Logarithmic Pruning is All You Need

| aurent Orseau
Marcus Hutter

-0‘.‘]‘?\% : e,

- 3* " NEURAL INFORMATION
b" DeepMind *%7.. PROCESSING SYSTEMS

Omar Rivasplata #Xi'
OVERVIEW
Problem description Previous result Our result

(Malach et al., ICML 2020)

e |dea: Add an intermediate RelLU layer
Hlayers(G) = 2%

e Conjecture by Ramanujan et al. 2019

F: Small ReLU NN (good perf)
e G:BigReLUNN (random init)
G = Prune(G) (oracle pruning)

Network G #neurons in G per target weight of F:

@

A A n3l? nl
3G, VF, 3G s.t. Perf(G) = Perf(F) ? log —
g2 0
e How big must G be to contain G? Prune
e Strong assumptions
Same perf

within €

A
AN
-~

o W, <1 (weights at layer i)
o WI. £ 1/v/n
o |IxIl, <1 (inputs)

Pruned network G

Good network F

e Assumptions
o Same as Malach et al.
o Hyperbolic distribution of the initial weights

#neurons Iin G per target weight of F:
~ nt
O (log —)

E

n: #neurons(F) per layer
£: #layers(F)
. approximation error

Our result (more general)

e Assumptions
o Hyperbolic distribution of the initial weights

#neurons Iin G per target weight of F:

4
. /4
@, log (n_u)mameax) s E log max{l HWZ”Z}
& =1

F _:max activation of any neuron
max

w___:max weight
max

W.: matrix weight at layer |

TECHNICAL IDEAS

Weight Decomposition

Product weights
(Malach et al. 2020)

e Simulate one weight with 2 ReLU neurons

B
O
W ~1 |
w = wa o(wb) + we x ag(wd)
A Sample intermediate neurons until
A
. . wa x wb = +w & sgn(wa) = +1
Target weight Decomposition . _
- G we x wd = -w & sgn(wc) = -1

w= 1xaolw) +(-1)xa(-w)

Requires O(1/¢ log 1/0) samples

o(x) = max{0O, x}

Sample intermediate neurons until

Input and outputs are all within (similar for hyperbolic distribution

by a change of variable argument)

Takes O(1/€2 log 1/0) samples

Golden Ratio Decomposition

Take advantage of the sum in the neuron function

Binary decomposition: requires log 1/¢ intermediate neurons
Weight are sampled from hyperbolic P(w) = 1/w

Base 2 not possible, use base 3/2 instead (or ¢=(1++/5)/2)

T[T

Virtual weight in G

00

\

ol

k
Binary decomposition: Z b; 27°

=1

k
Golden-ration decomposition: Z b; x; " .

i £: & [Sﬁ_i_la@_i]

=1
144/5 3
p = +2\/_ or ¢ =3

— Hyperbolic sampling: P([¢7", ¢])2¢c Vi, PW(W) oc 1/w

Need only O(log /¢ log 1/6) samples

Batch sampling

e Don't throw away samples that can be reused elsewhere
e Fill k disjoint categories each with n samples w.p. 1-0

o P(anycat.)2c
e Needs #samples M: (Chernoff-Hoeffding)

M = g m—l—lmE
C)

m: #weights(F) per layer
k: #neurons to decompose a weight = O(log 1/¢)
c: probability of one of the k segments

CONCLUSION

e |s hyperbolic sampling worth trying in practice?

e \What about uniform sampling? A lower bound?
o Pensia et al, Neurips 2020
“Optimal lottery tickets via subset-sum: Logarithmic
over-parameterization is sufficient.”

