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Abstract

The two parameter Poisson-Dirichlet process is also known as the Pitman-
Yor Process and related to the Chinese Restaurant Process, is a generalisation
of the Dirichlet Process, and is increasingly being used for probabilistic mod-
elling in discrete areas such as language and images. This article reviews the
theory of the Poisson-Dirichlet process in terms of its consistency for estima-
tion, the convergence rates and the posteriors of data. This theory has been
well developed for continuous distributions (more generally referred to as non-
atomic distributions). This article then presents a Bayesian interpretation of
the Poisson-Dirichlet process: it is a mixture using an improper and infinite
dimensional Dirichlet distribution. This interpretation requires technicalities
of priors, posteriors and Hilbert spaces, but conceptually, this means we can
understand the process as just another Dirichlet and thus all its sampling
properties fit naturally. Finally, this article also presents results for the dis-
crete case which is the case seeing widespread use now in computer science,
but which has received less attention in the literature.
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2 The Poisson-Dirichlet Process

1 Introduction

The two-parameter Poisson-Dirichlet process (PDP), also known as the Pitman-Yor
process (named so in [IJ01]), is an extension of the Dirichlet process (DP). Related
is a particular interpretation of the model known as the Chinese Restaurant Process
(CRP) which gives an elegant analogy of incremental sampling for these models.
The models have proven useful in a number of ways as tools for non-parametric and
hierarchical Bayesian modelling, especially in discrete domains such as language and
images where one wants to be flexible with dimensions.

In language domains, PDPs are proving useful for full probability modelling of
various phenomena including n-gram modelling and smoothing [Teh06b, GGJ06,
MS08], dependency models for grammar [JGG07, WSM08], and for data compres-
sion [WAG+09]. The PDP-based n-gram models correspond well to versions of
Kneser-Ney smoothing [Teh06b], the state of the art method in applications. These
models are intriguing from the probability perspective, as well as sometimes being
competitive with performance based approaches. More generally, the models are
also being used for clustering [GR01, Ras00], and for related tasks such as image
segmentation [SJ09], relational modelling [XTYK06], and exemplar-based clustering
[TZF08].

The theory is well developed for the more general context of continuous distribu-
tions, and that theory is reviewed here in detail. Details of convergence, consistency
and the forms of posteriors are given in Section 4.

A new interpretation and definition of the PDP is then given in Section 5. This
uses the methodology of Bayesian improper priors too show that the distribution
on positive integers (an infinite probability vector ~p) underlying the PDP is in fact
an infinite improper Dirichlet, which, conceptually, is what we understand anyway
with all its sampling and additivity properties.

With the use of PDPs increasing in computer science applications, where sophis-
ticated discrete probabilistic modelling is required, this article reviews and sum-
marises the basic theory of PDPs in the discrete context in Section 6. This context
is quite different from the continuous distributions of standard theory.

2 Infinite Mixture Models

Before introducing the PDP, we introduce the basic context of its use, an infinite
mixture model.

The kinds of models we consider require as input a base probability distribution
H(·) on a measurable space X , and yields a discrete distribution on a finite or
countably infinite subset of X . A distribution of this form can be represented as

∞∑
k=1

pkδX∗
k
(·) (1)
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where ~p is a probability vector so 0 ≤ pk ≤ 1 and
∑∞
k=1 pk = 1, and δX∗

k
(·) is a

discrete measure concentrated at X∗k . We assume the values X∗k ∈ X are indepen-
dently and identically distributed according to H(·), which is referred to as the base
distribution. When the base distribution is non-atomic1, for instance a probability
density function such as a Gaussian, it follows that almost surely X∗k 6= X∗l whenever
k 6= l.

Consider a sample, where H(·) is the uniform distribution on [0, 1], and the
real numbers presented here are rounded to four places, such as 0.4674·. In this
case, a sequence of indices k and values X∗k are sampled from Formula (1) as
(k1, X

∗
k1

), ..., (kn, X
∗
kn), .... This might be:

(12, 0.4674·), (435, 0.3925·), (7198, 0.1937·), (12, 0.4674·),
(12, 0.4674·), (35, 0.3947·), (7198, 0.1937·), ...

This says the X∗12 appears at the 1st, 4th and 5th position in the sample, X∗7198

appears at the 3rd and 7th, etc. One can view just the indices from Formula (1),
the k’s, used in generating this sample. In the above case this is the index sequence
12, 435, 7198, 12, 12, 35, 7198, ..., whereas the data sequence for this is

0.4674·, 0.3925·, 0.1937·, 0.4674·, 0.4674·, 0.3947·, 0.1937·, ...

Since the actual indices are latent and not part of the observed data for the
model of Formula (1), the indices observed can be converted to a normal form. A
standard renumbering of the indices appearing in the sample is

1, 2, 3, 1, 1, 4, 3, ...,

where each new index (the k in Formula (1)) is given the next free integer, starting at
12. Informally, we refer to the sequence of indices under the standard renumbering
as the partition structure: it defines the grouping of items in the sequence, not the
actual k’s assigned.

This standard renumbering of the indices is an ordering under sized-biased sam-
pling [Pit95], but we do not formally cover the theory here for brevity. Our treatment
of indices and partition structure is motivated by Pitman [Pit95], but our notation
is different; Pitman considers a far richer set of research questions, whereas we are
restricting our analysis to the infinite mixture model of Formula (1).

To complete a definition of a family of models following the infinite mixture
model of Formula (1), we need to specify the probability vector ~p. Within the PDP
literature, ~p follows a two parameter Poisson-Dirichlet distribution [PY97]. One
definition for it is via the so-called “stick-breaking” model which goes as follows:

1. We take a stick of length one and randomly break it into two parts with
proportions V1 and 1− V1. The first broken stick has length V1.

