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Abstract
We study the problem of compressing piecewise i.i.d. sources, which models the practical
application of jointly compressing multiple disparate data files. We establish that universal
compression of piecewise i.i.d data is possible by modeling the data as a Markov process
whose memory grows suitably with the size of the data using the Krichevsky-Trofimov (KT)
estimator. The memory order is chosen large enough so that successful learning of the
distribution of the each piece of the data from the corresponding contexts is possible for
almost any realization of any piecewise i.i.d. data process. This is, a priori, a surprising
result given that we are employing a stationary model to asymptotically optimally (model
and) compress non-stationary data.

1 Introduction

Compression is an essential part of modern-day data storage and communication.
It is not uncommon to imagine a situation where one jointly compresses unalike
data. For example, consider the scenario illustrated in Fig. 1, where the a folder
comprising of novels in different languages are compressed together. A typical data
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Figure 1: Compressing dissimilar files.

compressor will read the data from each of the
files in a sequential manner and ‘learn’ the dis-
tribution corresponding to the source, and com-
press the data at hand. In this setting, it is con-
ceivable that the statistics of the data in differ-
ent files are quite dissimilar. A ‘good’ compres-
sor for compressing such dissimilar data has to
be: (a) universal in that it must learn (pos-
sibly) multiple distributions corresponding to
each of the files as it sequentially reads them;
and (b) efficient in that the redundancy of the

compressor must be kept to a minimum.
The notion of universal data compression was first introduced by Kolmogorov

in [1]. In [2], Krichevsky and Trofimov introduced the KT estimator, and quantified
the asymptotic redundancy incurred by imposing universality over the class of i.i.d.
sources. Following this, Rissanen [3] presented a lower bound on the expected per-
symbol redundancy, giving rise to a notion of ‘optimality’ for universal codes; this
lower bound additionally establishes the optimality of the KT estimator in terms of
the expected per-symbol redundancy.



A corresponding lower bound for variable-length piecewise i.i.d. sources (i.e.,
sources whose statistics change abruptly at unknown points in the data) and a strongly
sequential distribution that achieves this bound was derived by Merhav [4]; this re-
dundancy bound for the piecewise i.i.d. source contains an extra log n term per change
in source parameters in addition to the terms specified by the Rissanen bound). Sub-
sequently, Willems [5] gave efficient algorithms that achieve this bound in the limit,
based on the KT distribution (both to model the boundaries between pieces and
to predict for each piece). In [6], Shamir and Merhav extended [5] with even more
efficient algorithms, but slightly poorer redundancy performance.

Another strand of literature, relates to universal compression for Markov processes
and tree sources. Willems et al. [7] introduced the context tree weighting (CTW) al-
gorithm that was shown to be optimal over the class of time-homogeneous finite-depth
tree sources. These are a generalization of Markov sources, where the conditional dis-
tribution may depend (non-trivially) on variable-length contexts. Furthermore, the
CTW distribution is efficiently computable and strongly sequential. While CTW is
universal over finite-depth tree sources, and therefore finite-order Markov sources, it
is unclear whether it performs well for non-stationary/time-inhomogeneous sources.
An array of recent literature has recently investigated variants of CTW for wider
classes of sources, using variants of KT which discount ‘old’ data [8], switch between
a finite set of potential context trees [9] or model the boundaries between pieces [10].

In this work, we look at the problem of universal compression of piecewise i.i.d.
sources. We establish the fact that the sequence of k-order KT distributions, where
the order k grows logarithmically with the size n of each piece of the piecewise i.i.d.
source is universal over the class of piecewise i.i.d. sources. A priori, this is surpris-
ing given that the k-KT distribution models ‘time-homogenous/stationary’ processes,
whereas the piecewise i.i.d. source is not. However, by adapting the memory order k
with n, we are able to achieve the goal of universality.

The remainder of this work is organized as follows. Section 2 presents the problem
setup and the notation used. Section 3 presents the main result followed by pertinent
remarks and extensions; auxiliary results required in Sec. 3 are relegated to Sec. 4.

