Logarithmic Pruning is All You Need

Weight Decomposition (Malach et al. 2020)

• Simulate one weight with 2 ReLU neurons

Takes O($1/\epsilon^2 \log 1/\delta$) samples

Laurent Orseau Marcus Hutter Omar Rivasplata

OVERVIEW

Previous result (Malach et al., ICML 2020)

• Idea: Add an intermediate ReLU layer #layers(G) = 2 ℓ #neurons in G per target weight of F:

$$O\left(\frac{n^3\ell^2}{\varepsilon^2}\log\frac{n\ell}{\delta}\right)$$

• Strong assumptions

- $||W_i||_2 \le 1$ (weights at layer i)
- $\|W'_{i}\|_{\infty} \leq 1/\sqrt{n}$
- $\|W_i\|_0 \leq n$

Product weights

(inputs) • $|| X ||_2 \le 1$

Our result

- Assumptions
 - #neurons in G per target weight of F:

TECHNICAL IDEAS

Golden Ratio Decomposition

- Take advantage of the sum in the neuron function • Binary decomposition: requires log 1/ε intermediate neurons • Weight are sampled from hyperbolic $P(w) \approx 1/w$ • Base 2 not possible, use base 3/2 instead (or $\varphi = (1 + \sqrt{5})/2$)

Binary decom

Golden-ration decom

Need only $\tilde{O}(\log 1/\epsilon \log 1/\delta)$ samples

w \simeq wa $\sigma(wb) + wc \times \sigma(wd)$

Sample intermediate neurons until

wa × wb ≃ +w & sgn(wa) = +1 $wc \times wd \simeq -w \& sgn(wc) = -1$

Requires O(1/ ϵ log 1/ δ) samples

(similar for hyperbolic distribution by a change of variable argument)

• Same as Malach et al. • Hyperbolic distribution of the initial weights

$$\tilde{O}\left(\log\frac{n\ell}{\varepsilon}\right)$$

n: #neurons(F) per layer {: #layers(F) *ɛ*: approximation error

Virtual weight in Ĝ

position:
$$\sum_{i=1}^{k} b_i 2^{-1}$$

position:
$$\sum_{i=1}^{k} b_i x_i^{-i}, \quad x_i \in [\varphi^{-i-1}, \varphi^{-i}]$$
$$\varphi = \frac{1+\sqrt{5}}{2} \text{ or } \varphi = \frac{3}{2}$$

 \rightarrow Hyperbolic sampling: $P([\varphi^{-i-1}, \varphi^{-i}]) \ge c \quad \forall i; P_w(w) \propto 1/w$

Our result (more general)

Assumptions

#neurons in G per target weight of F:

$$\tilde{O}\left(\log\left(\frac{n\ell}{\varepsilon}w_{\max}F_{\max}\right) + \sum_{i=1}^{\ell}\log\max\{1, \|W_i\|_2\}\right)$$

Batch sampling

- $P(any cat.) \ge c$

M =

m: #weights(F) per layer k: #neurons to decompose a weight = $O(\log 1/\epsilon)$ c: probability of one of the k segments

• Hyperbolic distribution of the initial weights

 F_{max} : max activation of any neuron w_{max}: max weight *W_i*: matrix weight at layer i

• Don't throw away samples that can be reused elsewhere • Fill k disjoint categories each with n samples w.p. 1– δ

• Needs #samples M: (Chernoff-Hoeffding)

$$= \left[\frac{2}{c}\left(m + \ln\frac{k}{\delta}\right)\right]$$

CONCLUSION

• Is hyperbolic sampling worth trying in practice?

• What about uniform sampling? A lower bound? • Pensia et al., Neurips 2020 "Optimal lottery tickets via subset-sum: Logarithmic over-parameterization is sufficient."