1So H(X) = 0 for all X ∈ X , thus samples from H(·) are almost surely distinct.
2So the sequence k1, ..., kn, ... has the property that kn ≤ 1 + max1≤i<n ki.
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2. We then take the remaining part, of length 1−V1 and apply the same process
to randomly break into proportions V2 and 1 − V2. This second broken stick
is the first part, of length (1− V1)V2.

3. Again, we take the remaining part, of length (1 − V1)(1 − V2) and apply the
same process to randomly partition into proportions V3 and 1−V3. This third
broken stick is the first part, of length (1− V1)(1− V2)V3.

4. ...

Formally, this goes as follows:

Definition 1 (Poisson-Dirichlet distribution) For 0 ≤ a < 1 and b > −a,
suppose that a probability Pa,b governs independent random variables Vk such that
Vk has Beta(1− a, b+ k a) distribution. Let

p̃1 = V1, p̃k = (1− V1) · · · (1− Vk−1)Vk k ≥ 2 ,

and let p1 ≥ p2 ≥ · · · be the ranked (sorted) values of the p̃k. Define the Poisson-
Dirichlet distribution with parameters a, b, abbreviated PDD(a, b) to be the Pa,b dis-
tribution of pn.

Here our a parameter is usually called the discount parameter in the literature, and
b is called the concentration parameter.

Note when estimating the probability ~p for the mixture model of Formula (1)
and using this Poisson-Dirichlet distribution, the sorting is important for sampling
efficiency [KWT07], but it is not always necessary in the theory and does not appear
in some definitions [IJ01].

3 Poisson-Dirichlet Process

One definition of a Poisson-Dirichlet process is that it extends the Poisson-Dirichlet
distribution. This definition presents the PDP as a functional on distributions: it
takes as input a measurable space with domain X , and a distribution over it called
the base distribution, commonly represented as H(·), and yields as output a discrete
distribution with a finite or countable set of possible values on the domain X .

Definition 2 (Poisson-Dirichlet Process) Let H(·) be a distribution over some
measurable space X . For 0 ≤ a < 1 and b > −a, suppose that ~p is drawn from a
Poisson-Dirichlet distribution with parameters a, b. Moreover, let X∗k for k = 1, 2, ...
be a sequence of independent samples drawn according to H(·). Then ~p and X∗k for
k = 1, 2, ... define a discrete distribution on X given by the formula

∞∑
k=1

pkδX∗
k
(·) . (2)

This distribution is a Poisson-Dirichlet Process with parameters a, b and base dis-
tribution H(·), denoted PDP(a, b,H(·)).
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The Dirichlet Process (DP) is the special case where a = 0, and has some quite
distinct properties as shown later.

The PDP is also called a stochastic process because it is often defined as a se-
quence of values X1, X2, ... ∈ X from some base probability distribution H(·) indexed
by integer valued time as 1, 2, 3, .... The stochastic process is the sequential sample
from this output distribution. The conditional distribution with ~p marginalised out
for this, as long as H(·) is non-atomic, is as follows:

p(XN+1 |X1, ..., XN , a, b,H(·)) =
b+Ma

b+N
H(·) +

M∑
m=1

nm − a
b+N

δX∗
m

(·) . (3)

where there are M distinct values in the sequence X1, ..., XN denoted by X∗1 , ..., X
∗
M

and their occurrence counts respectively are n1, ..., nM , so
∑M
m=1 nm = N .

The Chinese Restaurant analogy goes as follows:

• A customer walks into the restaurant and sees M occupied tables where nm
others sit at table m enjoying the menu item X∗m.

• He can start his own table with probability b+Ma
b+N

and receive a new item X∗M+1

from menu H(·) by sampling.

• Otherwise, he goes to one of the existing M tables with probability nm−a
b+N

and
enjoy the item X∗m.

If data is sampled according to this Chinese Restaurant Process (CRP) and H(·)
is non-atomic, then it is a Poisson-Dirichlet Process with parameters a, b and base
distribution H(·) [Pit95, IJ01], thus the CRP can serve as an alternative definition
of the PDP.

In discrete applications common in computer science the non-atomicity of the
base distribution does not hold, the domain is countable already, for instance it
might represent the space of possible English language words. Technically, H(·) is
discrete when H(X) > 0 for all X ∈ X . In this case, the standard theory needs to be
modified. Teh [Teh06b] presented some modifications in this case, and we expand on
these in Section 6. Alternatively, some authors avoid the domain X by dealing with
the space of underlying indices or partitions that result from the sampling, such as
Pitman and Yor [Pit95, PY97] and this yields the two-parameter Poisson-Dirichlet
distribution discussed in the previous section.

4 Basic Properties

Before getting onto discrete domains, we review basic properties of the PDD, and
of the PDP in non-atomic domains. Some of these results will be used subsequently
to address discrete domains.

For the sample from the distribution of Formula (2) of SN := (X∗k1 , ..., X
∗
kN

), a
corresponding sample of natural numbers exists IN := (k1, ..., kN), however, these
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remain hidden (only the values of each X∗ki are known, not the indexes ki). For
a non-atomic base distribution the indices are irrelevant and we can renumber the
indices by the standard renumbering. Each index corresponds to a table in the CRP,
and the number of distinct indices in the sample is the number of tables active at
the restaurant.