2 Notation and Problem Setup

Random variables are denoted by upper case letters (A, B, etc), their realizations by
lower case letters (a, b, etc), and their alphabets by calligraphic font letters (A, B,
etc). A finite sequence of the first n random variables from a random process (also
referred to as a source) tBiuiPN is denoted by B1:n, and its realization is given by b1:n.
Given d P N, ∆d denotes the set of all d-dimensional categorical distributions, i.e.,
∆d “ tpr1, . . . , rdq P r0, 1s

d :
řd
`“1 rd “ 1u. We can now define the sources of interest.

Definition 1. Given a finite set A “ ta1, . . . , adu and θ “ pθ1, . . . , θdq P ∆d, let pθ
to denote probability measure of the i.i.d. random process with each random variable
distributed according to θ, i.e., for each n P N and x1:n P An,

pθpx1:nq :“ θt11 ¨ θ
t2
2 ¨ ¨ ¨ θ

td
d , (1)



where for i “ 1, . . . , d, ti is the number of occurrences of ai in x1:n. As an abuse of
notation, we also let pθ operate on r0,8qd by defining

pθpt1, . . . , t|A|q “ θt11 ¨ θ
t2
2 ¨ ¨ ¨ θ

td
d , pt1, . . . , tdq P r0,8q

d. (2)

Note that by the above notation, if pt1, . . . , tdq P pN Y t0uqd, then for some x1:n P An

containing ti occurrences of ai for each i “ 1, . . . , d, pθpt1, . . . , tdq “ pθpx1:nq. �

Definition 2. Given m P N, we let an m-piece i.i.d. source tpθi : θi P ∆du
m
i“1 to be a

collection of m independent i.i.d. processes ptX1,iuiPN, . . . , tXm,iuiPNq, where for each
j “ 1, . . . ,m, the i.i.d. process tXj,iuiPN is distributed according to pθj . �

We now present a brief introduction to the Krichevsky-Trofimov Estimator.

2.1 The Krichevsky-Trofimov Estimator

To define the KT estimator, we require the following notation for counting the number
of occurrences of substrings in the source data. Throughout this part, we assume that
A “ ta1, . . . , adu is the (finite) alphabet corresponding to the source of interest.

Definition 3. Let k, n P N with k ď n be given. For each s P Ak and x1:n P An,
let ‘count cspx1:nq of s in x1:n’ denote the number of times the string s occurs as a
(contiguous) substring of x1:n, i.e., cspx1:nq :“

řn´k`1
i“1 1spxi : i`k´1q.

Also, for each s P Ak and x1:n P An, let Cspx1:nq :“ pcsa1px1:nq, . . . , csadpx1:nqq.
For each s, Cspx1:nq denotes the vector of counts of sa in x1:n for each a P A. �

The KT distribution for A is the A-valued stochastic process distribution
tP n

KT unPN, where for each n P N, P n
KT : An Ñ r0, 1s is defined by

P n
KT px1:nq :“ Γpd

2
q

ś

σPA Γpcσpx1:nq ` 1{2q

Γp1{2qd ¨ Γpn` d{2q
, (3)

where Γ is the Gamma function. Note that the above estimator naturally yields a
sequential estimator for the next symbol given by

P n`1
KT pXn`1 “ a|X1:n “ x1:nq :“

P n`1
KT pX1:n`1 “ x1:naq

P n
KT pX1:n “ x1:nq

“
capx1:nq ` 1{2

n` d{2
, (4)

which is a regularized frequency estimator (also known as the add-1
2
estimator. As in

Definition 1, we let P n
KT operate over tpn1, . . . , ndq P Nd : n1 ` ¨ ¨ ¨ ` nd “ nu by

P n
KT ppn1, . . . , ndqq :“ Γpd{2q

śd
i“1 Γpni ` 1{2q

Γp1{2qd ¨ Γpn` d{2q
. (5)

Note that P n
KT ppn1, . . . , ndqq “ P n

KT px1:nq for a sequence x1:n that contains ni occur-
rences of ai for each i “ 1, . . . , d.

