the code length of my models (Sβ
∗/2and S

~β∗/2)
with constant and variable optimal β∗. I chose uniform normalized weights wti =

28

0 1
2

1 3
2

2

Zipf-exp.γ

20 21 22 23 24 25 26 27 28 29 210

-1000

-100

-10

-1
0
1

10

100

1000

used alphabet size m= |A|

C
L
Q
−
C
L
S
~ β
∗ /
2

b
ib

b
o
ok

1

p
ro
gl

p
ro
gp

p
ap

er
2

p
ro
gc

p
ap

er
1

b
o
ok

2

n
ew

s

tr
an

s

p
ic

ob
j1

ob
j2

ge
o

-1000

-100

-10

-1
0
1

10

100

1000

Calgary Corpus (from small to large |A|)

|A| (not a CL)

S
~β∗/2

KTX
Perks

SSDC

D~irM∗

SAW-Bayes

Sβ
∗/2

KTA+ln
(
D
m

)

DirM∗

KTA-Oracle

LLθ-Oracle

H-Oracle

Figure 1: Plotted are code length differences to S
~β∗/2 of various estimators. The two

top graphs are for fixed sequence length n=1024 and total alphabet size D=10 000
for varying Zipf exponents γ and used alphabet sizes m= |A|. The bottom graph is
for the 14 files from the Calgary corpus with 21504≤n≤768 771 and byte alphabet
(D= 256). The online/offline/oracle estimators have solid/dashed/dotted lines. A
curve above/below zero means worse/better than S

~β∗/2. The black dotted curve is
not a code length but shows the used alphabet size m≡|A|.

29

1/(D−mt). I also played around with other β and ~β, but performance either severely
deteriorated, or only marginally and locally improved. The code length is very
sensitive to some changes, e.g. β=m/lnn and β=m/ln2n

m
perform badly for large m,

since these β have the wrong scaling for m→n, but less sensitive to other changes,
e.g. β = (m+c)/lnn+c′

m+c
for small c,c′ are generally ok. For the experiments I used

βc=2 =β∗/2 and βc=2
t =β∗t /2.

Other estimators. I also determined the code length of the other estimators dis-
cussed in Section 7. I considered:
(i) the Dirichlet-multinomial with α = 1/D (Perks) and optimized constant α∗

(DirM∗) and optimal variable ~α∗ (D~irM∗) with uniform weights (25);
(ii) the KT-estimator with base alphabet X (KTX),
(iii) the KT-estimator for used alphabet A (KTA-Oracle), a feasible off-line ver-
sion by pre-coding A (KTA+ln

(
D
m

)
), and the online version using escape probability

1/t+1 (SSDC) discussed in Section 7;
(iv) the Bayesian sub-alphabet weighting (SAW-Bayes) discussed in Appendix G;
(v) the empirical entropy nH(n

n
)=
∑

iniln
n
ni

(H-Oracle);

(vi) the log-likelihood of the sampling distribution ln1/P θiid (LLθ-Oracle) for arti-
ficial data.

Results. Figure 1 plots the results for the various estimators. The vertical axis
is the code length (or redundancy) difference of the estimator under consideration
and our prime model S

~β∗/2. So negative/positive values indicate better/worse per-
formance than S

~β∗/2. The two top graphs are for artificially generated data with
fixed sequence length n=1024 and total alphabet size D=10 000. In the right graph
I varied m= 1,2,4,...210 and in the left graph I varied the Zipf exponent γ ∈ [0;2].
The bottom graph shows results for the 14 files from the Calgary corpus with byte
alphabet (D= 256). All results are plotted and discussed relative to S

~β∗/2. Rather
than averaging over multiple runs and plotting error bars for the artificial data, I
generated (necessarily) one new sequence for each γ and m for sufficiently many γ
and m. The noise level of the curves captures the sample variation very well.