Our notation for statistics is as follows:

Definition 3 (Index Statistics) When sampling independently and identically
from the discrete distribution of Formula (2), one gets a data sequence of length
N given by SN = X1, X2, ..., XN . Associated with this are the latent indices, an
index sequence of length N given by IN = k1, k2, ..., kN . Alternatively, one could
sample independently and identically from a PDD to obtain such an index sequence.
In IN the one index value k can occur multiple times. Sort and count the N points
of IN . Suppose there are M distinct values in IN , k∗m for m = 1, ...,M that occur nm
times respectively, so

∑M
m=1 nm = N . Call M the partition size and note it depends

on the sample and sample size N . Moreover, retain the order of occurrence so that
k∗1 occurs first in IN , k∗2 occurs second, and so forth. Note, without loss of gener-
ality, one could apply the standard renumbering to the indices, which means setting
k∗m = m for m = 1, . . . ,M , and the corresponding index sequence is denoted I∗N .

In the running example of Section 2 with N = 7 points, IN =
12, 435, 7198, 12, 12, 35, 7198 and I∗N = 1, 2, 3, 1, 1, 4, 3. Thus M = 4 and occurrence
counts n1 = 3, n2 = 1, n3 = 2 and n4 = 1.

Note the partition size M for a sequence corresponds to the table count in the
CRP terminology. Note also that for a discrete base distribution, the “true” but
hidden indices IN may form a finer partition than I∗N as given in the definition.

Definition 4 (Data Statistics) When sampling from the discrete distribution of
Formula (3), one gets a data sequence of length N given by SN = X1, X2, ..., XN .
Sort and count the N points of SN . Suppose there are M distinct values in SN ,
X∗m for m = 1, ...,M that occur nm times respectively, so

∑M
m=1 nm = N . For non-

atomic base distributions H(·), it is safe to associate index m with X∗m, so assigning
k∗m = m, which is the standard renumbering. The corresponding index sequence is
denoted I∗N .

For the running example again, X∗1 = 0.4674·, X∗2 = 0.3925·, X∗3 = 0.1937· and
X∗4 = 0.3947· with I∗N , M and the nm the same as before.

4.1 Consistency results

The PDD can be used to learn a broader class of distributions, not just those that
are from a given PDD(a, b). The following lemma derived from James [Jam08,
Proposition 2.2] shows this. This supposes a “true” probability vector ~q gives a
distribution of integers and then shows a sufficient property required of ~q so that a
PDD distribution can learn ~q based on integer samples.



Buntine & Hutter 7

Lemma 5 Suppose an integer sequence I of length N is sampled independently and
identically according to the probabilities ~q where 0 ≤ qk ≤ 1 for k = 1, 2, ... and∑∞
k=1 qk = 1 and use the notation of Definition 3. If it is assumed the ~q is PDD(a, b)

for 0 ≤ a < 1 and b > −a, then the posterior distribution on ~q given I converges
weakly to ~q if IEI|~q,N [M/N ] → 0 as N → ∞ where M is the partition size defined
in Definition 3.

Basically, we have some “true” model over samples given by the probability vector
~q. From this we compute the expected partition size IEI|~q,N [M ] for sample sequences
I of size N , and then check this grows slower than N as N → ∞. If this holds for
~q, then the distribution ~q can be learnt using Bayesian methods that assume ~q is
PDD(a, b). We show later that if ~q ∼ PDD(0, b), then almost surely IEI|~q,N [M ] is
O(logN) and if ~q ∼ PDD(a, b) for a > 0, then almost surely IEI|~q,N [M ] is O(Na).

As a warning more than anything else, it is important to realise the PDP should
not be used to learn continuous distributions. This is made precise by the consistency
result due to James [Jam08, Proposition 2.1].

Lemma 6 (PDP posterior convergence) Suppose data is sampled indepen-
dently and identically from a Polish space X according to a continuous distribution
P0(·), and let H(·) be another distribution on X where H(·) is non-atomic. Then
the posterior of the Poisson-Dirichlet process with parameters 0 ≤ a < 1 and b > −a
and base distribution H(·) converges weakly to point mass at the distribution

aH(·) + (1− a)P0(·)

Hence the posterior is consistent only if either H(·) = P0(·) or a = 0.

Note discrete distributions cannot be continuous since they have finite mass concen-
trated at points. Thus the above lemma does not apply to the discrete case. When
the “true” distribution P0(·) is discrete, weak converge does hold.

4.2 Posteriors

One can derive the probability of evidence or data given the model, a useful di-
agnostic in Bayesian analysis. Various versions of this are well known, see [PY97,
Appendix] and [Pit95, Proposition 9], and easily proven by induction using the CRP.

Lemma 7 (Probability of evidence) Consider finite samples SN =
X1, X2, ..., XN from PDP(a, b,H(·)), where the base distribution H(·) is non-
atomic. Use the notation of Definition 4. Then the probability of evidence given the
model PDP(a, b,H(·)) is

p(X1, X2, ..., XN) =
(b|a)M
(b)N

M∏
m=1

H(X∗m)
M∏
m=1

(1− a)nm−1 ,
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where (x)N denotes the Pochhammer symbol x(x+1)...(x+N−1) = Γ(x+N)/Γ(x)
and (x|y)N denotes x(x+y)...(x+(N−1)·y), the Pochhammer symbol with increment
y, and (x|0)N = xN .

The key characteristic of the PDD is the partition size M from Definition 3. This
is also related to the expected posterior probability of seeing a new index (for the
PDD) or a new data value from X in the non-atomic case, by the formula for the
unseen part of the CRP,

p(kN+1 6∈ IN | IN ,M, a, b) = p(XN+1 6∈ SN |SN ,M, a, b) =
b+M a

N + b
.

