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Abstract
1 Uncertain knowledge can be modeled by using
graded probabilities rather than binary truth-values,
but so far a completely satisfactory integration of
logic and probability has been lacking. In particular
the inability of confirming universal hypotheses has
plagued most if not all systems so far. We address
this problem head on. The main technical prob-
lem to be discussed is the following: Given a set of
sentences, each having some probability of being
true, what probability should be ascribed to other
(query) sentences? A natural wish-list, among oth-
ers, is that the probability distribution (i) is consis-
tent with the knowledge base, (ii) allows for a con-
sistent inference procedure and in particular (iii) re-
duces to deductive logic in the limit of probabilities
being 0 and 1, (iv) allows (Bayesian) inductive rea-
soning and (v) learning in the limit and in partic-
ular (vi) allows confirmation of universally quanti-
fied hypotheses/sentences. We show that probabil-
ities satisfying (i)-(vi) exist, and present necessary
and sufficient conditions (Gaifman and Cournot).
The theory is a step towards a globally consistent
and empirically satisfactory unification of probabil-
ity and logic.

Keywords

expressive languages; probability on sentences; Gaif-
man; Cournot; Bayes; induction; confirmation; learning;
prior; knowledge; entropy.

“The study of probability functions defined over the
sentences of a rich enough formal language yields
interesting insights in more than one direction.”

— Haim Gaifman (1982)

1Hutter et al. [2013] contains all technical details and proofs and
more discussion.

1 Introduction
Motivation. Sophisticated computer applications gener-
ally require expressive languages for knowledge represen-
tation and reasoning. In particular, such languages need to
be able to represent both structured knowledge and uncer-
tainty [Nilsson, 1986; Halpern, 2003; Muggleton, 1996; De
Raedt and Kersting, 2003; Richardson and Domingos, 2006;
Hájek, 2001; Williamson, 2002].

A key goal of this research is that of integrating logic and
probability, a problem that has a history going back around
300 years and for which at least three main threads can be dis-
cerned: The oldest by far is the philosophical/mathematical
thread that can be traced via Boole in 1854 back to Ja-
cob Bernoulli in 1713. An extensive historical account
of this thread can be found in [Hailperin, 1996]; the idea
of putting probabilities on sentences goes back to before
[Łos, 1955] which contains references to even earlier ma-
terial; the important Gaifman condition appeared in [Gaif-
man, 1964] and was further developed in [Gaifman and Snir,
1982]; in [Scott and Krauss, 1966] the theory is developed
for infinitary logic; overviews of more recent work from
a philosophical perspective can be found in [Hájek, 2001;
Williamson, 2002; 2008b]. The second thread is that of the
knowledge representation and reasoning community in arti-
ficial intelligence, of which [Nilsson, 1986; Halpern, 1990;
Fagin and Halpern, 1994; Halpern, 2003; Shirazi and Amir,
2007] are typical works. The third thread is that of the
machine learning community in artificial intelligence, of
which [Muggleton, 1996; De Raedt and Kersting, 2003;
Richardson and Domingos, 2006; Milch and Russell, 2007;
de Salvo Braz, 2007; Kersting and De Raedt, 2007; Pfeffer,
2007; Goodman et al., 2008] are typical works. We admit that
this categorization is rather terse, coarse, and incomplete.

An important and useful technical distinction that can be
made between these various approaches is that the combina-
tion of logic and probability can be done externally or inter-
nally [Williamson, 2008b]: in the external view, probabilities
are attached to sentences in some logic; in the internal view,
sentences incorporate statements about probability. One can
even mix the two cases so that probabilities appear both in-
ternally and externally [Halpern, 1990]. This paper takes the
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external view, leaving the combination with the internal view
for future work.
Main aim. These considerations lead to the main technical
issue studied in this paper:

Given a set of sentences, each having some proba-
bility of being true, what probability should be as-
cribed to other (query) sentences?

We build on the work of Gaifman [1964] whose paper with
Snir [1982] develops a quite comprehensive theory of proba-
bilities on sentences in first-order Peano arithmetic. We take
up these ideas, using non-dogmatic priors [Gaifman and Snir,
1982] and additionally the minimum relative entropy princi-
ple as in [Williamson, 2008a], but for general theories and in
a higher-order setting. We concentrate on developing prob-
abilities on sentences in a higher-order logic. This sets the
stage for combining it with the probabilities inside sentences
approach [Ng and Lloyd, 2009; Ng et al., 2008].
Summary of key concepts. Section 3 gives the definition
of probabilities on sentences (Definition 1) and shows their
close connection with probabilities on interpretations. Gaif-
man [1964] (generalized in Definition 6) introduced a condi-
tion, called Gaifman in [Scott and Krauss, 1966], that con-
nects probabilities of quantified sentences to limits of prob-
abilities of finite conjunctions. In our case, it effectively re-
stricts probabilities to separating interpretations while main-
taining countable additivity.