Given k P N, the k-KT distribution for A is the stochastic process distribution
tP n

k-KT unPN, where for each n P N, P n
k-KT : An Ñ r0, 1s defined by

P n
k-KT px1:nq :“

#

d´n n ď k

d´k
ś

sPAk P
n
KT pCspx1:nqq k ă n

. (6)

We end this section with an upper bound for the redundancy of the KT estimator [2].



Theorem 1. Consider the class of distributions tpθ : θ P ∆du. Given x1:n P An, let
pθMLpx1:nq denote the distribution defined by

θMLpx1:nq :“ arg max
θP∆d

pθpx1:nq. (7)

Then the coding redundancy ρpθ ,PnKT (see Def. 4 below) with respect to the maximum
likelihood i.i.d. distribution pθML

and the KT estimator P n
KT px1:nq satisfies

sup
θP∆d

ρpθ ,PnKT px1:nq ď ρpθMLpx1:nq
,PnKT

px1:nq ď
pd´1q

2
log n` log d. (8)

2.2 Problem Statement

We begin with the specific notion of universality that we employ.

Definition 4. Given a random process tXθ,iuiPN distributed according to pθ from a
class C “ tpθ : θ P Θu of A-valued distributions, a sequence tQnunPN, where Qn is a
distribution over An, is said to be universal almost surely for C if for each θ P Θ,

P
”

lim
nÑ8

n´1ρpθ,QnpXθ,1:nq “ 0
ı

“ 1, (9)

where the redundancy ρpθ,Qnpx1:nq :“ log pθpx1:nq
Qnpx1:nq

.

Our formal problem statement is as follows. Suppose that an m-piece i.i.d. source
ptX1,iuiPN, . . . , tXm,iuiPNq distributed according to tpθi : θi P ∆du

m
i“1 is given. We are

interested in modeling the data X :“ pX1,1:n, X2,1:n, . . . , Xm,1:nq by a KT distribution
of appropriate order kn that grows with n in a way that the coding redundancy
ρtpθiu

m
i“1,kn-KT grows sub-linearly in n, and the sequence of appropriately growing kn-

KT distributions is universal almost surely for
`

∆d

˘m. At a glance, this seems
counterintuitive since the k-KT distribution is ‘stationary,’ unlike the piecewise i.i.d.
source. However, by adapting the memory order k with n, we show that we can achieve
both universality as well as optimal compression (i.e., sub-linear redundancy).

3 Main Result

Theorem 2 (Main theorem). Let m P N, and A “ ta1, . . . , adu be a finite alphabet,
and let C :“ p∆dq

m be the class of m-piece i.i.d. processes. For kn P oplog nq X ωp1q,
the sequence of kn-KT distributions

 

Pmn
kn-KT

(

nPN for A is universal almost surely
for the class C for compressing equal number of symbols of each piece. In other
words, for an m-piece i.i.d. source ptX1,iuiPN, . . . , tXm,iuiPNq distributed according to
tpθi : θi P ∆du

m
i“1

P
”

lim
nÑ8

n´1ρtpθ`u
m
`“1,kn-KT pX1,1:n, X2,1:n, . . . , Xm,1:nq “ 0

ı

“ 1. (10)

Prior to presenting the formal proof of the main result, let us intuitively argue
why an appropriate kn-KT distribution might be universal for m-piece i.i.d. sources.



