
ar
X

iv
:1

90
5.

11
70

2v
1

 [
cs

.L
G

]
 2

8
M

ay
 2

01
9

Conditions on Features for Temporal Difference-Like Methods to Converge

Marcus Hutter 1 , Samuel Yang-Zhao1 , Sultan J. Majeed1

1College of Engineering and Computer Science, The Australian National University

{marcus.hutter, u6642247, sultan.majeed}@anu.edu.au

Abstract

The convergence of many reinforcement learning
(RL) algorithms with linear function approxima-
tion has been investigated extensively but most
proofs assume that these methods converge to a
unique solution. In this paper, we provide a com-
plete characterization of non-uniqueness issues for
a large class of reinforcement learning algorithms,
simultaneously unifying many counter-examples
to convergence in a theoretical framework. We
achieve this by proving a new condition on fea-
tures that can determine whether the convergence
assumptions are valid or non-uniqueness holds. We
consider a general class of RL methods, which we
call natural algorithms, whose solutions are char-
acterized as the fixed point of a projected Bellman
equation (when it exists); notably, bootstrapped
temporal difference-based methods such as TD(λ)
and GTD(λ) are natural algorithms. Our main re-
sult proves that natural algorithms converge to the
correct solution if and only if all the value functions
in the approximation space satisfy a certain shape.
This implies that natural algorithms are, in general,
inherently prone to converge to the wrong solution
for most feature choices even if the value function
can be represented exactly. Given our results, we
show that state aggregation based features are a safe
choice for natural algorithms and we also provide a
condition for finding convergent algorithms under
other feature constructions.

1 Introduction

A longstanding goal in reinforcement learning (RL) has been
to find algorithms with linear function approximation that re-
liably converge to the fixed point of the Bellman equations.
As such the convergence of different RL methods that dis-
play such characteristics have been researched extensively.
The TD(λ) algorithm converges in an on-policy learning
setting to the fixed point of a projected λ-weighted Bell-
man equation [TVR97]. The Residual Gradient algorithm is
shown to minimise the Bellman error but suffers from double
sampling [Bai95]. More recently, some temporal difference-
based methods have been shown to converge with off-policy

learning. The GTD2 and TDC algorithms are shown to con-
verge to the TD(0) solution under an off-policy learning set-
ting [SMP+09]. These algorithms have also been extended to
their bootstrapped version GTD(λ) and shown to converge
to the TD(λ) solution [Mae11]. However, a core tenet in al-
most all of these convergence results is the assumption that
these RL methods converge to a unique solution; for example
in the proof of GTD2’s convergence, the matrix quantities A
and C are assumed to be non-singular, allowing for unique-
ness of solution [SMP+09, Theorem 1].

In addition to the convergence results, pertinent counter-
examples have been documented in the literature that high-
light how the choice of features is crucial to convergence of
RL methods [Gor95; TVR96; Bai95; Ber95; BM95]. Bert-
sekas showed that TD(λ) with function approximation may
converge to a parameter vector which generates a poor esti-
mate of the value function (in terms of Euclidean distance)
[Ber95]. Tsitsiklis and Van Roy provided a counter-example
showing that RL methods may diverge even when the value
function is representable by the chosen features [TVR96].
More recently, Sutton and Barto present a counter-example
where methods that minimise the Bellman error may fail to
learn the correct parameter value [SB18, Example 11.4].

In this paper, we provide a complete characterization of
non-uniqueness and the potential to converge to the wrong
solution for a large class of RL algorithms we call natural al-
gorithms. A natural algorithm is any method that can be char-
acterized as solving for the unique fixed point (when it exists)
of a projected Bellman equation. We consider all oblique pro-
jections and a Bellman equation based on the TD(λ) Bellman
operator presented in [TVR97]. Under this definition, the nat-
ural algorithms include a large spectrum of algorithms: on
one end of the spectrum, the natural algorithms include boot-
strapped methods such as TD(λ) andGTD(λ) since they are
characterized by an orthogonal projection, and on the other
end the natural algorithms include Bellman-error based meth-
ods which are characterized by the identity projection. We
consider an RL setting with a continuous state space S and
finite action space A; note that a finite state space is a spe-
cial case of our setup. Furthermore, we consider the infinite
horizon problem for our results.

Our main contribution is to prove that natural algorithms,
even under the setting where the value function can be rep-
resented exactly by the features, are inherently prone to non-

http://arxiv.org/abs/1905.11702v1

uniqueness and will converge to the wrong solution for most
feature choices. Our main result is as follows:

Theorem 5.1. Natural algorithms converge if and only if all
non-zero linear combination of the features achieve their ex-
treme values on a sub-region of the state space that has non-
zero measure under the stationary distribution.

Importantly, given our characterisation, we provide some
guidelines for choosing features and algorithms to avoid non-
uniqueness. We show that state aggregation based features
are a safe choice. We also provide a sufficient condition for
algorithms to converge under other feature constructions.

This paper is organized as follows. In Section 2, we intro-
duce some background and notation. In Section 3, we present
the theory behind projected equation methods and the charac-
teristic equation to projected Bellman equations. In Section 4,
we present a detailed look at the counter-example presented
by Sutton and Barto that demonstrates the non-uniqueness is-
sues which plague Bellman-error methods [SB18]. In Section
5, we present our main results and discuss their implications,
including positive feature construction examples. In Section
6, we present our framework for analyzing convergence. Fi-
nally, in Section 7, we present the idea behind the proof of
Theorem 5.1. For brevity, most proofs and supporting results
have been omitted. However, the supporting results and omit-
ted proofs can be found in Appendices A and B respectively.

2 Background and Notation

We now reiterate some background RL concepts, mathemati-
cal concepts and notation used throughout this paper.

2.1 RL in Continuous State Space

We consider an agent-environment setup [SB18] where an
agent follows a stationary policy π and interacts with a
Markov Decision Process (MDP). We assume a continu-
ous state space S that is compact and measurable and a fi-
nite action space A. For simplicity, we will assume that
S = R in all our examples. The expected reward function
is a function R : S → R and represents the expected re-
ward to be received for a given state following π. At a state
s ∈ S, we assume that there is a transition density func-
tion T : S × S → [0, 1] whilst following π. Combined
with an initial state s0, the state sequence can be viewed as
a time-homogeneous Markov process with transition kernel
defined by T (B|x) =

∫

B
T (y|x)dy , ∀B ∈ B(S) , x ∈ S

where B(S) is the Borel sigma-algebra. We consider the in-
finite horizon problem and thus the value function at state
s ∈ S is defined as the total discounted expected return:

V (s) = E

[

∑∞
t=0 γ

tR(st)

∣

∣

∣

∣

s0 = s

]

, where γ ∈ [0, 1) is the

discount factor. By standard MDP theory, the value function
satisfies the Bellman equation given by

V (s) = R(s) + γ

∫

S

T (s′|s)V (s)ds′ ,

for any state s ∈ S. The Bellman operator T : RS → R
S is

an affine linear operator on R
S and is defined accordingly as

(T V) (s) = R(s) + γ

∫

S

T (s′|s)V (s′)ds′ .

If we define PT to be an operator such that (PT f)(s) :=
∫

S
T (s′|s)f(s′)ds′, we can express the Bellman operator

compactly as T V := R + γPTV for any V ∈ R
S . The

Bellman equation can then be expressed as the fixed point
equation V = T V .
For an agent following a policy π and interacting with an
MDP, the state sequence can be viewed as a Markov process
with transition density function T . Throughout this paper
we assume that the state Markov process admits a station-
ary measure µ. Under these assumptions, the value function
space inherits extra geometric structure via an inner product
defined with respect to µ. For any f, g ∈ R

S ,

〈f, g〉µ :=

∫

S

f(s)g(s)µ(s)ds .