While generally accepted in probability theory (Defini-
tion 2), some circles argue that countable additivity (CA)
does not have a good philosophical justification, and/or that
it is not needed since real experience is always finite, hence
only non-asymptotic statements are of practical relevance, for
which CA is not needed. On the other hand, it is usually
much easier to first obtain asymptotic statements which re-
quires CA, and then improve upon them. Furthermore we
will show that CA can guide us in the right direction to find
good finitary prior probabilities.

Another principle which has received much less attention
than CA but is equally if not more important is that of Cournot
[Cournot, 1843; Shafer, 19 May 2006]: An event of probabil-
ity (close to) zero singled out in advance is physically impos-
sible; or conversely, an event of probability 1 will physically
happen for sure. In short: zero probability means impossi-
bility. The history of the semantics of probability is stony
[Fine, 1973]. Cournot’s “forgotten” principle is one way of
giving meaning to probabilistic statements like, “the relative
frequency of heads of a fair coin converges to 1/2 with prob-
ability 1”. The contraposition of Cournot is that one must as-
sign non-zero probability to possible events. If “events” are
described by sentences and “possible” means it is possible to
satisfy these sentences, i.e. they possess a model, then we ar-
rive at the strong Cournot principle that satisfiable sentences
should be assigned non-zero probability. This condition has
been appropriately called ‘non-dogmatic’ in [Gaifman and
Snir, 1982]. As long as something is not proven false, there
is a (small) chance it is true in the intended interpretation.
This non-dogmatism is crucial in Bayesian inductive reason-
ing, since no evidence (however strong) can increase a zero

prior belief to a non-zero posterior belief [Rathmanner and
Hutter, 2011]. The Gaifman condition is inconsistent with the
strong Cournot principle, but consistent with a weaker ver-
sion (Definition 8). Probabilities that are Gaifman and (plain,
not strong) Cournot allow learning in the limit (Theorem 9
and Corollary 11).

A standard way to construct (general / Cournot / Gaif-
man) probabilities on sentences is to construct (general / non-
dogmatic / separating) probabilities on interpretations, and
then transfer them to sentences (Proposition 4). At the same
time we give model-theoretic characterizations of the Gaif-
man condition (Theorem 7). We also give a particularly sim-
ple construction of a probability that is Cournot and Gaif-
man (Theorem 10) and a complete characterization of gen-
eral/Cournot/Gaifman probabilities in [Hutter et al., 2013].

At the end of Section 3 we briefly and in [Hutter et al.,
2013] we fully consider the important practical situation of
whether and how a real-valued function on a set of sentences
can be extended to a probability on all sentences; a method
for determining such probabilities is given. Prior knowledge
and data constrain our (belief) probabilities in various ways,
which we need to take into account when constructing prob-
abilities. Prior knowledge is usually given in the form of
probabilities on sentences like “the coin has head probabil-
ity 1/2”, or facts like “all electrons have the same charge”,
or non-logical axioms like “there are infinitely many natural
numbers”. They correspond to requiring their probability to
be 1/2, extremely close to 1, and 1, respectively. It is therefore
necessary to be able to go from probabilities on sentences to
probability on interpretations (Proposition 3). Seldom does
knowledge constrain the probability on all sentences to be
uniquely determined. In this case it is natural to choose a
probability that is least dogmatic or biased [Nilsson, 1986;
Williamson, 2008a]. The minimum relative entropy principle
can be used to construct such a unique minimally more in-
formative probability that is consistent with our prior knowl-
edge.

Section 4 outlines how the developed theory might be used
and approximated in autonomous reasoning agents. In partic-
ular, certain knowledge, learning in the limit (Corollary 11)
and the infamous black raven paradox are discussed. Sec-
tion 5 contains a brief summary and future research direc-
tions.

We start with some preliminaries in the following Sec-
tion 2.

2 Preliminaries
This section sets the stage for the subsequent theoretical de-
velopment and applications. We introduce the black raven
hypothesis, used as a running example to illustrate and moti-
vate the theory. Then we state a natural wish-list for the prior
probability distribution, and the technical requirements they
translate into. This also allows us to describe the intuition
behind our main results, before delving into technicalities in
Section 3. Finally the used logic is outlined.