The posterior distribution for the partition size given just the sample size introduces
a significant function, SNM,a, which is a generalised Stirling number. It was applied
to the task by Pitman [Pit99, Equation (89)] where it was represented as a(N,M, a)
and by Teh [Teh06a] in the form sa(N,M), as a generalised Stirling number of type
(−1,−a, 0) attributed to Hsu and Shiue, where it was applied to the analysis of
hierarchical PDPs. The case for a = 0 was first presented by Antoniak [Ant74,
p1161].

Lemma 8 (Probability on partition size) Consider the indices IN for a sample
of size N from a PDD with parameters (a, b). The probability distribution for M
given just N and integrating over all possible IN is

p(M |N, a, b) =
(b|a)M
(b)N

SNM,a, where (4)

SNM,a := N !
∑∑M

1
nm=N, nm≥1

M∏
m=1

(
Γ(nm − a)

Γ(nm + 1)Γ(1− a)

nm
N −∑m−1

i=1 ni

)
, (5)

for M ≤ N and 0 else.

The following expressions are useful for computing SNM,a.

Theorem 9 (Expressions for SNM,a)

(i) Linear recursion: SN+1
M,a = SNM−1,a + (N−Ma)SNM,a

Boundary cond.: SNM,a = 0 for M > N , SN0,a = δN,0.

(ii) Mult. recursions: SNM,a =
N−M+m∑
n=m

(Nn)
(Mm)

Snm,aS
N−n
M−m,a =

N−M+1∑
n=1

(
N−1
n−1

)
Sn1,aS

N−n
M−1,a

SN1,a = Γ(N − a)/Γ(1− a). Any 0 < m < M .

(iii)Explicit expression: SNM,a =
1

M ! aM

M∑
m=0

(
M
m

)
(−)m

N−1∏
h=0

(h−am)

(iv) Asymptotic expr.: SNM,a '
1

Γ(1−a)

1

Γ(M) aM−1

Γ(N)

Na
for a > 0

(v) Expr. for a = 0: SNM,0 = |s(M)
N | = unsigned Stirling# of 1st kind [AS74]
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Figure 1: Posterior distribution on M given N = 1000 and different a.

The asymptotic expression holds for N →∞ and fixed M and a.

The explicit closed form (iii) is new. Figure 1 illustrates the shape of the distribu-
tions and their location for different values of a and b and fixed N = 1000. Similar
looking plots are produced when N = 10000.

Note the distribution does reflect a Poisson in some ways, being skewed both
at the lower boundary M = 0 and the upper boundary M = N , and being fairly
symmetric in other cases. Figure 2 illustrates the shape of the distributions and
their location for different values of a as N grows, for b = 50. The figure for a = 0.9
has a different horizontal scale.

Note also how the spread of M increases as the sample size N increases.

4.3 Convergence results

It is well known that expected partition size for the DP (PDP with a = 0) is O(logN)
and for the PDP it has been shown to be O(Na) by [Teh06a]. Here the exact rates
are presented along with their expected variance [YS00]. Further details of moments
for the PDD are also given by Ishwaran and James [IJ01].

Lemma 10 (Expected partition size) In the context of Definition 3, if a sam-
ple IN has the probability vector ~p distributed a priori according to PDD(a, b), the
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Figure 2: Posterior distribution on M for increasing N and fixed b = 50.

expected a posteriori M for a sample of size N denoted IE~p|a,b,N [M ] (and note the
actual sample is unknown here, just its size N is known), when a > 0 is given by

IE~p|a,b,N [M ] =
b

a

(b+ a)N
(b)N

− b

a
,

' b

a

(
1 +

N

b

)a
exp

(
aN

2b(b+N)

)
− b

a
for N, b� a ,

where (x)N denotes the Pochhammer symbol x(x+1)...(x+N−1) = Γ(x+N)/Γ(x).
The a posteriori variance of M for a sample of size N , denoted Var~p|a,b,N [M ], when
a > 0 is given by

Var~p|a,b,N [M ] =
b(a+ b)

a2

(b+ 2a)N
(b)N

− b

a

(b+ a)N
(b)N

−
(
b

a

(b+ a)N
(b)N

)2

' b

a

(
1 +

N

b

)2a

exp

(
aN

b(b+N)

)
for N, b� a .

In the context where a = 0,

IE~p|a,b,N [M ] = b(ψ0(b+N)− ψ0(b))

' b log
(

1 +
N

b

)
for N, b� 0 ,

Var~p|a,b,N [M ] = b(ψ0(b+N)− ψ0(b))
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+ b2(ψ1(b+N)− ψ1(b))

' b log
(

1 +
N

b

)
for N > b� 0 ,

where ψ0(·) is the digamma function and ψ1(·) is the 1-st order polygamma function,
the derivative of the digamma function.

Thus for 0 ≤ a < 1 and b fixed, IE~p|a,b,N [M ] is almost surely sublinear in N as
described in Section 4.1.

Note IE~p|a,b,N [M ] is roughly linear in b in all cases. For the DP case (when
a = 0) and N � b� 0, the a posteriori standard deviation of M is approximately
the square root of IE~p|a,b,N [M ], so M is somewhat Poisson in its behaviour. For
the PDD a > 0 and N � b � a, the a posteriori standard deviation of M is

approximately IE~p|a,b,N [M ] /
√
b/a, so is smaller than IE~p|a,b,N [M ] for b� a.

To compare convergence of PDD distributions with known series, we use the
following lemma.

Lemma 11 (Upper bound on expected partition size) Suppose an integer
sequence IN of length N is sampled independently and identically according to the
probabilities ~q where 0 ≤ qk ≤ 1 for k = 1, 2, ... and

∑∞
k=1 qk = 1 and use the notation

of Definition 3. If ~q takes the form of a geometric series, qk = rk−1(1− r), then

IEIN |~q [M ] ≤ logN

log 1/r
+

1 + 2 log 1/r + log log 1/r

log 1/r
.