Showing that 〈·, ·〉µ is an inner product is routine. We define

the norm on the associated inner product space by ‖·‖µ =
√

〈·, ·〉µ. The set of functions in the value function space

with finite ‖·‖µ-norm is given by L2(S, µ) := {V ∈ R
S :

‖V ‖µ < ∞}. Under our assumptions, it can be shown that

the value function associated with the Markov process lives

in L2(S, µ). Furthermore, our approximations V̂ of V also

evolve in this space. For any two functions V, Ṽ ∈ L2(S, µ)
we say that V is µ-orthogonal to Ṽ , denoted by V ⊥µ Ṽ , if

and only if 〈V, Ṽ 〉µ = 0.

2.2 Linear Function Approximation

When using linear function approximation, the value func-
tion V is approximated by a linear combination of the fea-
tures chosen from a finite-dimensional subspace of L2(S, µ).

Formally, the approximate value function V̂ can be written

as a linear combination V̂ (s, w) =
∑k

i=0 φi(s)wi, ∀s ∈
S where w = (w1, w2, . . . , wk)

⊤ ∈ R
k is a parameter

vector and Φ = {φ1, . . . , φk} is the set of features from
S to R such that span(Φ) is a finite-dimensional subspace
of L2(S, µ). To simplify notation, let us define φ(s) =

(φ1(s), φ2(s), . . . , φk(s))
⊤. The approximation V̂ can then

be represented compactly as an Euclidean inner product

V̂ (s, w) = 〈φ(s), w〉 = φ⊤(s)w.
We now define a property of linear combination of features
that will be crucial in characterizing non-uniqueness.

Definition 2.1 (Flat Extrema). Let ϕ be any linear combina-
tion of the features Φ, i.e. ϕ ∈ span(Φ), such that ϕ 6≡ 0,
ϕmax := maxs∈S ϕ(s) and ϕmin := mins∈S ϕ(s). Let

Nα :=
{

s : ϕ(s) ≥ αϕmax

}

for α ∈ [0, 1]. Then we say

that ϕ has a flat maximum if µ[N1] :=
∫

N1

µ(s)ds > 0. Con-

versely, we say that ϕ has a non-flat maximum if µ[N1] = 0.

Similarly, we define N−
α :=

{

s : ϕ(s) ≤ αϕmin

}

and say

that ϕ has a flat minimum if µ[N−
1] > 0 and a non-flat mini-

mum if µ[N−
1] = 0.

Any linear combination of features that have flat extrema
achieve their maximum (and minimum) values in regions of
the state space with non-zero measure under the stationary
distribution µ. Conversely, linear combinations that have
non-flat extrema achieve their maximum (and minimum) val-
ues in regions of the state space with non-zero measure, cor-
responding to sub-regions of the state space that are never
visited. Figure 1 gives an idea of what functions with a flat or
non-flat maximum may look like.

f

g

S

R Figure 1: A sketch
of two functions show-
ing the flat/non-flat ex-
trema property. The
function f has a non-
flat maximum since it
achieves its maximum
at a point, whereas g
clearly has a flat max-
imum.

2.3 The TD(λ) Operator

Tsitsiklis and Van Roy define the TD(λ) operator T (λ) in
[TVR97] which we will adapt for our setting and derive a
more compact form of the Bellman equation. For λ ∈ [0, 1),
the TD(λ) operator T (λ) : L2(S, µ) → L2(S, µ) is given by

(T (λ)V)(s) :=(1 − λ)

∞
∑

m=0

λm

· E

m
∑

t=0

γtR(st) + γm+1V (st+1)

∣

∣

∣

∣

s0 = s

where V ∈ L2(S, µ) and s ∈ S. As Tsitsiklis and Van Roy
show, the TD(λ) operator can also be expressed as

T (λ)V = (1− λ)

∞
∑

m=0

λm

m
∑

t=0

(γPT)
tR+ (γPT)

m+1V

[TVR97, Lemma 3]. We express this operator in a more com-
pact form as

T (λ)V = R(λ) + γP
(λ)
T V , (1)

where

R(λ) := (1− λ)

∞
∑

m=0

λm
m
∑

t=0

(γPT)
tR ,

P
(λ)
T

:= (1− λ)

∞
∑

m=0

(λγ)m(PT)
m+1 .

The P
(λ)
T operator can be seen as being a geometric average

over the powers of PT . We define a λ-weighted discount fac-
tor G that corresponds to the discounting performed by the

P
(λ)
T operator:

G :=
(1− λ)γ

1− λγ
.

ClearlyG is bounded in [0, 1). It is also important to note that
for λ = 0 we recover the original discount factor of γ.

As we will see later, our class of natural algorithms con-
sists of methods that look to converge to the fixed point of a
projected Bellman equation

V̂ = ΠT (λ)V̂ (2)

where Π is a projection operator.

3 Projected Equation Methods

We now introduce the theory of projected equation methods
and present the characteristic equation of projected Bellman
equations. We note that Bertsekas similarly covers projected
Bellman equation methods [Ber11]. We find it useful to re-
iterate the concepts here as it pertains to a continuous state
space and our setup.

3.1 Oblique Projection Operators

We consider the set of possible projection operators that can
be applied to the Bellman equations to find an approximate
solution. The projection operators that can project in any
direction are collectively known as oblique projections. An
oblique projection operator Π : L2(S, µ) → L2(S, µ) can
be characterised as projecting onto im(Π), the image of Π,
and orthogonally to im(Π∗) where Π∗ is the adjoint operator
of Π. The purpose of looking at projection operators is to
find learnable, finite-dimensional representations of the value
function. Thus, we will focus on oblique projection operators
with finite-dimensional image. For bounded projection oper-
ators with finite-dimensional image, the image of the adjoint
has the same dimension.

Proposition 3.1 (Finite-Dimensional Projections). Let Π :
L2(S, µ) → L2(S, µ) be a bounded linear operator with
finite-dimensional image and let Π∗ be its adjoint. Then the
image of Π∗ has the same dimension as the image of Π.

Proposition 3.1 allows us to characterise the oblique projec-
tion operators in terms of two finite-dimensional subspaces.
We will generalise slightly beyond bounded projection opera-
tors by considering the case where the image of the adjoint is
still finite-dimensional but may not be of the same dimension
as the original projection operator. As we discuss in the next
sub-section, this will allow us to express the solution to pro-
jected Bellman equations as a system of linear equations. We
define the set of projection operators that we are interested in
as follows.

Definition 3.2 (Finite Rank Projection Operators). Let
Φ = {φ1, ..., φk} and Ψ = {ψ1, ..., ψn}. Let Π :
L2(S, µ) → L2(S, µ) be an oblique projection operator such
that im(Π) = span(Φ) and im(Π∗) = span(Ψ). Then Π can
be characterised by the two sets (Φ,Ψ).

When conducting our analysis, we always assume the follow-
ing.

Assumption 1. Let Ψ = {ψ1, . . . , ψn} be a basis for
im(Π∗). Also, assume that ‖ψ‖1,µ :=

∫

S
ψi(s)µ(s)ds = 1

for all i.

Note that Assumption 1 results in no loss of generality. Such
a basis always exists for finite-dimensional spaces. Fur-
thermore requiring ‖ψi‖1,µ = 1 is not restrictive. Since

ψi ∈ im(Π∗) and im(Π∗) ⊂ L2(S, µ), we must have that
‖ψi‖µ < ∞, implying that‖ψi‖1,µ is also bounded and can

be normalized. In the next sub-section we present the natural
algorithms and how the solution to projected Bellman equa-
tions is characterised.

3.2 Natural Algorithms and the Solution to
Projected Bellman Equations

We now look to determine the approximate value function

V̂ = φ⊤w ∈ span(Φ) found as the fixed point of a projected
Bellman equation. For this task, it is natural to consider a
finite rank projection operator Π characterised by (Φ,Ψ) to

find V̂ as the fixed point of V̂ = ΠT (λ)V̂ . Since the basis
functions are known, the only task left is to find an expression
for the parameter vector w. The following proposition states
that w is the solution to a system of linear equations.