Induction example: black ravens. As discussed, the main
goal of this paper is to unify probability and logic for learn-
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ing. We illustrate and motivate the theory developed in this
section by a running example, namely the confirmation of
universal hypotheses. The black raven hypothesis is an in-
famous instantiation [Earman, 1993; Maher, 2004]. It is tech-
nically very simple, while still most reasoning systems fail on
it.

Consider a sequence of ravens identified by positive in-
tegers. Let B(i) denote the fact that raven i is black.
i = 1, 2, 3, .... We see a lengthening sequence of black
ravens. Consider the hypothesis “all ravens are black”, that is
∀x.B(x). Intuitively, observing more and more black ravens
with no counter-examples increases our confidence in the hy-
pothesis. So a plausible requirement on any inductive reason-
ing system is that Probability(∀x.B(x) |B(1) ∧ ... ∧ B(n))
tends to 1 for n→ ∞.

Real-world problems are much more complex, but most
reasoning systems fail already on this apparently simple ex-
ample. For instance, Bayes/Laplace rule and Carnap’s con-
firmation theory fail, but Solomonoff induction works [Rath-
manner and Hutter, 2011]. A more complex example is given
in Section 4. Finally note that the (full) black raven paradox
is more complicated and will not be discussed here.

Wish-list. Expressive logic languages are ideally suited for
representing and reasoning about structured knowledge. Un-
certain knowledge can be modeled by assigning graded prob-
abilities rather than binary truth-values to sentences. Together
this suggests to put probabilities on sentences. As stated in
the introduction, the main technical problem considered is:
Given a set of sentences, each having some probability of be-
ing true, what probability should be ascribed to other (query)
sentences? This sets the stage for combining it with the
probabilities inside sentences approach [Ng and Lloyd, 2009;
Ng et al., 2008].

A natural wish List (among others) is that the probability
distribution should:

(i) be consistent with the knowledge base,
(ii) allow for a consistent inference procedure and in partic-

ular
(iii) reduce to deductive logic in the limit of probabilities be-

ing 0 and 1,
(iv) allow (Bayesian) inductive reasoning and
(v) learning in the limit and in particular

(vi) allow to confirm universally quantified hypothe-
ses=sentences.

Technical requirements. We will see that this wish-list
translates into the following technical requirements for a prior
probability: It needs to be
(P) consistent with the standard axioms of Probability,

(CA) including Countable Additivity,
(C) non-dogmatic =̂ Cournot

=̂ zero probability means impossibility
=̂ whatever is not provably false is assigned probability
larger than 0.

(G) separating =̂ Gaifman
=̂ existence is always witnessed by terms

=̂ logical quantifiers over variables can be replaced by
meta-logical quantification over terms.

Main results. In the next section we will give suitable for-
malizations of all requirements. We give one explicit “con-
struction” of such probabilities. Proofs that they satisfy all
our criteria, general characterizations of probabilities that sat-
isfy some or all of the criteria, and various (counter) exam-
ples of (strong) (non)Cournot and/or Gaifman probabilities
and (non)separating interpretations can be found in [Hutter et
al., 2013].

We also give necessary and sufficient conditions for ex-
tending beliefs about finitely many sentences to suitable prob-
abilities over all sentences. Seldom does knowledge induce a
unique probability on all sentences. In this case it is natural
to choose a probability that is least dogmatic or least biased.
We show that the probability of minimum entropy relative to
some Cournot and Gaifman prior (1) exists, and is (2) con-
sistent with our prior knowledge, (3) minimally more infor-
mative, (4) unique, and (5) suitable for inductive inference.
Section 4 outlines how to use and approximate the theory for
autonomous reasoning agents.

On the choice of logic. In practice, ignoring computa-
tional considerations, the more expressive the logic the bet-
ter. Higher-order logic, also called simple type theory (STT),
is such an expressive logic. In Hutter et al. [2013] we fully
develop the theory for STT with Henkin semantics without
description operator for countable alphabet.

The major ideas though work in many logics (e.g. first or-
der), but there are important and subtle pitfalls to be avoided.
Due to limited space, we will here abstract away from and
gloss over the details of the used logic.

As usual we have boolean operations ⊤,⊥,∧,∨,→, quan-
tifiers ∀x, ∃y, closed terms t, sentences φ, χ, formula ψ(x)
with a single free variable x, universal hypothesis/sentence
∀x.ψ(x), usually equality =, and in STT abstraction λz, but
this is not needed here.

