
ANU College of
Engineering & Computer Science

Q-Learning for history-based Reinforcement Learning
Mayank Daswani∗, Peter Sunehag∗, Marcus Hutter∗, Australian National University. mayank.daswani@anu.edu.au

Summary.
• Feature reinforcement learning (FRL) maps non-Markov environments to a Markov state space.
• Scaling FRL for the original cost function is hard since it is model-based.
• By constructing a cost based on the value function, we can now apply linear function approxima-

tion to make the framework tractable for large spaces.
• Experimental results show that the algorithm is competitive with state-of-the-art methods.

1 The Problem

The general reinforcement learning (RL) prob-
lem : an agent acts in an unknown environment
and receives observations and rewards in cy-
cles. The agent’s task is to act so as to receive
as much reward as possible.

2 Feature RL

Life

Universe

Everything

42

Feature Reinforcement Learning aims to auto-
matically reduce a complex real-world problem
to a useful representation (MDP) i.e. create a
map ϕ from an agent’s history to an MDP state.
ϕ is then a function that produces a relevant
summary of the history,

ϕ(ht) = st

In order to select the best ϕ, we need a cost
function on ϕ and a way to search over the space
containing ϕ. The original cost function used is
given below.

Cost(ϕ|h) = CL(s1:n|a1:n) + CL(r1:n|s1:n, a1:n) + CL(ϕ)

• A global stochastic search (e.g. simulated
annealing) is used to find the ϕ with minimal
cost.

• Traditional RL methods can then be used to
find the optimal policy given the minimal ϕ.

3 Model-free Cost

• The above cost function is model-based and
cannot be directly used in large observation
spaces.
∗Research School of Computer Science, College of Engineering

& Computer Science, Australian National University

• A viable alternative is to use a model-free
cost that can then be function approximated.

For each ϕ we define a Q-table based on the
state space given by ϕ to be of the form Q(ϕ(h), a).
We use the squared pathwise Q-learning error
to find a suitable map ϕ : H → S by selecting ϕ
to minimise the following cost,

CostQL(ϕ) =

min
Q

1

2

n∑
t=1

(rt+1 + γmax
a

Q(ϕ(ht+1), a)−Q(ϕ(ht), at))
2

+Reg(ϕ)

This can easily be extended to the linear func-
tion approximation setting by representing Q as
linear function over some features. The stochas-
tic search is then over these features.

4 Algorithm

An intuitive explanation of the algorithm is as
follows.

• We are given some environment which pro-
duces an observation and reward when given
an action.

• Act randomly for a predefined amount of time.
• Loop the following.

– Run simulated annealing on the existing his-
tory using the above Cost function to get ϕ.

– Map the history sequence to a state se-
quence.

– Use Q-learning on the state sequence to
find a suitable policy.

– Act according to this policy for some time
while adding the resulting observations and
rewards to the history.

5 Features
....

s0

.

L

..

s1

.

R

..

s2

.

O

..
L

..

s3

.

L

..

s4

.
R

..

s5

.
O

..
R

..

s6

.
O

• For the tabular approach, we used suffix trees
which allow us to uniquely map history se-
quences to state sequences.

• For the linear function approximation we de-
fined a set of features known as event selec-
tors (and a modified version called bit selec-
tors).

• An event selector is a set of features ξj. Each
feature ξj consists of a position m and an ob-
servation o. Feature ξj is on if the (n−m)-th
position in the history has observation o.

• A bit selector is similar but picks out bits of
the history instead of observations.

...
..

1,000

.

1,500

.

2,000

.

2,500

.

3,000

.

3,500

.
−3

.−2.5 .

−2

.

−1.5

.

−1

.

−0.5

.

0

.

0.5

.

1

.

1.5

.

Epochs

.

C
um

.
R

ew
ar

d

.

POCMAN : Rolling average over 1000 epochs

.
. ..FAhQL
. ..MC-AIXI 48

6 Experiments

• The algorithm was tested on three domains.
Tiger, Cheesemaze and Partially Observable
Pacman (Pocman).

• On Tiger and Cheesemaze we compared against
the standard ϕMDP algorithm using suffix trees
and event selectors.

• On Pocman, we compared against MC-AIXI
using bit selectors.

• In the smaller environments, our algorithm
performed competitively achieving optimal per-
formance but being more feature-efficient in
the function approximation case.

• On Pocman, we perform better than MC-AIXI
and use 36 times less space and are twice as
fast.

7 Conclusion

• The algorithm presented above can be viewed
as an extension of Q-learning to the history-
based setting.

• It allows us to scale the feature RL framework
to large environments.