If ~q takes the form of a Dirichlet series qk = k−sζ(s) for s > 1 (where ζ(s) is the
Riemann zeta function), then

IEIN |~q [M ] ≤ 3/2 +
s

(s− 1)

(
N

ζ(s)

)1/s

.

The bounds are often quite good. Experimental evaluation shows the geometric
series bound is close to about 20% except where r approaches 1, and the Dirichlet
series bound is close to about 20% except where s approaches 1.

Comparing the expected partition sizes of Lemma 10 with the different conver-
gent series above, one can see that the PDD case for a > 0 behaves more like a
Dirichlet series with exponent s = 1/a, whereas the DP case (for a = 0) behaves
more like a geometric series with factor r = exp(−1/b).

5 Improper Priors

A distribution or prior is called proper if it integrates (or sums) to one. The Bayesian
theory of improper priors allows one to extend the space of reasonable priors. The
idea is that if the posteriors from the prior are always proper, then perhaps one
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can represent the improper prior as a sequence of proper priors. The limit of this
sequence may not be proper, but at least its posteriors all are. In this section we
develop an improper prior that corresponds to the PDD.

With any Ld distance for d ≥ 1, the infinite-dimensional probability vector ~p
of Formula (2) defines a Hilbert space3. It is difficult to define a prior probability
on such a space because not only does one require a measure be defined for the
infinite vector, it must be normalised, so the total measure is 1. Some theories
just give priors for finite linear projections of the full Hilbert space, for instance the
cylindrical measures of Minlos [Min01]. This is sufficient according to Carathodory’s
extension theorem, see Bogachev [Bog07], to define the prior on the full space4. For
the PDD model, an additional problem is the projections of the prior on finite vector
subspaces appear to be improper as well. Thus, the best one can do is define a prior
in terms of a measure for all finite sub-vectors as follows:

Definition 12 (Improper prior for PDDs) Given parameters (a, b), where 0 ≤
a < 1 and b > −a, define the improper prior for PDDs (an unnormalised measure)
as follows. Take any reordering of the infinite-dimensional probability vector ~p, and
then for every sub-vector p1, p2, ..., pM of the reordering, use the following measure:

p(p1, p2, ..., pM , p
+
M) :=

(
p+
M

)b+M a−1
M∏
m=1

p−a−1
m ,

where p+
M = 1−∑M

m=1 pm.

Note this applies to every sub-vector, so ordering of the probabilities is not needed
as in Definition 1. The measure p(p1, p2, ..., pM , p

+
M) in the definition is an instance of

an M +1-dimensional improper Dirichlet with parameters (−a,−a, ...,−a, b+M a),
denoted here informally as

DirichletM+1(−a,−a, ...,−a, b+M a) .

Moreover, note that we believe this measure has no corresponding limit form as
M → ∞ on the full infinite-dimensional probability vector ~p. Given an improper
prior measure, one can infer a posterior measure using an unnormalised version of
Bayes theorem. If the posterior measure can be normalised, then the posterior is
now a correct probability.

It is shown next that the definition is consistent in the sense that the measures for
different sub-vectors are natural extensions of one another. This property is called
additivity for proper Dirichlets and is well-known. It is plausible that it should hold

3Only when d ≥ 1 is the subsequent distance guaranteed to be finite for any two members of
the space.

4The cylinders form a semi-ring, and we have a countably additive (pre-)measure on the semi-
ring, this implies a unique extension on the generated ring, the sigma-algebra is generated by the
cylinder sets, and Caratheodory’s extension theorem shows that there exists a unique extension of
the (pre-)measure to the sigma-algebra.
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for the improper measure too, but the standard proofs cannot be transferred since
the involved integrals no longer exist. Here we check additivity does transfer to
improper Dirichlets.

Lemma 13 (Consistency of projections) In the context of Definition 12, if the
prior measure for p1, ..., pM is projected down to some sub-vector, say p1, ..., pL for
L < M , then the projected measure is consistent with Definition 12.

We must now show the improper prior for PDDs is well defined. This is done using
the L1 (total variation) distance defined for probability density functions H(·) and
G(·) as follows

L1(H,G) =
∫
~p
|H(~p)−G(~p)| d ~p . (6)

The theorem below says that a sequence of proper priors exist that can approximate
the improper prior for PDDs arbitrarily closely in the sense that their posteriors
given any sample IN can be made arbitrarily close to the corresponding proper pos-
terior of the improper prior. Closeness here is measured by total variation distance.

Theorem 14 (Justifying improper prior) Using the notation of Definitions 12
and 3, there exists a set of proper priors Gδ for δ > 0 such that for any ε > 0 and
any sample IN there exists a δ0 such that for all 0 < δ < δ0 the proper posterior (I)
given I∗N of Lemma 15 is within ε by the L1 distance of the posterior of Gδ given I∗N .

Because the improper prior is well defined, one can justifiably obtain posteriors
and sampling results from the prior. Now these are identical to those for the PDD
and PDP, as we detail below, however they were derived from the improper prior,
not from any of the standard definitions for PDDs or PDPs.

Lemma 15 (Some properties) Using the improper prior for PDDs with param-
eters (a, b) and non-atomic base distribution H(·), the following holds:

Proper posteriors (I): Using the notation of Definitions 3 and 12, in the case of
arbitrary samples IN , and I∗N be result of applying the standard renumbering.
The posterior distribution given I∗N is(

p1, ..., pM , p
+
M

)
| I∗N ∼ Dirichlet(n1 − a, ..., nM − a, b+Ma) , (7)

where p+
M = 1−∑M

m=1 pm.