3 Theory
We define probabilities µ over sentences φ in the usual way
[Halpern, 1990]: µ(φ) is the probability that φ is true in the
intended interpretation, or µ(φ) is the subjective probability
held by an agent that sentence φ holds in the real world. It
should satisfy the basic axioms of probability, and hence has
the usual properties. Only countable Additivity (CA) enters
later and differently, since finitary logics lack infinite con-
junctions of sentences.
Definition 1 (probability on sentences) A probability (on
sentences) is a non-negative function µ : S → R satisfying
the following conditions:
• If φ is valid, then µ(φ) = 1.
• If ¬(φ ∧ χ) is valid, then µ(φ ∨ χ) = µ(φ) + µ(χ).
• Conditional probability: µ(φ|χ) := µ(φ ∧ χ)/µ(χ).
A sentence φ is said to be valid, if it is true in all (Henkin)

interpretations. We also define probabilities on interpreta-
tions, which is closer to conventional measure theory. Let

IJCAI-13 Workshop on Weighted Logics for Artiticial Intelligence (WL4AI-2013)

67



mod(φ) be the class of (Henkin) interpretations in which φ is
true, and I := mod(⊤) be the class of all (Henkin) interpre-
tations, and B be the σ-algebra generated by {mod(φ) : φ ∈
S}. Then:
Definition 2 (probability on interpretations) A function
µ∗ : B → R is a (CA) probability on σ-algebra B if
µ∗(∅) = 0 and µ∗(I) = 1 and for all countable collec-
tions {Ai}i∈I ⊂ B of pairwise disjoint sets it holds that
µ∗(

∪
i∈I Ai) =

∑
i∈I µ

∗(Ai).

Probability on sentences ⇔ interpretations. There is
a close relationship between probabilities on sentences and
probabilities on interpretations. This allows us to exploit
(some) results from measure theory, valid for the latter, also
for the former.
Proposition 3 (µ ⇒ µ∗) Let µ : S → R be a probability on
S. Then there exists a unique probability µ∗ : B → R such
that µ∗(mod(φ)) = µ(φ), for each φ ∈ S .

The proof uses compactness of the class of (Henkin) interpre-
tations I and Caratheodory’s unique-extension theorem. The
converse is elementary:
Proposition 4 (µ∗ ⇒ µ) Let µ∗ : B → [0, 1] be a probabil-
ity on B. Define µ : S → R by µ(φ) = µ∗(mod(φ)), for each
φ ∈ S. Then µ is a probability on S.

Problems. Consider the black raven example: Intuitively,
knowledge of {B(1), B(2), ...} ≡ {B(i) : i ∈ N} should
imply ∀x.B(x).

Problem is that this is not true in all models. There are
non-standard models of the natural numbers in which x =
n is invalid for all n = 1, 2, 3, .... The reason is that the
natural numbers have neither a categorical axiomatization in
first order logic, nor in STT with Henkin semantic. They do
in STT with normal semantics, but there compactness and
hence the crucial Proposition 3 fails. So in either case we
have a problem.

The solution is to exclude such unwanted interpretations.
The natural generalization of “1, 2, 3, ...” for general theories
is “all terms t”.
Definition 5 (separating interpretation) An interpretation
I is separating iff for all formulas ψ(x) the following holds:
If I is a model of ∃x.ψ(x), then there exists a closed term t
such that I is a model of ψ{x/t}, where ψ{x/t} is ψ with all
free x replaced by t.

Informally this means that existence is always witnessed
by terms. For objects to exist we must be able to name them.
It is important to note that our vocabulary from which the
closed terms are constructed is fixed up front and the same
for all I . Otherwise we could trivially make every interpre-
tation separating by adding sufficiently many new constants
to the theory, as e.g. done in Henkin’s construction. We need
to avoid such new constants since they would ruin induction.
In complete analogy to above, let m̂od(φ) be the set of sep-
arating models of φ, Î = m̂od(⊤) be the set of all sepa-
rating interpretations, and B̂ be the σ-algebra generated by
{m̂od(φ) : φ ∈ S}. Note that all m̂od(φ) are B-measurable.

Next we effectively avoid non-separating interpretations by
requiring the probability on them to be zero:
Definition 6 (Gaifman condition) We call µ Gaifman iff

µ(∀x.ψ(x)) = lim
n→∞

µ(
∧n

i=1 ψ{x/ti})

for all ψ, where t1, t2, ... is an enumeration of (representa-
tives of) all closed terms (of same type as x).

Informally this means that logical quantifiers over vari-
ables can be replaced by meta-logical quantification over
terms: With ‘representative’ we mean that one term per =-
equivalence class is sufficient. For the theory of natural num-
bers, all terms (of type Nat), equal 1 or 2 or ..., e.g. t = 5+ 3
equals 8, hence does not need to be listed separately.