Proposition 3.3 (Characteristic Equation for Projected Bell-
man Equations). Let Π be a finite rank projection operator
characterised by (Φ,Ψ). Suppose a unique solution exists

and let V̂ ∈ span(Φ), given by V̂ = φ⊤w, be the unique
fixed point of the projected Bellman equation

V̂ = ΠT (λ)V̂ .

Let A ∈ R
n×k, B ∈ R

n×k, and b ∈ R
n be defined by

Aij := 〈ψi, φj〉µ , Bij := 〈ψi, P
(λ)
T φj〉µ , bi := 〈ψi, R〉µ

respectively for i = 1, 2, . . . , n and j = 1, 2, . . . , k. Then the
parameter vectorw = (w1, . . . , wk)

⊤ is given as the solution
to the system of linear equations

(A− γB)w = b .

Proposition 3.3 suggests that any algorithm that converges to
the fixed point of a projected Bellman equation in the limit
has its solution characterised by the three matrix-vector quan-
tities A,B, and b. We denote this class of algorithms as nat-
ural algorithms.

Definition 3.4 (Natural Algorithms). Let Π be a finite rank
projection operator characterised by (Φ,Ψ). If an algorithm

converges to the fixed point V̂ = φ⊤w of a projected Bellman
equation

V̂ = ΠT (λ)V̂ ,

then the algorithm is a natural algorithm.

Some examples of natural algorithms are the TD(λ),
GTD(λ) and Residual Gradient algorithms. This can be
seen since both the TD(λ) andGTD(λ) algorithms converge
to the TD(λ) solution and the Residual Gradient algorithm
was shown explicitly to solve an obliquely projected Bellman
equation [TVR97; Mae11; Sch10].

4 A Counter-Example to Uniqueness

1 2

0

1

-1

1 2 3

0

0

1
-1

-1

Figure 2: A counter-example by Sutton and Barto. In the following
the MDPs are referred to as MDP 1 (the two state MDP) and MDP
2 (the three state MDP) respectively.

To motivate our results, we first present a counter-example
highlighting some of the non-uniqueness issues that natural
algorithms can face. Sutton and Barto provide a counter-
example that highlights where Bellman-error based methods
do not converge and experience non-uniqueness [SB18, Ex-
ample 11.4]. The counter-example considers the two Markov
decision processes depicted in Figure 2. The edges indicate
a state transition and the labels indicate the reward received.
When two edges leave a single state, we assume the transition
occur with equal probability. The transition matrices of MDP
1 and MDP 2 are then given by

T1 =

[

0 1
1
2

1
2

]

, T2 =

0 1
2

1
2

1 0 0
0 1

2
1
2

 .

The stationary distributions are given by µ1 = (13 ,
2
3)

⊤ and

µ2 = (13 ,
1
3 ,

1
3)

⊤ for MDP 1 and MDP 2 respectively. A sim-
ple linear function approximation mechanism is used with a
two component parameter vector w = (w1, w2)

⊤. In MDP

1, the value function can be represented exactly by V̂ (1) =

w1, V̂ (2) = w2. In MDP 2, we assume that states 2 and 3

share a parameter value, giving V̂ (1) = w1, V̂ (2) = V̂ (3) =
w2. To any RL algorithm using this feature construction, the
two MDPs appear indistinguishable as the feature-reward se-
quence generated under the stationary distribution occur with
the same probabilities. Furthermore the Bellman error, given

byEBE :=
∥

∥(I − γT)Φŵ −R
∥

∥

2

µ
, is not a unique function of

the data sample. For a parameter value ŵ = 0, the Bellman
error is 0 in MDP 1 whilst it is 2

3 in MDP 2. This suggests that
even though an algorithm minimizing the Bellman error may
converge, it may converge to the wrong parameter vector.

In light of this example, we explicitly define a stronger no-
tion of convergence to the correct solution. The next assump-
tion asserts that there is a true environment and that the value
function can be represented.

Assumption 2. Let R∗, T ∗ be the true environment and as-
sume that there exists a parameter vector w∗ such that the
value function V ∗ can be represented as V ∗(s) = φ⊤(s)w∗.

We now define convergence as follows.

Definition 4.1. (Convergence) An algorithm is said to con-
verge if it converges to w∗ or, equivalently, V ∗.

5 Main Results

We now present our main results and discuss their implica-
tions. Our main theorem directly characterises convergence
in terms of a property on the features.

Theorem 5.1 (Flatness Condition on Features). Natural al-
gorithms converge if and only if all non-zero linear combina-
tions of the features Φ have flat extrema.

It is important to note that Theorem 5.1 holds for all finite
rank projections onto span(Φ). The factor determining con-
vergence is the choice of features. Theorem 5.1 provides a
restrictive condition on the possible feature choices available
for natural algorithms with linear function approximation to
converge. Not only are the usual assumptions of linear in-
dependence in the features necessary; it is required that all
linear combinations of the features have flat extrema.

An immediate consequence of Theorem 5.1 is that state
aggregation methods are always safe feature construction
choices. If states are aggregated such that each subset has
non-zero measure under the stationary measure, all value
functions in the span of these features have flat extrema.
An example of this is a partitioning-based state aggregation
scheme, shown in Figure 3, that visibly has flat extrema. If
there exist aggregated states with measure zero, these states
would be unobserved under the stationary measure and would
not impact the representation. This result summarised in the
following corollary.

Corollary 5.2 (State Aggregation). State aggregation is a
safe feature construction choice for natural algorithms.

S1 S2 S3 S4 S5 S6 S7

R ϕ(s) = φ⊤(s)w
Figure 3: A state
aggregation scheme
which partitions the
state space into non-
zero measure sub-
sets. The function
ϕ clearly has flat ex-
trema.

Though state aggregation is a sufficient choice for natural
algorithms to avoid convergence issues, algorithms with other
feature constructions have been shown to converge [TVR96].
We present a condition in the next sub-section to help deter-
mine and construct convergent natural algorithms.

5.1 A Projection Perspective

Under Assumption 1, the inner product between ψi and any
function ϕ ∈ span(Φ) can be seen as the projection of ϕ onto
ψi. Our next result presents a condition on these projections
which can aid in determining convergent algorithms with fea-
ture constructions other than state aggregation.

Theorem 5.3 (Convergent Natural Algorithms). All natural
algorithms characterized by (Φ,Ψ) converge if and only if
there exists an i such that for all ϕ ∈ span(Φ)

〈ψi, ϕ〉µ ≥ Gϕmax or 〈ψi, ϕ〉µ ≤ Gϕmin.

Theorem 5.3 guarantees a natural algorithm’s convergence
if it can project the extremal regions of any approximate
value function. A simple case is when 〈ψi, ϕ〉µ = ϕmax or

〈ψi, ϕ〉µ = ϕmin. This occurs precisely when ϕ has flat ex-

trema and ψi projects ϕ on the sub-regions of the state space
where ϕ achieves its extremes. An example of this is shown
in Figure 4.

ϕ(s)

ψi(s)

S

R
Figure 4: An ex-
ample where ψi

is only non-zero
on the sub-region
of the state space
where ϕ achieves
its maximum value.
Thus the projection
achieves a value of
〈ψi, ϕ〉µ = ϕmax.

Example 1. We now provide an explicit example of how
Theorem 5.3 can help construct convergent natural algo-
rithms. Consider the piece-wise linear features displayed in
Figure 5. Any linear combination of these features also re-
sults in piece-wise linear functions that have flat maxima.
Then any natural algorithm which has the functions ψi pos-
itive on the regions of the state space where the features
achieve their flat maxima will satisfy Theorem 5.3. Effec-
tively, such an algorithm disregards any information about
the regions of the state space that are not in the flat maxima
of the features. Such an algorithm can be determined without
knowledge of the value function since it only depends on the
features, which are chosen apriori.