On the one hand, by modeling the data using a kn-KT distribution, where kn is
sufficiently large, we are guaranteed by the law of large numbers that the empirical
frequencies of different symbols (of the alphabet) in the context of length kn at any
position is ‘close’ to the distribution of the piece corresponding to that position. Thus,
learning form longer contexts enables one to: (a) cluster the majority of contexts
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Figure 2: Intuition behind Theorem 2.

into m sets such that each context clus-
ter is likely to be seen overwhelmingly in
only one piece as illustrated in the bell
portion of each distribution in Fig. 2; and
(b) minimize the probability of observ-
ing contexts that are seen with similar
frequency in more than one piece; these
contexts correspond to overlapping tail
portions of the distributions in the fig-
ure. Hence, it is preferable that kn grows
with n. On the other hand, by mod-
elling the source as a kth

n -order Markov
process, the number of model parame-
ters that must be learned from the data
is dknpd ´ 1q (i.e., one for each element

of Akn`1). Hence, kn ought to be small enough to observe the contexts sufficiently
often. That is, n

dkn pd´1q
must also grow with n. The proof formalizes this argument.

Proof. We will start by establishing that the sequence of distributions
 

Pmn
kn-KT

(

nPN
offers vanishing per-symbol redundancy for most source realizations. To do that, let
us start with the typical sequences Apn, kn, αnq “

Śm
`“1A`pn, kn, αnq, where

A`pn, kn, αnq :“
 

x1:n :
ˇ

ˇcspx`,1:nq ´ ErcspX`,1:nqs
ˇ

ˇ ď αnErcspX`,1:nqs for all s P Akn`1
(

,

and parameters αn ą 0, and kn will be chosen later. From Lemma 3, it follows that

Pr
”

pX1,1:n, . . . , Xm,1:nq R Apn, kn, αnq
ı

ď 2
m
ÿ

`“1

ÿ

s:pθ` psqą0

e
´pαnErcspX`,1:nqsq

2

2k2npn´kn`1q . (11)

Now, pick x :“ px1,1:n, . . . , xm,1:nq P Apn, kn, αnq. As a shorthand, let x` “ x`,1:n,
` “ 1, . . . ,m. Then, the redundancy ρtpθiumi“1,kn-KT pxq is given by

ρtpθiu
m
i“1,kn-KT pxq “ log

śm
`“1 pθ`px`q

d´kn
ś

sPAkn
Pmn
KT pCspxqq

(12)

“
ÿ

sPAkn
log

śm
`“1 pθ`pCspx`qq

Pmn
KT pCspxqq

loooooooooooooooomoooooooooooooooon

“:T1

` log
´

dkn
m
ź

`“1

pθ`px`,1:knq

¯

loooooooooooooomoooooooooooooon

“:T2

(13)

Since term T2 ď kn log d, the per-symbol redundancy can be made to vanish with n, if

lim
nÑ8

n´1kn “ 0 ô kn “ opnq (14)



Now, let us define a Bayesian mixture of the m i.i.d. distributions as follows.

λs :“

# řm
`“1 pθ` psqθ`
řm
`“1 pθ` psq

mintpθ`psq : ` “ 1, . . . ,mu ą 0

d´1 otherwise
. (15)

Now, we can introduce the above mixture distribution into T1 as follows.

T1 “
ÿ

sPAkn
log

śm
`“1 pθ`pCspx`qq

śm
`“1 pλspCspx`qq

loooooooooooooooomoooooooooooooooon

“:T1,1

`
ÿ

sPAkn
log

śm
`“1 pλspCspx`qq

Pmn
KT pCspxqq

loooooooooooooooomoooooooooooooooon

“:T1,2

. (16)

Now, the counts of each string s P Akn in each piece x` and x are related by

Cspxq “
m
ÿ

`“1

Cspx`q `
m
ÿ

`“2

Cspx`´1,n´kn`1:n, x`,1:knq. (17)

Thus, it follows that

ź

s

Pmn
KT p

řm
`“1 Cspx`qq

Pmn
KT pCspxqq

“
ź

s

¨

˚

˚

˚

˝

d
ś

i“1

Γp
řm
`“1 csaipx`q `

1
2
q

Γp
řm
`“1‖Cspx`q‖1 `

d
2
q
¨

Γp‖Cspxq‖1 `
d
2
q

d
ś

i“1

Γpcsaipxq `
1
2
q

˛

‹

‹

‹

‚

(18)

(17)
ď

ź

s

p‖Cspxq‖1 ` d{2q
‖Cspxq‖1´

m
ř

`“1

‖Cspx`q‖1
ď pmn` d{2q

mkn . (19)

Now, using (8) and (19), we can bound T1,2 as follows.