Theorem 7 (µ∗(I \ Î) = 0 ⇔ µ is Gaifman)
For any probability µ : S → R on sentences and probabil-
ity µ∗ : B → R on interpretations (one-to-one) related by
µ∗(mod(φ)) = µ(φ) it holds that: µ∗(I \ Î) = 0 ⇔ µ
Gaifman.

Induction still does not work. Unfortunately, even µ satis-
fying the Gaifman condition may fail to confirm universal hy-
potheses. The reason is that µ(∀x.B(x) |B(1)∧...∧B(n)) ≡
0 if µ(∀x.B(x)) = 0. This is the infamous Zero-Prior prob-
lem in philosophy of induction. If your prior excludes some
hypothesis, no amount of evidence can confirm it. Carnap’s
and most other confirmation theories fail, since they (implic-
itly & unintentionally) have µ(∀x.B(x)) = 0. Why is this
problem hard? “Naturally” µ(∀x.B(x)) ≤ µ(B(1) ∧ ... ∧
B(n)) → 0. Think of independent events with probability
p < 1, then p ·p ·p · · · → 0. But it’s not hopeless: We just
demand µ(∀x.ψ(x)) > 0 for all ψ for which this is possi-
ble and/or reasonable, which turns out to be the φ that have
separating models.

We call this Cournot’s principle: Informally stated, prob-
ability zero/one means impossibility/certainty, or whatever is
not provably false is assigned probability larger than 0, or
all (sensible) prior probabilities should be non-zero, or be as
non-dogmatic as possible. Formally:
Definition 8 (Cournot probability)
A probability µ : S → R is Cournot if, for each φ ∈ S ,
φ has a separating model implies µ(φ) > 0.

We cannot drop the ‘separating’, since this would then con-
flict with the Gaifman condition. Note that Cournot requires
sentences, not interpretations, to have strictly positive proba-
bility, so is applicable even for uncountable model classes.

Black ravens – again. Consider a theory in which all terms
(of type Nat) represent natural numbers. Let µ be Cournot
and Gaifman, then:

µ(∀x.B(x) |B(1) ∧ ... ∧B(n))

=
µ(∀x.B(x))

µ(B(1) ∧ ... ∧B(n))

[
Def. of µ(φ|ψ) and
∀x.B(x) → B(i)

]
n→∞−→ µ(∀x.B(x))

µ(∀x.B(x))
[µ is Gaifman]

= 1 [µ is Cournot]
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Finally induction works! This example generalizes: The
Cournot and Gaifman conditions are sufficient and necessary
for confirming universal hypotheses.
Theorem 9 (confirmation of universal hypotheses) µ can
confirm all universal hypotheses that have a separating model
⇔ µ is Cournot and Gaifman.

What remains to be shown is whether such µ actually exist.
General characterizations are given in [Hutter et al., 2013]. A
particularly simple “construction” is as follows:
Theorem 10 (Constructing a Cournot and Gaifman prior µ)
The following µ is Cournot and Gaifman:

• Enumerate the countable set of sentences that have a
separating model, χ1, χ2, . . .

• For each sentence, χi, choose a separating interpreta-
tion that makes it true.

• Assign probability mass 1
i(i+1) to that interpretation.

• Define µ∗ to be the probability on this countable set of
interpretations.

• Define µ to be the corresponding distribution over sen-
tences.

Alternatively one can enumerate all sentences φ1, φ2, φ3,
..., and in an infinite binary tree label each left (right) branch
at depth n with ¬φn (φn) and assign probabilities to each
node as detailed in [Hutter et al., 2013, Thm.52], which in
turn defines µ.

Very powerful Cournot and Gaifman (C&G) probabili-
ties can be constructed as follows: Let M = {ν1, ν2, ...}
be any finite or countable class of Gaifman probabili-
ties of interest. These are usually priors that are poten-
tially true, e.g. i.i.d. probabilities such as ν(B(1) ∧ · · · ∧
B(n)) = ( 12 )

n which is not Cournot. Now define the
mixture ξ(φ) :=

∑
νi∈M

νi(φ)
i(i+1) , which is also Gaifman

and mimics Solomonoff’s construction [Solomonoff, 1964;
Hutter, 2005]. If for every sentence χ that has a separating
model there exists a ν ∈ M such that ν(χ) > 0, then ξ
is also Cournot, since ξ(χ) > ν(χ) > 0. If this is not the
case, we can simply add some/one/any C&G prior µ to M,
e.g. the one from Theorem 10, which makes ξ C&G. Since
ξ dominates all ν ∈ M, the Merging-of-Opinions theorem
[Blackwell and Dubins, 1962] guarantees that ξ converges to
ν in total variation with ν probability 1 for any ν ∈ M. This
means, while the Cournot condition rules out e.g. i.i.d. distri-
butions, there are C&G probabilities ξ that converge to them,
provided the data warrant it, and that is usually all we need.