φ1

φ2

ψ1 ψ2

S

R
Figure 5: An
example displaying
piece-wise linear
features (φ1, φ2)
and the projec-
tion components
(ψ1, ψ2). Natural
algorithms of this
form are guaranteed
to converge.

Example 2. An example of a convergent natural algorithm
that projects on the states that achieve the maximum value is
the modified value iteration approach presented by Tsitsik-
lis and Van Roy [TVR96]. At the outset, K representative
states s1, . . . , sK ∈ S are chosen and their feature vectors
φ(s1), . . . , φ(sK) are constructed. The remaining states are
then chosen from within the convex hull of the feature vectors

of the representative states. In this manner, the feature con-
struction ensures that the maximum value of all approximate
value functions are centred on the representative states. The
modified value iteration then solves for the fixed point of

V̂ = ΦΦ†T (V̂) ,

where Φ† is the left inverse of Φ. In this construction,
the projection operator is given by ΦΦ†. Since the non-
representative states are composed from the representative
states, the algorithm proceeds by computing only on the rep-
resentative states. Thus, this method effectively takes a pro-
jection on the points of the state space that achieve the maxi-
mum value.

6 Framework of Analysis

In this section we establish the framework we use for
analysing convergence and non-uniqueness for natural al-
gorithms. We call our framework the Bellman template.
We specifically look to capture two phenomena of non-
uniqueness that were displayed in Sutton and Barto’s counter-
example: how natural algorithms may converge to the wrong
solution even when the value function is representable and
how different MDP environments with different optimal pa-
rameter vectors appear indistinguishable under projection.
We formally define the Bellman Template as follows.

Definition 6.1 (Bellman Template). Let Π be a finite rank
projection characterised by (Φ,Ψ). Let w ∈ R

k, R : S → R

such that ‖R‖∞ < ∞, and T : S × S → [0, 1] such that
∫

S
T (s′|s)ds′ = 1. The following constraints on (w,R, T)

are collectively defined as the Bellman template:

• (w,R, T) satisfy the Bellman equation

V̂ = R + γP
(λ)
T V̂ , (3)

where V̂ (s) = φ⊤(s)w.

• Let A ∈ R
n×k, B ∈ R

n×k and b ∈ R
n. R and T satisfy

〈ψi, φj〉µ = Aij , 〈ψi, P
(λ)
T φj〉µ = Bij , 〈ψi, R〉µ = bij

for i = 1, . . . , n and j = 1, . . . , k respectively and w
satisfies

(A− γB)w = b .

We say that a triple (w,R, T) is a solution to the Bellman
template if it satisfies these constraints.

A Bellman template solution represents an MDP environment
(through the expected reward function R and the transition
density function T) and its value function under the station-
ary policy (through the parameter vector w). The first con-
straint in the Bellman template restricts our attention to the
case where the value function is exactly representable by the
chosen features Φ. The second constraint provides a condi-
tion to capture when different solutions to the Bellman tem-
plate appear indistinguishable under projection. In particular,
we consider when different solutions (w,R, T) produce the
same quantities A,B, and b that characterize solutions. It
may seem strange that non-uniqueness could present an issue

since a solution to a projected Bellman equation is uniquely
determined by A,B and b. The crucial difference however is
that we now let the environment variables, R and T , vary.

We define the condition of ambiguity, which represents non-
uniqueness, as follows.

Definition 6.2 (Ambiguity). Ambiguity holds if the Bellman
template has more than one (w,R, T) solution that have dif-
ferent parameters w.

Under ambiguity, different MDP environments with different
optimal value functions appear the same to natural algorithms
under projection. Therefore, natural algorithms fail to con-
verge under ambiguity.

7 Theorem 5.1 Proof Idea

For brevity, we only present the key ideas behind the proof
of Theorem 5.1 here. The full proof however can be found in
Appendix B. We first present a supporting result that charac-
terises ambiguity.

Theorem 7.1. Let 0 6≡ ϕ ∈ span(Φ) and ϕmin := min
s∈S

ϕ(s)

and ϕmax := max
s∈S

ϕ(s). Ambiguity holds if and only if there

exists an f : S → [ϕmin, ϕmax] such that
∫

s∈S

χi(s)ϕ(s)ds = G

∫

s∈S

χi(s)f(s)ds . (4)

for all i = 1, . . . , n, where χi(s) = ψi(s)µ(s).

The idea behind the proof of Theorem 5.1 is to construct a
function f that satisfies Theorem 7.1. We show that such a
function f exists if and only if there exists a non-zero linear
combination of the features ϕ that has non-flat extrema. Then
by the equivalence given in Theorem 7.1, ambiguity holds
meaning natural algorithms will fail to converge. Taking the
contrapositive then gives Theorem 5.1.

To construct a suitable function, first consider the function
f̃ := 1

G
ϕ. Clearly f̃ satisfies (4). For ϕmax < 0, f̃ satisfies

the upper bound on the range as f̃(s) ≤ ϕmax for all s ∈ S.

Similarly, in the case where ϕmin > 0, f̃ satisfies the lower

bound on the range. However when ϕmax > 0, f̃ exceeds

the upper bound. Again in similar fashion, when ϕmin < 0, f̃
exceeds the lower bound. We now look to construct a function
from f̃ that does not exceed the bounds in these cases whilst
still satisfying (4). We will focus on the ϕmax > 0 case,
noting that ϕmin < 0 is treated the same way. We consider

capping f̃ at Gϕmax and spreading the ‘cut’ pinnacle across
the basis functions χi in a way that satisfies (4). Consider

f̄(s) :=
1

G
ϕ(s) − δ(s) ,

where δ(s) := max{0, 1
G
ϕ(s)−Gϕmax} is the cut pinnacle.

Now define f := f̄ + g, where g is some function. We look
to find g as the pinnacle δ projected onto the basis functions
χi in such a way that (4) is satisfied. It can be shown that (4)
is equivalent to

∫

S

χi(s)δ(s)ds =

∫

S

χi(s)g(s)ds

1
G
ϕmax

ϕmax

Gϕmax

f̃(s) = 1
G
ϕ(s)

f̄(s)

f(s)

f(s)δ(s)

g(s)

S

R

Figure 6: An impression of our construction of f in Theorem 5.1
that satisfies the upper bound. The function g can be viewed as
spreading out δ over the χi functions such that f does not exceed
the upper bound.

for all i = 1, . . . , n. Thus there are n constraints for g to
satisfy. To get a gauge on whether spreading δ in this fash-
ion may be possible, consider the following. The height of
the portion of 1

G
ϕ that exceeds ϕmax is of order O(1 − G).

Also, if ϕ has a non-flat maximum and G is sufficiently close
to 1, this portion has ‘mass’ o(1 − G) since µ [NG] goes to
0 as G goes to 1. As g spreads the mass of δ over χi in-
dependently from G, it is of order o(1 − G). Thus for G
sufficiently close to 1, g(s) < δ(s). Thus it seems plausible
that f = f̄ + g = 1

G
ϕ − δ + g would not surpass the up-

per bound of ϕmax. We employ an analogous construction to
find a function f− that satisfies the lower bound for the case
where ϕmin < 0. Finally, we are able to combine the dif-
ferent functions we construct to satisfy the range conditions
for each case in Theorem 7.1 and ultimately show our result.
Figure 6 provides a sketch of the construction we employ in
this proof.

8 Conclusion

We have established that natural algorithms are inherently
prone to fail without careful consideration of the choice of
features. In particular, natural algorithms converge if and
only if the features chosen only allow for linear combinations
with flat extrema. We also presented a condition from a pro-
jection perspective that can help determine the convergence
of natural algorithms as well. Given our results, we justify
that state aggregation features are sufficient for all natural
algorithms to converge. We also provide a condition under
which natural algorithms with other feature constructions can
converge if they project upon the extreme regions of the fea-
tures. In doing so, we show how a convergent natural algo-
rithm can be constructed from our result as well as arguing
for the convergence of the modified value iteration approach
presented in [TVR96].