Proper posteriors (II): Using the notation of Definition 4, in the case of arbi-
trary samples SN , the posterior distribution given SN is

XN+1 | p1, ..., pM , p
+
M , SN ∼ p+

M H(·) +
M∑
m=1

pmδX∗
m

(·) (8)(
p1, ..., pM , p

+
M

)
|SN ∼ Dirichlet(n1 − a, ..., nM − a, b+Ma) ,

where p+
M = 1−∑M

m=1 pm.
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Sampling: Using the notation of Definition 4, if we marginalise out the prob-
ability vector ~p, then the posterior distribution in the next sample XN+1,
p(XN+1 |SN), is

b+Ma

b+N
H(·) +

M∑
m=1

nm − a
b+N

δX∗
m

(·) .

Stick-breaking: A stick-breaking like construction holds for the posteriors (I)
and (II) above. That is, for 1 ≤ m ≤M

pm = Vm
m−1∏
i=1

(1− Vi)

where each Vm is independent Beta
(
nm − a, b+ma+

∑M
i=m+1 ni

)
. Since the(

nm,
∑M
i=m+1 ni

)
are count terms, one can say each Vm has an improper prior

Beta(−a, b+ma).

The posterior formulation for PDPs corresponding to Equation (8) is attributed to
Pitman [Pit96] by Ishwaran and James [IJ01, Section 4.4]. The sampling result is the
standard Chinese Restaurant Process for the PDP from Ishwaran and James [IJ01,
Section 2.2]. The stick-breaking result here is different to the standard PDP [IJ01,
Section 2.1], which has stick priors Beta(1 − a, b + ma) (that is, it is proper), see
[PY97]. Here we use improper priors Beta(−a, b+ma), which matches the sampling
of the CRP as described above.

Now the PDD(a, b) distribution is defined with sorting, whereas the improper
prior for PDDs with parameters a, b is not. Therefore they do not correspond directly
unless some sorting is done. So we can say that sorting the pk’s in ~p for an improper
prior for PDDs yields a PDD(a, b) distribution. Alternatively, one can replace the
use of PDDs in Definition 2 with the improper prior for PDDs.

6 The Discrete Case

Now consider the case of discrete base distributions. If we have not been given the
index sequences (the k’s) in a sample, and the distribution H(·) is discrete, we can
only guess what the k’s might be. In this case, the partition structure is partially
hidden. So for instance, consider the sample of words:

“from”,“apple”,“to”,“from”,“from”,“cat”,“to”,...

This can have the same partition structure as the example in Section 2, which
has I∗N = 1, 2, 3, 1, 1, 4, 3 with N = 7 However, since H(·) is discrete, it could be
that X∗2 = X∗12 in Formula (2) and both are equal to “from”. Some standard
renumberings of indices compatible with this sequence of words are as follows:

1, 2, 3, 1, 1, 4, 3, ..., 1, 2, 3, 1, 4, 5, 3, ...,
1, 2, 3, 1, 1, 4, 5, ..., 1, 2, 3, 4, 5, 6, 3, ...,
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We are unable to say which is correct, however, they are all finer than the standard
one I∗N . The definition below, multiplicity, measures the cardinality of the (unknown)
set of k′s contributing to one observation X that occurs multiple times in the data.

Definition 16 (Multiplicity) Consider Definitions 3 and 4, but now assume that
the base distribution H(·) is discrete, so it may be that Xk = Xl for k 6= l. For a
given sample SN , and consider the corresponding latent indices IN . The multiplicity
of the value X ∈ SN is defined as the size of the set {km : m = 1, ...,M, X∗m = X }.

Multiplicities are statistics from the latent indices IN and are thus themselves latent.
Continuing the example at the start of this section, suppose the latent IN were
given as IN = 12, 435, 7198, 12, 13, 35, 7198, then N = 7, M = 5 and the distinct
indices are 12, 435, 7198, 13, 35. The counts n1 = n3 = 2 and all others are 1. All
multiplicities are 1, except for the token “from” which has multiplicity 2 due to the
indexes 12 and 13.

In the fully discrete case, H(·) is a probability function, not a probability density
function, so for each sample Xk from H(·) its probability is finite and thus equal
draws can be repeated. In these cases, we must consider the situation where the
multiplicities can be greater than one, so a more general probability of evidence
result is needed, for instance for Lemma 7, since PDP(a, b,H) returns values from
X , but no indices. The following corollary of Lemmas 7 and 8 is a special case of
[Teh06a, Equation (31)], there proven directly for the hierarchical PDP.

Corollary 17 (Evidence for discrete case) Consider the probability of evidence
for a finite sample X1, X2, ..., XN from PDP(a, b,H) with discrete base distribution
H(·). Use Definition 4, and let tm be the latent multiplicity of X∗m in the sample,
and let their total

∑M
m=1 tm = T . Note they must satisfy the constraints 0 ≤ tm ≤ nm

and tm = 0 if and only if nm = 0. Then the joint probability of the sample and the
multiplicities is:

p(X1, X2, ..., XN , t1, ..., tM) =
(b|a)T
(b)N

M∏
m=1

(
H(X∗m)tm Snmtm,a

)
,

where SNM,a is defined in (5).