While asymptotic convergence works equally for any C&G
probability, the degree of confirmation from finite sample size
depends on the specific construction. To achieve fast conver-
gence for µ constructed in Theorem 10 one should sort sen-
tences in decreasing order of “relevance” and pick “natural”
models. note that 1/i(i+ 1) is nearly as uniform as possible,
hence the order dependence is benign compared to e.g. 2−i.

Minimum more informative probability. Knowledge is
usually given as constraints on some probability distribution
ρ. Hard facts have ρ(fact) = 1, while uncertain knowledge
has 0 < ρ < 1. This still leaves many choices for ρ. In our

context it is natural to start with some C&G prior µ, and find
a “minimally more informative” ξ consistent with the knowl-
edge base. A natural notion of “minimally more informative”
is the minimum relative entropy.

More formally, the task is: Given a C&G prior distribution
ξ over sentences, and a self-consistent set of constraints on
probabilities, ρ(φ1) = a1, ..., ρ(φn) = an given for some
sentences φ1, ..., φn. Find the distribution ρ that minimizes
KL(ρ||ξ) under the constraints.

For example, given a prior distribution ξ, minimally adjust
it so that it obeys the constraints:

A) ρ (∀x.∀y.x < 6 ⇒ y > 6) = 0.7

B) ρ ((flies Tweety)) = 0.9

C) ρ ((commutative +)) = 0.9999

The solution consists of the following steps: (i) choose a
prior ξ, e.g. the one in Theorem 10. (ii) determine the con-
sistency of the knowledge base {ρ(φi) = ai}. Sufficient
conditions are given in [Hutter et al., 2013]. (iii) KL(ρ||ξ)
can be defined as KL(ρ∗||ξ∗), where the latter is the stan-
dard measure-theoretic definition. We have derived explicit
finite expression of KL(ρ||ξ) without reference to probabili-
ties on interpretations, and finite equation systems for mini-
mizing KL(ρ||ξ) w.r.t. ρ under constraints {ρ(φi) = ai}.

In effect, the constraints partition the space of (separable)
interpretations Î, and the ρ∗ corresponding to the distribu-
tion ρ = argminρ{KL(ρ||ξ) : ρ(φ1) = a1, ..., ρ(φn) = an}
that minimizes the relative entropy KL is a multiplicative re-
weighting of ξ, with constant weight across each partition.
This is depicted in the example below, where pixels corre-
spond to interpretations, their intensity to their probability,
and each (mixed) color to a region with uniform multiplica-
tive reweight. All derivations and equations can be found in
[Hutter et al., 2013].

Universe of Interpretations

Interpretations that 
make sentence A true
New probability: 0.6

Interpretations that 
make sentence B true
New probability: 0.1

Interpretations that 
make sentence C true
New probability: 0.4

4 User Manual
This section outlines how (approximations of) the theory de-
veloped in Section 3 might be used in autonomous reasoning
agents. We discuss the special case of certain knowledge and
how it can be used to make inferences about statements that
are not logical implications of the knowledge base. For in-
stance, if our agent has observed a large number of ravens
which are all black without exception, how strongly should
it belief in the hypothesis that “all ravens are black”? We
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construct an agent that can learn in the limit in the usual
time-series forecasting setting with an observation sequence
indexed by natural numbers.

Certain knowledge. A common case of knowledge is a
set of sentences φi, each having degree of belief 1 (that is,
µ0(φi) = 1, for i = 1, . . . , n). In other words, there is cer-
tainty that each φi is valid in the intended interpretation. This
corresponds to non-logical axioms in a theory. Let ξ be a
Cournot probability and suppose that µ is minimally more in-
formative than ξ given µ0. For this situation, one can show
that µ satisfies

µ(φ) = ξ(φ |φ1 ∧ · · · ∧ φn), (1)

for φ ∈ S. Consequently, either φ1 ∧ · · · ∧ φn is satisfiable
(leading directly to the above definition for µ) or else it is not,
in which case there are no solutions and µ cannot be defined
at all.

A further special case beyond the one just considered is
when φ is a logical consequence of φ1 ∧ · · · ∧ φn. In this
case,

µ(φ) = ξ(φ |φ1 ∧ · · · ∧ φn) =
ξ(φ1 ∧ · · · ∧ φn)

ξ(φ1 ∧ · · · ∧ φn)
= 1,

as one would expect. Similarly when ¬φ is logical conse-
quence, then µ(φ) = 0.