It is important to note that our results begin where the as-
sumptions in previous convergence proofs do not hold. As an

example, TD(λ) is known to converge on-policy but counter-
examples exist for the off-policy case [TVR97]. In our anal-
ysis, the off-policy case is subsumed by the projection op-
erators we consider as we do not restrict them to be non-
expansions with respect to the ‖·‖µ-norm. Thus, our result

also implies the divergence of Q-learning.
We note that the natural algorithm class, while extensive,

does not cover all known RL algorithms with linear function
approximation. In particular the ETD algorithm, introduced
in [SMW16], does not fall within our natural algorithm class.
The ETD algorithm includes an extra interest function i that
alters the visiting probabilities of states, meaning we are no
longer working with the stationary distribution µ.

An important factor in determining whether our results will
hold in practice is the choice of discount factor. Throughout
our analysis, the discount factor plays an important role in
defining the extrema regions. As the discount factor moves
away from one and towards zero, it becomes less likely that
the non-flat extrema property will occur. Thus the discount
factor determines the degree to which feature choices that de-
viate from flat extrema allow natural algorithms to converge.
Also, our analysis centres on a strict notion of convergence
to the true value function. Investigating whether our analysis
can extend to characterise non-uniqueness when considering
approximate value functions is an interesting open question.

A Supporting Results

In this section we present the supporting results we use to
prove Theorem 5.1 and Theorem 5.3 as well as any omitted
proofs here.

The first lemma places ambiguity in relation to a non-trivial
null-space of the linear system of equations that characterize
solutions to projected Bellman equations. A non-trivial null-
space is exactly what governs non-uniqueness in a system of
linear equations; the only added difficulty is the difference
that varying environment variables R and T presents.

Lemma A.1. Ambiguity holds if and only if there exists 0 6≡
v ∈ R

k such that (A− γB) v = 0.

Proof. Under ambiguity, there exists another solution to the
Bellman template (w0, R0, T 0) such thatw0 6= w∗. From the
derivation of Proposition 3.3, we can show that both w = w0

and w = w∗ satisfy

(A− γB)w = b .

Then trivially, (A − γB)v = 0 holds since we can take
v = w∗ − w0. Now consider the reverse. Assume that
(A − γB)v = 0 holds for some v 6= 0. For ξ > 0, let us
define

wξ = w∗ + ξv, T ξ = T ∗, Rξ = φ⊤wξ − γP
(λ)

T ξ φ
⊤wξ .

Then (wξ , Rξ, T ξ) satisfies the generalised Bellman equation
since

T (λ)φ⊤(s)w = Rξ(s) + γP
(λ)

T ξ φ
⊤(s)wξ

= φ⊤(s)wξ ,

which is precisely the left-hand side of the generalised Bell-
man equation. Let Aξ ∈ R

n×k, Bξ ∈ R
n×k and b ∈ R

n be
given by

A
ξ
ij = 〈ψi, φj〉µ, B

ξ
ij = 〈ψi, P

(λ)

T ξ φj〉µ, b
ξ
i = 〈ψi, R〉µ ,

for i = 1, . . . , n and j = 1, . . . , k. We trivially have that
Aξ = A and we note thatBξ = B since T ξ = T ∗. By Propo-
sition 3.3, applying the projection Π characterised by (Φ,Ψ)
onto the generalised Bellman equation induces the following

(

Aξ − γBξ
)

wξ = bξ .

We then have the following derivation

bξ =
(

Aξ − γBξ
)

wξ

=
(

Aξ − γBξ
)

(w∗ + ξv)

(a)
=
(

Aξ − γBξ
)

w∗

= b .

where (a) follows since (A − γB)v = 0. Thus we have that
bξ = b as well. Thus, for any ξ > 0, (wξ , Rξ, T ξ) satisfies
the generalised Bellman equation as well and so ambiguity
holds.

The next corollary is effectively a restatement of Lemma A.1
that will be easier to work with later.

Corollary A.2. For all i = 1, . . . , n, let χi(s) := ψi(s)µ(s)
where µ is the stationary distribution. Then ambiguity holds
if and only if there exists T and 0 6≡ ϕ ∈ span(Φ) such that
for all i = 1, . . . , n,

∫

S

χi(s)
(

I − γP
(λ)
T

)

ϕ(s)ds = 0 .

Proof. From Theorem A.1, we have that ambiguity holds if
and only if there exists 0 6≡ v ∈ R

k such that

(A− γB) v = 0 .

Now for all i = 1, . . . , n and j = 1, . . . , k

Aij − γBij =

∫

S

ψi(s)µ(s)φj(s)− γψi(s)µ(s)P
(λ)
T φj(s)ds

=

∫

S

χi(s)
(

I − γP
(λ)
T

)

φj(s)ds

for some T . Now note that Ai· and Bi· are row vectors of A
and B for all i = 1, . . . , n. Then since (A− γB) v = 0, we
have for all i = 1, . . . , n the following derivation

0 = (Ai· − γBi·) v

=

k
∑

j=0

(

Aij − γBij

)

vj

(a)
=

k
∑

j=0

∫

S

χi(s)
(

I − γP
(λ)
T

)

φj(s)vjds

(b)
=

∫

S

χi(s)
(

I − γP
(λ)
T

)

k
∑

j=0

φj(s)vjds

=

∫

S

χi(s)
(

I − γP
(λ)
T

)

ϕ(s)ds .

Here in (a) we substituted in the derivation of Aij − γBij

from above and in (b) we used the Fubini-Tonelli theorem to
swap the sum and the integral. Since we’ve only looked at
equivalences, our if and only if result holds.

The next lemma presents a useful characterisation of non-
flat extrema as the λ-weighted discount factor approaches the
limit.

Lemma A.3. Let 0 6≡ ϕ ∈ span(Φ). Then ϕ has non-flat
maximum if and only if µ[NG] → 0 as G → 1. Similarly, ϕ

has non-flat minimum if and only if µ[N−
G] → 0 as G→ 1.

Proof. We will only prove that ϕ has non-flat maximum if
and only if µ[NG] → 0 as G → 1 noting that adapting the
proof for the non-flat minimum case is routine.

We first show the forward direction. Since ϕ has a non-flat
maximum, we have that µ[N1] = 0. Also µ[S] can be written
as

µ[S] = µ[S\NG +NG] = µ[S\NG] + µ[NG] .

Re-arranging and taking the limit as G goes to 1 gives

lim
G→1

µ[NG] = lim
G→1

(µ[S]− µ[S\NG]) = 0 .

Thus the forward direction holds. Now consider the reverse
direction. Suppose µ[NG] → 0 as G → 1. Then trivially
limG→1 µ[NG] = µ[N1] = 0. Thus the result holds.

The next result shows that P
(λ)
T is a non-expansion.

Proposition A.4. The operator P
(λ)
T is a non-expansion with

respect to‖·‖µ.

Proof. We first show thatPT is a non-expansion before show-
ing the result. To see that PT is a non-expansion note that

‖PTV ‖2µ = 〈PTV, PTV 〉µ

=

∫

S

µ(s)

(∫

S′

T (s′|s)V (s′)ds′
)2

ds

(a)

≤

∫

S

µ(s)

∫

S′

T (s′|s)V (s′)2ds′ds

(b)
=

∫

S′

∫

S

µ(s)T (s′|s)V (s′)2dsds′

(c)
=

∫

S′

µ(s′)V (s′)2ds′

=‖V ‖2µ .

Here (a) follows by Jensen’s inequality, (b) follows by the
Tonelli-Fubini theorem, and (d) follows since µ is the sta-
tionary distribution. Since the quadratic function is monoton-
ically increasing on R+, we have that‖PTV ‖µ ≤‖V ‖µ and

so PT is non-expansive.