Notice the terms relevant in the formula for each tm (after some simplifying)

btm11a≡0

(
atmΓ(b/a+ T )

)11a>0

H(X∗m)tmSnmtm,a , (9)

where 11A has the value 1 if A is true, and 0 otherwise. This reflects the functional
form for the posterior probabilities for the partition size M Equation (4), thus the
analysis for that can be borrowed. A key distinction is term H(X∗m)tm which has
the effect of discouraging multiplicity since invariably H(X∗k) � 1. It is this term
that would keep the multiplicity small.
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To work with the discrete case, one needs to approximate the tm. These can
be sampled using Gibbs sampling and precomputed tables of the Stirling numbers
Snt,a. Note it has been reported by Teh [Teh06b] that the multiplicities tm in practice
are quite small, and this holds for a near zero and b small. Figure 1 showed the
posterior distribution of M for a given (a, b). It can be see that the expected range
of M is rather narrow, thus in practice one may well want to fit hyperparameters
(a, b) during training.

Useful quantities to understand the application of the PDP to a discrete base
distribution, especially for the hierarchical case, are its moments. We give them
here so we can properly interpret the discrete case.

Lemma 18 (Moments for the discrete case) Assume the discrete base distri-
bution H(·) is over the integers IN , with probability vector ~θ, so there is probability
θk for the value k. Let ~p ∼ PDP(a, b,H). Then the mean, variance, covariance
and third order moments of ~p according to this prior are given by

IE [~p] = ~θ .

Var [pk] =
1− a
b+ 1

θk(1− θk)

Cov [pk1 , pk2 ] = −1− a
b+ 1

θk1θk2

IE [(pk1 − θk1)(pk2 − θk2)(pk3 − θk2)]

=


2 (1−a)(2−a)

(b+1)(b+2)
θk1θk2θk3 when k1, k2, k3 disjoint

(1−a)(2−a)
(b+1)(b+2)

(2θk1 − 1)θk1θk2 when k1 = k2 6= k3

(1−a)(2−a)
(b+1)(b+2)

θk1(1− θk1)(1− 2θk1) when k1 = k2 = k3

Now consider the case where H(·) has domain 1, ..., K, and probability vector ~θ.
Denote this by discrete(~θ). Consider a K dimensional Dirichlet distribution with
parameters given by α~θ. This has corresponding moments

IE [~p] = ~θ .

Var [pk] =
1

α + 1
θk(1− θk)

Cov [pk1 , pk2 ] = − 1

α + 1
θk1θk2

IE [(pk1 − θk1)(pk2 − θk2)(pk3 − θk3)]

=


4

(α+1)(α+2)
θk1θk2θk3 when k1, k2, k3 disjoint

2
(α+1)(α+2)

(2θk1 − 1)θk1θk2 when k1 = k2 6= k3
2

(α+1)(α+2)
θk1(1− θk1)(1− 2θk1) when k1 = k2 = k3

Thus we can conclude following:
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• When a = 0 for a finite discrete distribution and b > 0, we have that
PDP(0, b, discrete(~θ)) is well approximated by the Dirichlet(b~θ). The two dis-
tributions agree in all the moments of order one to three.

• When b = 0 and a � 1, then we have that PDP(a, 0, discrete(~θ)) is approxi-
mated by the Dirichlet(a~θ). The two distributions differ by a factor of O(a2)
in all the moments of order one to three..

Thus remarkably, in these cases, the PDP applied to finite discrete distributions is
approximated by a proper Dirichlet. It is shown in the proof, however, that the
approximation breaks down at the fourth order moments.

7 Conclusion

For the non-atomic case of the two parameter Poisson-Dirichlet distribution, con-
sistency, convergence and posterior results have been presented, mostly drawn from
the literature, though some proofs are given in the Appendix. We have augmented
these results with a number of plots to illustrate the nature of the underlying dis-
tributions. Most significantly, we recommend fitting one of the two parameters a or
b of the PDP or PDD in practice.

For the infinite distribution on positive integers ~p underlying the PDP, which
takes the form of a Poisson Dirichlet distribution, we showed that it corresponds to
an infinite improper version of a regular Dirichlet distribution. This is a concep-
tual contribution: this means we can understand the distribution as having all the
additivity and sampling properties we expect of a Dirichlet.

For the discrete case, not well covered in the Probability and Statistics literature,
posterior results have also been presented. Moreover, it has been shown that the
two parameter Poisson-Dirichlet distribution on a discrete base distribution behaves
rather like a Dirichlet distribution. This means that if ~µ ∼ DirichletK(b~θ), then one
can approximate it as ~µ ∼ PDP(0, b, discrete(~θ)) or ~µ ∼ PDP(b, 0, discrete(~θ)) and
then remarkably the posterior with ~µ integrated out is conjugate to the Dirichlet.

Acknowledgements. NICTA is funded by the Australian Government as repre-
sented by the Department of Broadband, Communications and the Digital Economy
and the Australian Research Council through the ICT Centre of Excellence program.

A Proof of Lemma 8

Build on the result from Lemma 7 using Definition 3. The formula of Lemma 7
also applies to I∗N , the indices IN with the standard renumbering applied, so
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p(k∗1, k
∗
2, ..., k

∗
N), but remove the terms in H(X#

k ). Using the notation of Defini-
tion 3 and this lemma, we get the form

p(k∗1, ..., k
∗
N) =

(b|a)M
(b)N

M∏
m=1

Γ(nm − a)

Γ(1− a)
. (10)

Now one can marginalise out the k∗1, ..., k
∗
N keeping the constraint that there are M

distinct k’s in there, which will affect the last product of M terms only.

The indexes 1, ...,M occur in the sequence I∗N of size N . Ignoring the ordering
constraints of the standard renumbering, there are N choose n1, ..., nM , CN

n1, ...,nM

ways the indexes can occur in I∗N . Now adjust this for the ordering constraints.
For every sequence starting with 1 there exists some starting with 2, ..., M . By
symmetry, n1/N of the sequences start with 1. Now how many of these have the
second integer appearing in sequence being 2? Again by symmetry, n2/(N − n1)
of the sequences starting with 1 have 2 as the next integer in sequence. Likewise,
of those sequences with 1, 2 being the first two occurring integers respectively,
n3/(N − n1 − n2) have 3 occurring next. Thus, the number of sequences with the
standard renumbering with counts n1, ..., nM are

CN
n1, ...,nM

M∏
m=1

nm
N −∑m−1

i=1 ni
.