Note that, while it is important that the prior ξ be Cournot,
it is just as important that the posterior µ be allowed not to be
Cournot. The prior should be Cournot so that the KL diver-
gence is as widely defined as possible or, more intuitively, to
make sure sentences having a separating model are not forced
to have µ-probability 0. On the other hand, the probability µ
should be allowed to be 0 on sentences having a separating
model since the evidence in the form of the probabilities on
φ1, . . . , φn may imply this. This is apparent, for example, for
the case where each φi has probability 1: according to this
evidence, any sentence (even one having a separating model)
that is disjoint from φ1 ∧ · · · ∧φn must have µ-probability 0.

Black ravens. Let the evidence consist of the sentences
B(1), . . . , B(n), whence φi ≡ B(i), for i = 1, . . . , n. Let
µ0 : {B(1), . . . , B(n)} → [0, 1] be defined by µ0(B(i)) =
1, for i = 1, . . . , n. Thus the degree of belief that the ith
raven is black is 1, for i = 1, . . . , n. Suppose that ξ is an
uninformative prior that is C&G. Since a-priori there are no
constraints (on B), this implies that ξ(∀x.B(x)) > 0. Let
µ be a probability that is minimally more informative than ξ
given µ0. Thus µ is given by (1).

Now consider the sentence ∀x.B(x). This is clearly not
a logical consequence of the evidence, but one can use µ to
ascribe a degree of belief that it is true and, furthermore, in-
vestigate what happens to this probability as the number of
black ravens increases. Equation (1) and µ0(B(i)) = 1, for
i = 1, . . . , n, and then Theorem 9 applied to C&G ξ show
that

µ(∀x.B(x)) = ξ(∀x.B(x) |B(1) ∧ · · · ∧B(n))
n→∞−→ 1

Thus, as the number of observed black ravens increases, the
degree of belief that all ravens are black approaches 1. Of

course this also implies the weaker statement that our belief
in the next raven being black tends to one:

ξ(B(n+1) |B(1) ∧ · · · ∧B(n))
n→∞−→ 1

Naive black ravens. Continuing the preceding example, sup-
pose given the evidence B(1), . . . , B(n), each having proba-
bility 1, one wants to know the degree of belief for B(n+1).
Most probabilistic reasoning systems, if they have at all the
ability to provide prior distributions, give ξ(B(1) ∧ · · · ∧
B(n)) = ( 12 )

n or similar, which can usually be traced back to
a (naive) application of the maximum entropy or indifference
principle, and/or to first assigning probabilities to quantifier-
free probabilities and then extending them to quantified for-
mulas. In this case

ξ(B(n+1) |B(1) ∧ · · · ∧B(n))

=
ξ(B(1) ∧ · · · ∧B(n) ∧B(n+1))

ξ(B(1) ∧ · · · ∧B(n))
=

1

2
.

Thus, for this prior, knowing the evidence so far, even for
large n, does not give any information about B(n+1). But it
gets worse: Assume ξ is somehow extended to a probability
on all S. Then for any m ≥ n,

ξ(∀x.B(x) |B(1) ∧ · · · ∧B(n))

≤ ξ(B(1) ∧ · · · ∧B(m) |B(1) ∧ · · · ∧B(n)) = ( 12 )
m−n

hence ξ(∀x.B(x) |B(1)∧ · · · ∧B(n)) ≡ 0 for all n, i.e. uni-
versal hypotheses can not be confirmed. Even more seriously,
we would be absolutely sure that non-black ravens exist

ξ(∃i.¬B(i) |B(1) ∧ · · · ∧B(n)) ≡ 1

and no number of observed black ravens n without any
counter examples will ever convince us otherwise. The cru-
cial requirement to avoid these problems was to include quan-
tified sentences when constructing a prior and ensure it is
Cournot (even when only making inferences about unquan-
tified sentences like B(n+1)).

Corollary 11 (learning in the limit) Let ψ be a formula
with free variable x of type Nat, µ be a Gaifman probabil-
ity on sentences, and µ(∀x.ψ(x)) > 0. Then

lim
n→∞

µ(∀x.ψ(x) |ψ(0) ∧ · · · ∧ ψ(n)) = 1

This generalizes the black raven example and follows from
Theorem 9. In particular, learning in the limit is possible for
the C&G probability constructed in Theorem 10, provided
∀x.ψ(x) has a separating model.

The proof crucially exploits that 0, 1, 2, ... are representa-
tives of all terms of type Nat. As discussed in [Hutter et
al., 2013], this would no longer be true had we introduced
a description operator into our logic. Corollary 11 would
break down and universal hypotheses over the natural num-
bers could not be inductively confirmed, not even asymptoti-
cally.