T1,2 “
ÿ

sPAkn
log

śm
`“1 pλspCspx`qq

Pmn
KT pCspxqq

(20)

paq
“

ÿ

sPAkn
log

pλsp
řm
`“1 Cspx`qq

Pmn
KT p

řm
`“1 Cspx`qq

` log

˜

ź

s

Pmn
KT p

řm
`“1 Cspx`qq

Pmn
KT pCspxqq

¸

(21)

(8),(19)
ď dkn

´

pd´1q
2

logpmnq ` log d
¯

`mkn log pmn` d{2q . (22)

As before, the above terms grow sub-linearly in n provided

dkn
´

pd´1q
2

logpmnq ` log d
¯

`mkn log pmn` d{2q “ opnq (23)

We are now left to bound T1,1. To do so, we proceed as follows.

T1,1 “
ÿ

sPAkn

m
ÿ

`“1

log
pθ`pCspx`qq

pλspCspx`qq
ď

ÿ

sPAkn

m
ÿ

`“1

log
pθ` pErCspx`qsp1´ αnqq
pλs pErCspx`qsp1` αnqq

(24)

“
ÿ

sPAkn

m
ÿ

`“1

d
ÿ

i“1

`

log θ
pn´knqpθ` psqθ`,ip1´αnq

`,i ´ log λ
pn´knqpθ` psqθ`,ip1`αnq

s,i

˘

(25)



“ pn´ knq

„

p1` αnq
ÿ

sPAk

m
ÿ

`“1

pθ`psqDKL pθ`||λsq ` 2αn

m
ÿ

`“1

Hpθ`q



, (26)

where DKL refers to the Kullback-Leibler divergence. Upon using Lemma 1 to bound
the KL divergence term, we see that the expression in (26) grows sub-linearly in n, if

αn “ op1q and e´knε
2δ
“ op1q. (27)

Note that ε, δ are constants that depend only on tθ` : ` “ 1, . . . ,mu. Now, suppose
that tknunPN is chosen so that:

lim
nÑ8

kn “ 8 and kn ă β log n for 0 ă β ă ´1
2 log δ

, (28)

and αn is chosen to be a suitable function that is op1q (say, αn “ 1{log logn). Then, the
three boxed constraints given in (14), (23), and (27) are satisfied. Further, for this
choice of parameters, it can be shown that for any x P Apn, kn, αnq, the redundancy
ρtpθ`u

m
`“1,kn-KT pxq ă n1´η for sufficiently large n and for a suitable η ą 0, and that

lim
nÑ8

m
ÿ

`“1

ÿ

s:pθ` psqą0

e
´pαnErcspX`,1:nqsq

2

2k2npn´kn`1q “ 0. (29)

Thus, we are guaranteed that

lim
nÑ8

Pr
”

n´1ρtpθ`u
m
`“1,kn-KT pX1,1:n, . . . , Xm,1:nq ă n´η

ı

“ 1. (30)

In addition to (29), for this selection of parameters, we can also establish that
8
ÿ

n“1

m
ÿ

`“1

ÿ

s:pθ` psqą0

e
´pαnErcspX`,1:nqsq

2

2k2npn´kn`1q ă 8. (31)

Then, by the Borel-Cantelli lemma [11], we are assured that

Pr
”

lim
nÑ8

n´1ρtpθ`u
m
`“1,kn-KT pX1,1:n, . . . , Xm,1:nq “ 0

ı

“ 1, (32)

which is precisely the universality result we aimed to establish. �

We conclude this section with a few remarks and observations.

• The main result above can be straightforwardly extended to unequal piece-
length setting.