Discussion. The results generally confirm the theory with few/small surprises.
The online estimators are plotted with solid lines. D~irM∗ mostly coincides within

±10 nits with S
~β∗/2 for most m. Only when m approached n is S

~β∗/2 superior to
D~irM∗ due to renormalized weights leading to shorter CLw(A). Among the proper
estimators, SAW-Bayes works best by a small margin, except for very small (m.lnn)
and very large (m≈n) used alphabet and Zipf distributed data, but note that it is
D (here 10 000 or 256) times slower than all the other algorithms. SSDC is virtually
indistinguishable from Perks on the artificial data and only slightly better on the real
data. Both perform poorly except for very small m. lnn. Note that Perks performs
as well as DirM∗ (only) around m≈ 2ln n

m
, i.e. when their priors coincide. KTX

as well as DirMα with any other fixed choice of α perform very badly, especially
for small m. KTX performs well only for m≈D and for m≈ 0.9n when β∗/2 is
accidentally close to α+ =D/2.

30

The offline estimators (densely dashed lines), DirM∗, Sβ
∗/2 with constant optimal

parameters α∗ and β∗ mostly coincide within ±10 nits with their variable ~α∗ and
~β∗ online versions, except for very large m they are slightly better. This shows that
making them online is essentially for free, which is consistent with the close bounds
for small m in both cases. This has been observed for other offline-online algorithm
pairs as well [HP05]. There is very little gain in knowing α∗ or β∗ in advance. As
expected off-line KTA+ln

(
D
m

)
significantly improves upon KTX for small m and even

beats S
~β∗/2 by a couple of bits for sufficiently small m, but breaks down for medium

and large m, and anyway is off-line.
These observations are rather consistent across uniform, Zipf, and real data.

Only for Zipf data, SAW-Bayes and KTA+ln
(
D
m

)
seem to be worse, and the relative

performance of many estimators on b&w fax pic is reversed.
The oracle estimators (dotted lines) possess significant extra knowledge: KTA-

Oracle the used alphabet A, and LLθ-Oracle and H-Oracle even the counts
n. The plots show the magnitude of this extra knowledge.

Summary. Results are similar for other (n,D,m) and (n,D,γ) combinations but
code length differences can be more or less pronounced but are seldom reversed. In
short, KTX performs very poorly unless m≈D, and Perks and SSDC perform poorly
unless m. lnn; KTA+ln

(
D
m

)
, DirM∗, Sβ

∗/2 are not online; the oracles LLθ-Oracle,
H-Oracle, KTA-Oracle are not realizable; and SAW-Bayes is extremely slow;
which leaves D~irM∗ and S

~β∗/2 as winners. They perform very similar unless m gets
very close to min{n,D} in which case S

~β∗/2 wins.

J List of Notation

Symbol Explanation

X total (large) base alphabet of size D

D= |X | size of (large) base alphabet X
n sequence length

x1:n total sequence

ni number of times i appears in x1:n

A⊆X symbols actually appearing in sequence x1:n

m= |A| size of alphabet used in x1:n

i,j,k indices ranging over symbols in X , A, X \A respectively

ν̄ := n
m
,ν := m

n
average multiplicity of symbols and its inverse

t current time ranging from 0 to n−1

x1:t sequence seen so far

At ={x1,...,xt} = symbols seen so far

mt= |At| number of different symbols observed so far (in x1:t)

xt+1 next symbol to be predicted

31

nti number of times i appears in x1:t

New set of t for which xt+1 is new, i.e. xt+1 6∈At
Old set of t for which xt+1 is old, i.e. xt+1∈At
P,Q probability over sequences

P param
name parameterized and named probability

Rparam
name =−lnP param

name −n·H(n/n) = redundancy of P param
name

R,R upper/lower bound on redundancy

CL code length in nits

θi probability that xt= i

αi,α+ Dirichlet parameters and their sum

β=βn,βt general (constant,variable) parameter β

β∗ 6=β∗n,β
∗
t optimal (constant,variable) parameter β

wti weight of new symbol i at time t

ln Natural logaritm. Results are in ‘nits’

v vector over alphabet X
~v vector over time t=0...n−1

Γ,Ψ Gamma and diGamma function

c constant >0 and <∞

32