Approximations. The construction of C&G µ in Theorem 10
required to determine particular separating models for χi and
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to determine whether they are also models of other sentences
φ.

Assume we had some calculus to determining whether
sentences have (no) separating model. Even an asymptotic
or approximate or incomplete calculus may be of use. Fix
a sequence on-the-fly of all sentences φ1, φ2, φ3, ... (once
and for all). Determine the subsequence of all sentences
χ1 = φj1 , χ2 = φj2 , ... with separating models (on the fly).

In order to determine µ to accuracy ε > 0 for some fi-
nite number of sentences {φi1 , ..., φin} of interest, we have
to assign probability 1

i(i+1) “only” to χi for i ≤ m :=

max{ 1
ε , i1, ..., in}, i.e. determine finitely many cases. If a

new sentence φin+1 of interest “arrives” or higher precision
is needed, m can be increased appropriately (that’s what was
meant with on-the-fly).

Work flow example for a simple inductive reasoning
agent. Below we present an example of a fictitious inductive
reasoning agent. It is fictitious, since many operations are in-
computable. In practice one needs to employ approximations
at various steps. How to do this is an open problem.

1. Assume the agent has been endowed with some back-
ground knowledge e.g. about kinetics, colors, biology, birds,
etc. Its knowledge is represented in the form of a finite set
of sentences {φ1, . . . , φn} that hold for sure (µ0(φi) = 1 for
some i) or with some probability 0 < µ0(φi) < 1 for the
other i.

2. In [Hutter et al., 2013] we derive sufficient conditions
(hierarchical, sub-additive, eligible) for µ0 to be consistent.
This task is akin to the general problem of maintaining con-
sistent knowledge bases.

3. Next, use an approximation of a C&G ξ prior, e.g. as
defined in Theorems 10 or the mentioned tree constructions as
outlined above and detailed in [Hutter et al., 2013]. The agent
now constructs the minimally more informative probability µ,
which has been shown to exist and be Gaifman.

4. Let o1, o2, o3, ... be the agent’s life-time sequence of
past and future observations of all kinds of objects, ravens
and otherwise, all it has/will ever observe, e.g. on is what the
agent sees n seconds after it has been switched on.

5. Assume current time is n, and the agent needs to hypoth-
esize about the world to decide its next action, e.g. whether
some observed regularity is “real”. For instance, “if observa-
tion at time k is a raven, is it also black?”. We can formalize
this with a monadic predicate ψ for type Nat with the intended
interpretation of ψ(k) as “if observation at time k is a raven,
it is black”.

6. Of course the answer to ψ(1), ..., ψ(n) is immediate,
since o1, ..., on have already been observed. If they are all
true, the agent may start to wonder whether “all ravens are
black”, or formally, whether ∀x.ψ(x) is true. Note that non-
raven observations in the sequence are allowed.

7. If the agent is equipped with our inductive rea-
soning system, its degree of belief in this hypothesis is
µ(∀x.ψ(x)|ψ(1) ∧ · · · ∧ ψ(n)).

8. This result can be the basis for some decision process
maximizing some utilities resulting in an informed action.

Is the degree of belief derived in Step 7 and used in Step 8
reasonable? At least asymptotically Corollary 11 ensures that
in the limit the agent’s belief tends to 1, which is very reason-
able. So our system of inductive reasoning at least passes this
test. Most other inductive reasoning systems have difficulties
in getting this right [Rathmanner and Hutter, 2011].

5 Conclusion
This paper provided much of the foundation for the design of
an integrated probabilistic reasoning system that can handle
probabilities outside sentences.

We have shown that a function from sentences to R that is
a well defined probability distribution with all of our criteria
exists. In particular we gave a theoretical construction for a
prior that meets the conditions, and showed that minimum
relative entropy inference is well defined in this setting.

Besides proofs and more details and discussion, Hutter et
al. [2013] additionally give general characterizations of prob-
abilities that meet some or all of our criteria, and give various
(counter) examples of (strong) (non)Cournot and/or Gaifman
probabilities and (non)separating interpretations,

Overall, the results are a step towards a globally consis-
tent and empirically satisfactory unification of probability and
logic for learning.

There is much left for future research: To combine proba-
bilities inside and outside sentences as in [Halpern, 1990], to
incorporate ideas from Solomonoff induction to get optimal
priors [Rathmanner and Hutter, 2011], to include the descrip-
tion operator(s) (ι, ε), and to investigate a number of other
theoretical questions. The main challenge for the future lies
in the discovery of reasonable approximation schemes for the
different currently incomputable aspects of the general the-
ory.
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