Now to see that P
(λ)
T is non-expansive, we have the following

derivation:

∥

∥

∥P
(λ)
T V

∥

∥

∥

µ
=

∥

∥

∥

∥

∥

∥

(1− λ)
∞
∑

m=0

(γλ)mPm+1
T V

∥

∥

∥

∥

∥

∥

µ

(a)

≤

∥

∥

∥

∥

∥

∥

(1 − λ)

∞
∑

m=0

(γλ)mV

∥

∥

∥

∥

∥

∥

µ

=
1− λ

1− γλ
‖V ‖µ

(b)

≤ ‖V ‖µ .

Here (a) follows as PT is a non-expansion and (b) follows

since 1−λ
1−γλ

≤ 1 as λ ≥ γλ. Thus P
(λ)
T is a non-expansion.

B Omitted Proofs

Proposition 3.1 Proof

Proof. Let ly(x) = 〈Πx, y〉µ. Then by the Riesz representa-

tion theorem, there exists zy such that ly(x) = 〈x, zy〉µ and

by definition, Π∗y = zy . Now note that if y ∈ im(Π)⊥, then

y ∈ ker(Π∗) and so zy = 0. Now let z ∈ L2(S, µ). Since

L2(S, µ) can be decomposed into the direct sum of im(Π)

and im(Π)⊥, then there exists z1 ∈ im(Π) and z2 ∈ im(Π)⊥

such that z = z1 + z2. Applying Π∗ to z then gives

Π∗z = Π∗z1 .

Thus since z1 ∈ im(Π), which is finite-dimensional, the im-
age of Π∗ must also have the same dimensions.

Proposition 3.3 Proof

Proof. Since Π projects orthogonally to im(Π∗) and onto

im(Π), we have that T V̂ − ΠT V̂ ⊥µ im(Π∗). So for all

i = 1, . . . , n, 〈ψi, T V̂ − ΠT V̂ 〉µ = 0. Substituting V̂ for

ΠT V̂ , expanding and re-arranging gives

0 = 〈ψi, T V̂ − V̂ 〉µ

= 〈ψi,
(

R+ γP
(λ)
T φ⊤w

)

− φ⊤w〉µ

= 〈ψi, R〉µ −
k
∑

j=0

〈ψi,
(

φj − γP
(λ)
T φj

)

wj〉µ

= 〈ψi, R〉µ −
k
∑

j=0

〈ψi,
(

I − γP
(λ)
T

)

φjwj〉µ .

Re-arranging now gives

k
∑

j=0

〈ψi,
(

I − γP
(λ)
T

)

φjwj〉µ = 〈ψi, R〉µ .

Then given our definitions of A,B, and b, we have a linear
system of k equations given by (A− γB)w = b.

Theorem 7.1 Proof

Proof. By Corollary A.2, ambiguity holds if and only if there
exists aT and 0 6≡ ϕ ∈ span(Φ) such that for all i

∫

s∈S

χi(s)ϕ(s)ds = γ

∫

s∈S

χi(s)P
(λ)
T ϕ(s)ds . (5)

We define P̃
(λ)
T as

P̃
(λ)
T

:=
1− λγ

1− λ
P

(λ)
T .

The P̃
(λ)
T operator can be viewed as a re-normalised version

of P
(λ)
T . It can then be seen that P̃

(λ)
T ϕ(s) is bound between

ϕmin and ϕmax since

P̃
(λ)
T ϕmin =

1− λγ

1− λ
P

(λ)
T ϕmin = ϕmin ,

and

P̃
(λ)
T ϕmax =

1− λγ

1− λ
P

(λ)
T ϕmax = ϕmax .

Now (5) can be re-written as
∫

s∈S

χi(s)ϕ(s)ds = G

∫

s∈S

χi(s)P̃
(λ)
T ϕ(s) .

So in the forward direction, we can simply take f(s) =

P̃
(λ)
T ϕ(s). Now in the reverse direction, we note that any

function f : S → [ϕmin, ϕmax] can be represented as

P̃
(λ)
T ϕ(s) for some T . Thus the result holds.

Theorem 5.1 Proof

We look to construct a function f that satisfies Theorem 7.1
as well as

∫

s∈S

χi(s)ϕ(s)ds = G

∫

s∈S

χi(s)f(s)ds (6)

for i = 1, . . . , n. We show that such a function f exists in
each case if and only if there exists 0 6≡ ϕ ∈ span(Φ) that has
non-flat extrema. Then by the equivalence given in Theorem
7.1, ambiguity holds. Taking the contrapositive then gives
Theorem 5.1. We first look to find a function f that satisfies
(6) and the upper bound on the range.

Consider f̃(s) = 1
G
ϕ(s). For ϕmax < 0, f̃ clearly satisfies

(6) and the upper bound on the range; but for ϕmax > 0,

f̃ exceeds the upper bound. Instead, we look to construct a

function from f̃ whereby we ‘cut’ off the portion that exceeds
the upper bound and project it across the functions χi for i =
1, . . . , n to satisfy the upper bound whilst still satisfying (6).
Consider

f̄(s) :=
1

G
ϕ(s) − δ(s) ,

where δ(s) := max{0, 1
G
ϕ(s) − Gϕmax} is the cut pinna-

cle. By construction, f̄ satisfies the upper bound. Now let us
define

f(s) := f̄(s) + g(s) .

We look to find g such that f satisfies (6) and the upper bound.
The following derivation derives a linear system of equations
that constrain the function g such that f satisfies (6). Starting
from (6), we have
∫

S

χi(s)ϕ(s)ds = G

∫

S

χi(s)f(s)ds

(a)
= γ

∫

S

χi(s)

(

1

G
ϕ(s)− δ(s) + g(s)

)

ds .

Here (a) follows by the definition of f and f̄ . Cancelling out
∫

S
χi(s)ϕ(s)ds and G from both sides of the equation gives

∫

S

χi(s)δ(s)ds =

∫

S

χi(s)g(s)ds . (7)

We now note that the functions χ1, . . . , χn forms a linearly
independent set. To see this, suppose that for all s ∈ S

b1χ1(s) + b2χ2(s) + . . .+ bnχn(s) = 0

and b1, . . . bn are not all equal to 0. Then since χi(s) =
µ(s)ψi(s), and µ(s) > 0, we must have

b1ψ1(s) + b2ψ2(s) . . .+ bnψn(s) = 0 .

This is a contradiction since the set of functions Ψ =
{ψ1, . . . , ψn} is a linearly independent set. Thus, let g be
given by

g(s) =
n
∑

j=1

χj(s)aj , ∀s ∈ S

where ai ∈ R for all i. Then from (7) we have

∫

S

χi(s)δ(s)ds =

∫

S

χi(s)

n
∑

j=1

χj(s)ajds

(a)
=

n
∑

j=1

aj

∫

S

χi(s)χj(s)ds

where in (a) we swapped the summation and the integrand by
the Fubini-Tonelli theorem. Now as a notational shorthand,
let 〈f, g〉 :=

∫

S
f(s)g(s)ds. Then we have

n
∑

j=1

aj

∫

S

χi(s)χj(s)ds =

n
∑

j=1

aj〈χi, χj〉 .

Let X ∈ R
n×n and δ̄ ∈ R

n be defined by

Xij = 〈χi, χj〉 , i, j = 1, . . . , n

δ̄i = 〈χi, δ〉 , i = 1, . . . , n

respectively. Together a, X and δ̄ form a system of linear
equations given by

Xa = δ̄

Note that since χ1, . . . , χn is a set of linearly independent
functions, X is full rank and thus invertible. We can express
a as

a = X−1δ̄ .

Let χ(s) =
(

χ1(s), . . . , χn(s)
)

. We can now express g as

g(s) = χ(s)X−1δ̄ , ∀s ∈ S .

We now explicitly define three infinity norms we will use to
bound g. For a function f(s) = (f1(s), . . . , fn(s)), vector
u ∈ R

n, and matrix A ∈ R
n×n, the norms are given by

‖f‖∞ := max
1≤i≤n

sup
s∈S

∣

∣fi(s)
∣

∣ ,

‖u‖∞ := max
1≤i≤n

|ui| ,

‖A‖∞ := sup
y 6=0

‖Ay‖∞
‖y‖∞

= max
j

n
∑

i=1

∣

∣Aij

∣

∣ .