• The proof is critically hinged on the fact that the typical set for them-piece i.i.d.
source covers most of the probability measure, and for each typical sequence, the
redundancy offered by the k-KT distribution grows only sub-linearly. The proof
does not provide an upper bound for the redundancy of the KT distribution for
non-typical source realizations; however, it seems plausible that the universality
holds in the stronger worst-case sense, i.e., for all finite-length sequences over
A, as opposed to only the asymptotic setting discussed above; however, the
worst-case result remains open.



• The sequence of KT distributions are not necessarily strongly sequential, i.e.,
the following equality need not hold.

Pmn
KT px1:n, . . . , xm,1:nq “

ÿ

x1:m,n`1

P
mpn`1q
KT px1,1:n`1, . . . , xm,n`1q (33)

The potential inconsistency arises because of the fact that the ‘model’ parameter
kn increases with the size n of the data. However, the infinite-depth context-tree
weighting algorithm [7] allows us to devise a sequence of distributions that is
strongly sequential. The universality of the CTW distributions follows from the
fact that the CTW is a mixture of tree-source models of which one corresponds
to the complete tree source T ˚kn of depth kn; the distribution corresponding to
this complete tree T ˚kn is precisely the kn-KT distribution P n

kn-KT . That is,

PCTW px1:nq “
ÿ

T

PT px1:nq

2ΓpT q
ě
P n
kn-KT px1:nq

2ΓpT˚kn q
“
P n
kn-KT px1:nq

22kn`1´1
, (34)

where ΓpT q is the weight of the CTW mixture associated with the finite context
tree T . Consequently, for kn satisfying (28),

1

n
log

P n
kn-KT px1:nq

PCTW px1:nq
ď

2kn`1 ´ 1

n
nÑ8
ÝÑ 0. (35)

• Although we have established that the k-KT distribution is universal for the
class of piecewise i.i.d processes, the proof does not establish if the compression
is uniform, i.e., the rate of convergence of the per-letter redundancy to zero
could potentially vary with the actual distribution of various pieces of the data.
For example, the required data size to achieve a certain per-symbol redundancy
when the distributions of different pieces are ‘close’ might be larger than that
required to achieve the same per-symbol redundancy when the distributions of
pieces are ‘very different.’

4 Auxiliary Results

Lemma 1. Let A “ ta1, . . . , adu, m̂ P N, and η1 . . . , ηm̂ P N. Let for ` “ 1, . . . , m̂,
and k P N, pk,θ` denote the multinomial distribution with parameters n and θ` P R`d.
Suppose that the m̂ distributions are distinct, i.e., θ` “ θ`1 iff ` “ `1. Let for s P Ak,

λs :“
m̂
ÿ

`“1

η` pk,θ`psq
řm̂
j“1 ηjpk,θjpsq

θ`, (36)

if pk,θ`psq ą 0 for some 1 ď ` ď m̂, and λs “ r1{d , . . . , 1{ds otherwise. Let µ be the
smallest positive element of t|θi,j ´ θi1,j| : i, i1 P t1, . . . , m̂u, j P t1, . . . , duu, and let δ be
the smallest positive element of tθi,j : i P t1, . . . , m̂u, j P t1, . . . , duu. Let µ{2 ą ε ą 0,
and m :“

řm̂
`“1 η`. Then,

∆ :“
ÿ

sPAk

m̂
ÿ

`“1

η`pk,θ`psqDKL pθ`||λsq ď mhp2mde´kε
2δ
q ` 4dm2e´kε

2δ logm, (37)



Proof. Let S :“ ts P Ak : pk,θ`psq ą 0 for some 1 ď ` ď m̂u. Define a jointly
correlated random variables M and X1:k over t1, . . . , m̂u and Ak, respectively, by

pM,X1:k
p`,xq “

η`
m
pk,θ`pxq, ` P t1, . . . , m̂u,x P Ak. (38)

Thus, X1:k is distributed according to
řm̂
j“1

ηj
m
pk,θj . Then,

∆ :“
ÿ

sPAk

m̂
ÿ

`“1

η` pk,θ`psqDKL pθ`||λsq “
ÿ

sPS

m̂
ÿ

`“1

η` pk,θ`psqDKL pθ`||λsq (39)

