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Figure 2. Output of a four layer network with random half-space contexts after training to convergence. Each box represents a non-bias
neuron in the network, the function to fit is shown in black, and the output distribution learnt by each neuron is shown in colour (for

example, red for the first layer and purple for the top-most neuron). All axes are identical, as labeled in the bottom left neuron. The dashed R 1 l 5 C h 1 F i
coloured lines represent the sampled hyperplane for each neuron. eSl lence tO ataStrOp lC Orgettlng

Inputs close in terms of cosine similarity will map to similar products of weight matrices!
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Algorithm 1 GLN(O, =, p, . 77, update). o I
® Perform a forward pass and optionally update weights. ltl O n a e S Ou C e S
Algorithm 1 G-GLN: inference with optional update
Aleorithm and Code T ————
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