Under these norm definitions, we see that
∥

∥X−1
∥

∥

∞
< ∞

since X is invertible. The function χ has its infinity norm
given by‖χ‖∞ = max1≤i≤n sups∈S

∣

∣χi(s)
∣

∣. To see that this

is finitely bounded, recall that for any i,
∫

S
χi(s)ds = 1. We

can then split the χi into two functions χ+
i and χ−

i where χ+
i

is the same value as χi when it is positive and χ−
i is the same

value as χi when it is negative. Then since
∫

S

χi(s)ds =

∫

S

χ+
i (s)−

∫

S

χ−
i (s)ds = 1 ,

it must be the case that both individual integrals are finite.
Thus

∣

∣χi(s)
∣

∣ < ∞ for all i and s. We now look to derive a

bound for δ̄. Consider the set NG2 given by

NG2 :=
{

s ∈ S : ϕ(s) ≥ G2ϕmax

}

.

Note that δ(s) > 0 if and only if s ∈ NG2 . Let 1N
G2

be the
characteristic function for NG2 . Then for all i = 1, . . . , n,
we have the following derivation
∫

S

χi(s)δ(s)ds
(a)
=

∫

S

ψi(s)δ(s)µ(s)ds

(b)

≤

(

1

G
ϕmax −Gϕmax

)∫

S

1N
G2

(s)ψi(s)µ(s)ds

(c)
=

(

1

G
ϕmax −Gϕmax

)

ψi(smax)

∫

N
G2

µ(s)ds

(d)
=

(

1

G
ϕmax −Gϕmax

)

ψi(smax)µ [NG2] .

Here (a) follows by definition of χi and (b) follows by defi-
nition of δ. In (c), we let smax denote the value of s ∈ S that
ψi achieves a maximum. Finally, (d) follows by definition of
µ [NG2]. Thus, δ̄ can be bounded by

∥

∥δ̄
∥

∥

∞
= max

1≤i≤n

∣

∣δ̄
∣

∣ ≤ ϕmax

(

1

G
−G

)

ψi(smax)µ [NG2] .

Combining the bounded quantities, we have that g is bounded
by

‖g‖∞ ≤‖χ‖∞

∥

∥

∥X−1
∥

∥

∥

∞
ϕmax

(

1

G
−G

)

ψi(smax)µ [NG2]

≤ C · ϕmax

(

1

G
−G

)

µ [NG2]

where to simplify notation we let C be the constant defined
as C = ‖χ‖∞

∥

∥X−1
∥

∥

∞
ψi(smax). Note that by definition, f̄

is bounded byGϕmax. As a result, we can now bound f from
above by

f(s) = f̄(s) + g(s)

≤ Gϕmax +‖g‖∞

≤ ϕmax

(

G+ C

(

1

G
−G

)

µ [NG2]

)

.

Now ϕmax

(

G+ C
(

1
G
−G

)

µ [NG2]
)

≤ ϕmax if and only

if

G+ C

(

1

G
−G

)

µ [NG2] ≤ 1 . (8)

This preceding inequality holds if and only if

µ [NG2] ≤
1−G

C
(

1
G
−G

) ,

which is equivalent to

µ [NG2] ≤
G

C (1 +G)
.

Since ϕ has a non-flat maximum, by Lemma A.3 we have that
as G→ 1

µ [NG2] → 0 ,

whilst we have as G→ 1,

G

C (1 +G)
→

1

2C
.

Thus, µ [NG2] ≤ G
C(1+G) if ϕ has non-flat maximum. Thus

f(s) ≤ ϕmax for all s ∈ S and f satisfies the upper bound.
By an analogous argument to the above, we can also find a

construction to satisfy the lower bound in the different cases
and (6). For ϕmin > 0, f = 1

G
ϕ(s) satisfies (6) and the lower

bound. For ϕmin < 0, we can find a function f− that satisfies
(6) and has range greater than the lower bound given ϕ has
non-flat minimum. We define f− by

f−(s) = f̃(s)− g−(s) , ∀s ∈ S

where g− is some function chosen such that f− satisfies (6).

The function f̃(s) is given by

f̃(s) =
1

G
ϕ(s) + δ−(s) ,

where δ−(s) is given by

δ−(s) = max{0, Gϕmin −
1

G
ϕ(s)} .

By construction, f̃ satisfies the lower bound. We now look to
derive a system of linear equations to constrain g− such that
(6) is satisfied. Starting from (6) we have
∫

S

χi(s)ϕ(s)ds = G

∫

S

χi(s)f
−(s)ds

= G

∫

S

χi(s)

(

1

G
ϕ(s) + δ−(s)− g−(s)

)

ds .

Cancelling out from both sides
∫

S
χi(s)ϕ(s) ds and re-

arranging gives
∫

S

χi(s)δ
−(s)ds =

∫

S

χi(s)g
−(s)ds .

We let g− be given by

g−(s) =

n
∑

j=1

χj(s)aj .

Let δ̄− ∈ R
n be given by

δ̄− = 〈χi, δ
−〉 , i = 1, . . . , n .

Then g− is given by

g−(s) = χ(s)X−1δ− .

We now look to bound δ̄−. Let N−
G2

:= {s ∈ S : ϕ(s) ≤
G2ϕmin}. For all i = 1, . . . , n we have the following deriva-
tion
∫

S

χi(s)δ
−(s)ds =

∫

S

ψi(s)δ
−(s)µ(s)ds

(a)

≤ ϕmin

(

G−
1

G

)∫

N−

G2

ψi(s)µ(s)ds

(b)

≤ ϕmin

(

G−
1

G

)

ψi(smin)

∫

N−

G2

µ(s)ds

(c)
= ϕmin

(

G−
1

G

)

ψi(smin)µ
[

N−
G2

]

.

In (a), we used the fact that δ−(s) is only greater than 0 for

s ∈ N−
G2 and that it is upper bounded by ϕmin

(

G− 1
G

)

. In
(b) we define smin as the value of s ∈ S where ψi achieves

a minimum. Finally, (c) follows by definition of µ
[

N−
G2

]

.

Having bound
∫

S
χi(s)δ

−(s)ds for all i, we have that δ̄− is
bound in the infinity norm

δ̄− ≤ ϕmin

(

G−
1

G

)

ψi(smin)µ
[

N−
G2

]

.

Thus, g−(s) is bounded in the infinity norm by

∥

∥g−
∥

∥

∞
≤‖χ‖∞

∥

∥

∥X−1
∥

∥

∥

∞

∥

∥δ−
∥

∥

∞

= Dϕmin

(

G−
1

G

)

µ
[

N−
G2

]

where to simplify notation we define the constant D :=

‖χ‖∞
∥

∥X−1
∥

∥

∞
ψi(smin). Given that f̃(s) is bound below by

Gϕmin, we have that f−(s) is bounded as follows.

f−(s) = f̃−(s)− g−(s)

≥ Gϕmin −Dϕmin

(

G−
1

G

)

µ
[

N−
G2

]

.

NowGϕmin−Dϕmin

(

G− 1
G

)

µ
[

N−
G2

]

≥ ϕmin if and only

if

G+D

(

1

G
+G

)

µ
[

N−
G2

]

≤ 1 .

since ϕmin < 0. Re-arranging shows that this inequality
holds if and only if

µ
[

N−
G2

]

≤
1−G

D
(

1
G
−G

)

=
G

D (1 +G)
.