ď
ÿ

sPS

m̂
ÿ

`“1

η` pk,θ`psq

˜

d
ÿ

i“1

θ`,i log

řm
j“1 ηj pk,θjpsq

η` pk,θ`psq

¸

(40)

“
ÿ

sPS

m̂
ÿ

`“1

η` pk,θ`psq log

řm
j“1 ηj pk,θjpsq

η` pk,θ`psq
(41)

“ m
ÿ

sPS

m̂
ÿ

`“1

η` pk,θ`psq

m
log

řm̂
j“1

ηj
m
pk,θjpsq

η`
m
pk,θ`psq

(42)

“ m rHpMq `HpX1:k|Mq ´HpX1:kqs “ mHpM |X1:kq. (43)

Let for ` “ 1, . . . , m̂, Wk,εrθ`s denote the set of strongly typical sequences defined by

Wk,εrθ`s :“
 

x1:k P Ak :
ˇ

ˇk´1caipx1:nq ´ θ`,i
ˇ

ˇ ď εθ`,i for all i “ 1, . . . , d
(

. (44)

It can be easily verified that the sets tWk,εrθ`su
m̂
`“1 are disjoint. Now, let us define

Z :“
řm
`“1 ` ¨ JX1:k P Wk,εrθ`sK. Then, by [12, (1.9)], we have 1 ď ` ď m̂,

Pr rZ “ ` |M “ `s “ Pr rX1:k P Wk,εrθ`s |M “ `s ě 1´ 2de´kε
2δ. (45)

Using Bayes’ theorem and (38), it can be shown that for each ` “ 1, . . . ,m,

PrrM “ `|Z “ `s ě
p1´ 2de´kε

2δqPrrM “ `s

PrrM “ `s ` PrrM ‰ `s ¨ p2de´kε2δq
ą 1´ 2dme´kε

2δ. (46)

Using the above bounds with [13, Thm. 1], we can show that

HpM |Z “ `q ď

"

hp2mde´kε
2δq ` 2mde´kε

2δ logpm´ 1q ` ‰ 0
logm ` “ 0

. (47)

Note that by definition, Z is a function of X1:k and hence, Z and M are conditionally
independent given X1:k. Then, by the data processing inequality, it follows that

HpM |X1:kq ď HpM |Zq ď hp2mde´kε
2δ
q ` 4mde´kε

2δ logm. (48)

Lastly, combining the above with (43) completes the claim. �



Lemma 2. Suppose X1, . . . , Xn are i.i.d. taking values in A according to the distri-
bution pθ, θ P ∆|A|. Let k P N and s P Ak such that pθpsq ą 0. Then the following
concentration bound holds for the count of s in X1:n.

P
“ˇ

ˇcspX1:nq ´ ErcspX1:nqs
ˇ

ˇ ą ε
‰

ď 2e
´ε2

2k2pn´k`1q . (49)

Proof. The claim immediately follows from McDiarmid’s inequality [14]. �

Lemma 3. Let tpθ`u
m
`“1 be m distributions over A “ t1, . . . , du such that pθ`piq “ θ`,i

for 1 ď l ď m and 1 ď i ď d. Let tpX`,1, . . . , X`,nqu
m
`“1 be mn independent random

variables with X`,i „ pθ` for 1 ď i ď n and 1 ď ` ď m. Lastly, for 1 ď ` ď m, let

A`pn, k, αq :“
 

x1:n :
ˇ

ˇcspx`,1:nq ´ ErcspX`,1:nqs
ˇ

ˇ ď αErcspX`,1:nqs for all s P Ak`1
(

.

Then,

Pr
”

pX1,1:n, . . . , Xm,1:nq P

m
ą

l“1

Alpn, k, αq
ı

ě 1´ 2
m
ÿ

`“1

ÿ

s:pθ` psqą0

e
´α2pErcspX`,1:nqsq

2

2k2pn´k`1q . (50)

Proof. The claim follows directly from Lemma 2, and the union bound. �
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