Since ϕ has non-flat minimum, we have that µ
[

N−
G2

]

→ 0 as

G→ 1 whereas G
D(1+G) →

1
2D . Thus, the inequality holds if

ϕ has non-flat minimum.
Note that −δ(s) + g(s) is only non-zero on NG2 and

δ−(s) − g−(s) is only non-zero on N−
G2 and the two sets

do not intersect. Thus, combining the functions f and f− we
have

f(s) :=
1

γ
ϕ(s) − δ(s) + g(s) + δ−(s)− g−(s)

that satisfies the range and (4) if ϕ has non-flat extrema. Thus,
ambiguity holds if and only if there exists a 0 6≡ ϕ ∈ span(Φ)
with non-flat extrema. Taking the contrapositive proves The-
orem 5.1.

Theorem 5.3 Proof

By Corollary A.2, we have that ambiguity holds if and only
if there exists a T and 0 6≡ ϕ ∈ span(Φ) such that for

i = 1, . . . , n,
∫

S
χi(s)ϕ(s)ds = γ

∫

S
χi(s)P

(λ)
T ϕ(s)ds. By

expanding P
(λ)
T we get

P
(λ)
T ϕ = (1− λ)

∞
∑

m=0

(γλ)mPm+1
T ϕ .

The function ϕ is bounded between ϕmin and ϕmax. Further-
more, we have that PTϕmax = ϕmax and PTϕmin = ϕmin.
Thus for any k > 0 the following holds:

ϕmin ≤ P k
Tϕ ≤ ϕmax . (9)

Furthermore, we note that

(1− λ)

∞
∑

m=0

(λγ)mϕmin =
(1− λ)

1 − γλ
ϕmin ,

(1 − λ)
∞
∑

m=0

(λγ)mϕmax =
(1 − λ)

1 − γλ
ϕmax

by the geometric series. Then using the inequality in 9, P
(λ)
T

is bounded by:

(1− λ)

1− γλ
ϕmin ≤ P

(λ)
T ϕ ≤

(1 − λ)

1 − γλ
ϕmax .

Now note that
∫

S

χi(s)ϕmin(s)ds = ϕmin

∫

S

ψi(s)µ(s)ds

= ϕmin

where the last equality holds due to Assumption 1. Similarly,
∫

S
χi(s)ϕmax(s)ds = ϕmax. Thus the following holds:

Gϕmin ≤ γ

∫

S

χi(s)P
(λ)
T ϕ(s)ds ≤ Gϕmax .

Now we note that,

γ

∫

S

χi(s)P
(λ)
T ϕ(s)ds

(a)
=

∫

S

χi(s)ϕ(s)ds

(b)
=

∫

S

ψi(s)ϕ(s)µ(s)ds

= 〈ψi, ϕ〉µ .

Here (a) follows by Corollary A.2 and (b) follows by defi-
nition of χi. Substituting in 〈ψi, ϕ〉µ give us that ambiguity

holds if and only if there exists 0 6≡ ϕ ∈ span(Φ) such that
for all i,

Gϕmin ≤ 〈ψi, ϕ〉µ ≤ Gϕmax .

Taking the contrapositive of this statement gives the desired
result.

C List of Notation

In the following, let H and W be two vector spaces and
A : H → W a linear transformation.

Notation

RL Reinforcement Learning.

MDP Markov Decision Process.

TD Temporal difference.

S The state space.

γ The discount factor, i.e. γ ∈ [0, 1).

G The λ-weighted discount factor

given by G := (1−λ)γ
1−λγ

.

G→ 1 G approaches a value of 1.

µ The stationary distribution.

T The Bellman operator.

Φ The set of chosen features: Φ :=
{φ1, φ2, . . . , φk}, k ∈ N.

φ(s) A feature vector for a given state s ∈
S: φ(s) = (φ1(s), . . . , φk(s))

⊤.

ϕmin ϕmin := mins∈S ϕ(s).

ϕmax ϕmax := maxs∈S ϕ(s).

T The transition density function.

PT An operator such that for a func-
tion f : S → R, (PT f)(s) :=
∫

S
T (s′|s)f(s′)ds′.

P
(λ)
T An operator defined as P

(λ)
T

:= (1−
λ)γ

∑∞
m=0(λγ)

m(PT)
m+1.

〈f, g〉µ An inner product defined as

〈f, g〉µ :=
∫

S
f(s)g(s)µ(s)ds.

‖f‖µ The norm defined by the inner prod-

uct 〈f, g〉µ, i.e.‖f‖µ :=
√

〈f, f〉µ.

‖f‖1,µ ‖f‖1,µ :=
∫

S
f(s)µ(s)ds.

R The set of real numbers.

im(A) The image of A, that is the set
im(A) := {Ax : x ∈ H}.

ker(A) The kernel of A, that is the set
ker(A) := {x ∈ H : Ax = 0}.

span(B) The span of B.

dim(H) The dimension of H.

x ⊥ y x is perpendicular to y.

x ⊥µ y Given an inner product 〈·, ·〉µ, this

notation denotes that x is perpendic-
ular to y with respect to 〈·, ·〉µ.

µ [R] µ [R] :=
∫

R
µ(s)ds.

1B(s) The characteristic function for the set
B.

1(s′ = s) The indicator function.

References

[Bai95] L Baird. Residual Algorithms: Reinforcement
Learning with Function Approximation. Pro-
ceedings of the Twelfth International Conference
on Machine Learning, pages 30–37, 1995.

[Ber95] D. P. Bertsekas. A Counterexample to Tempo-
ral Difference Learning. Neural Computation,
7:270–279, 1995.

[Ber11] D. P. Bertsekas. Dynamic Programming and
Optimal Control 3rd Edition, Volume II. Mas-
sachusetts Institute of Technology, 2011.

[BM95] Justin A. Boyan and Andrew W. Moore. Gener-
alization in Reinforcement Learning: Safely Ap-
proximating the Value Function. pages 369–376,
1995.

[Gor95] G. J. Gordon. Stable Function Approxima-
tion in Dynamic Programming. Proceedings of
the Twelfth International Conference on Machine
Learning, pages 261–268, 1995.

[Mae11] H. R. Maei. Gradient Temporal-Difference
Learning Algorithms. PhD thesis, University of
Alberta, 2011.

[SB18] R. S. Sutton and A. G. Barto. Reinforcement
Learning: An Introduction. The MIT Press,
2018.

[Sch10] B. Scherrer. Should one compute the Tempo-
ral Difference fix point or minimize the Bellman
Residual? The unified oblique projection view.
2010. arXiv:1011.4362.

[SMP+09] R. S. Sutton, H. R. Maei, D. Precup, S. Bhatna-
gar, D. Silver, C. Szepesvári, and E. Wiewiora.
Fast Gradient Descent Methods for Temporal-
Difference Learning With Linear Function Ap-
proximation. Proceedings of the 26th Annual
International Conference on Machine Learning,
pages 993–1000, 2009.

[SMW16] R. S. Sutton, A. R. Mahmood, and M. White. An
Emphatic Approach to the Problem of Off-policy
Temporal-Difference Learning. Journal of Ma-
chine Learning Research, 17:1–29, 2016.

[TVR96] J. Tsitsiklis and B. Van Roy. Feature-Based
Methods for Large Scale Dynamic Programming.
Machine Learning, 22:59–94, 1996.

[TVR97] J. Tsitsiklis and B. Van Roy. An Analysis
of Temporal-Difference Learning with Function
Approximation. IEEE Transactions on Auto-
matic Control, 42(5):674–690, 1997.

[Yu15] Huizhen Yu. On Convergence of Emphatic
Temporal-Difference Learning. JMLR: Work-
shop and Conference Proceedings, 40:1–28,
2015.

	1 Introduction
	2 Background and Notation
	2.1 RL in Continuous State Space
	2.2 Linear Function Approximation
	2.3 The TD() Operator

	3 Projected Equation Methods
	3.1 Oblique Projection Operators
	3.2 Natural Algorithms and the Solution to Projected Bellman Equations

	4 A Counter-Example to Uniqueness
	5 Main Results
	5.1 A Projection Perspective

	6 Framework of Analysis
	7 Theorem ?? Proof Idea
	8 Conclusion
	A Supporting Results
	B Omitted Proofs
	C List of Notation