Inspection shows this evaluates to an integer since each term N −∑m−1
i=1 ni divides

into N !.

To marginalise out the indexes I∗N in (10) then, one does

p(M |N) =
∑∑M

m=1
nm=N, nm≥1

p(k∗1, ..., k
∗
N) CN

n1, ...,nM

M∏
m=1

nm
N −∑m−1

i=1 ni
.

=
(b|a)M
(b)N

N !
∑∑M

m=1
nm=N, nm≥1

M∏
m=1

(
Γ(nm − a)

Γ(nm + 1)Γ(1− a)

nm
N −∑m−1

i=1 ni

)
.

The full summation formula for SNM,a follows.

B Generalized Stirling Numbers

We need the following expressions for generalized Stirling numbers. All but the
explicit expression (iii) are due to [HS88].

Theorem 19 (Expressions for Generalized Stirling Numbers) The follow-
ing expressions all define the same generalized Stirling numbers S(n, k;α, β, r),
where the parameters α, β, r ∈ IR have been suppressed when constant.
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(o) Implicit: (t| − α)n =
n∑
k=0

S(n, k)(t− r| − β)k

Both sides are polynomials in t of degree n. (z|a)n := z(z+a)...(z+(n−1)a).
(i) Linear recursion: S(n+1, k) = S(n, k−1) + (kβ − nα + r)S(n, k)

Boundary cond.: S(n, k) = 0 for k > n, S(n, 0) = (r| − α)n
(ii) Mult. recursion:

(
N
K

)
S(N,K, α, β,R) = (any k, r)

=
N∑
n=0

(
N
n

)
S(n, k;α, β, r)S(N−n,K−k;α, β,R− r)

(iii)Explicit expression: S(n, k) =
1

k! βk

k∑
j=0

(
k
j

)
(−)k−j(βj + r| − α)n (β 6= 0)

(iv) Generative fct.:
∞∑
n=0

S(n, k)
tn

n!
=

(1 + αt)r/α

k!

(
(1 + αt)β/α − 1

β

)k
(αβ 6= 0)

Proof. The generalized Stirling numbers are defined in [HS88] by (o). Hsu and
Liu derive expressions (i),(ii), and (iv) from (o): It is easy to verify that recursion (i)
satisfies definition (o). Using (i), one can see that the generating function gk(t) :=∑∞
n=0 S(n, k)tn/n! satisfies the differential equation system

(1+αt)
d

dt
gk(t) = gk−1(t)+(kβ+r)gk(t) with gk(0) = 0 and g0(t) = (1+αt)r/α,

which has a unique solution. Substituting (iv) into this dgl shows that (iv) is a
solution. If we take a product of the generating functions of S(n, k;α, β, r) and
S(N−n,K−k;α, β,R−r), use (iv), and identify the coefficients of tn in both sides,
we arrive at the multiplicative recursion (ii).

Interestingly, Hsu and Liu do not derive the explicit expression (iii), although it
easily follows by Taylor expanding the r.h.s. of (iv) and by identifying the coefficients
of tn as follows: The binomial identity gives

((1+αt)β/α − 1)k =
k∑
j=0

(
k
j

)
(−)k−j(1+αt)βj/α

Exploiting this, (iv), and (1 + z)γ =
∑∞
n=0

(
γ
n

)
zn, where

(
γ
n

)
= Γ(γ+1)

n! Γ(γ−n+1)
, we get

∞∑
n=0

S(n, k)
tn

n!
=

1

k! βk

k∑
j=0

(
k
j

)
(−)k−j(1+αt)

βj+r
α

=
1

k! βk

k∑
j=0

(
k
j

)
(−)k−j

∞∑
n=0

(
βj+r
α

n

)
(αt)n

=
∞∑
n=0

1

k! βk

k∑
j=0

(
k
j

)
(−)k−j(βj + r| − α)n

tn

n!
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C Proof of Theorem 9

The proof is based on (a) a recursion for p(M |N), (b) the expressions for the gener-
alized Stirling numbers in Appendix B, and of course (c) the definition (5) of SNM,a.
In order to distinguish between different M as the sample size N increases, use MN

to denote the value at sample size N .

(i) We exploit recursion

p(MN+1 = m|MN) = 11MN=m−1
b+ (m−1)a

b+N
+ 11MN=m

N −ma
b+N

,

which easily follows from the predictive sampling distribution (3). Multiplying each
side by p(MN), and summing over MN this becomes

p(MN+1 = m) = p(MN = m− 1)
b+ (m−1)a

b+N
+ p(MN = m)

N −ma
b+N

Inserting the explicit expression p(MN = m) = SNm,a(b|a)m/(b)N of Lemma 8 into
this recursion and canceling all common factors we get

SN+1
m,a = SNm−1,a + (N −ma)SNm,a.

The boundary conditions SNm,a = 0 form > N and SN0,a = δN,0 follow from the explicit
expression in Definition (5) or simply by reflecting on the meaning of p(MN = m).

(ii) and (iii) Consider the generalized Stirling numbers S(n, k;α, β, r) for the
special choice of parameters (α, β, r) = (−1,−a, 0). For this choice, recursion (i) of
Theorem 19 reduces to recursion (i) of Theorem 9, including the boundary condi-
tions. Hence SNM,a = S(N,M ;−1,−a, 0).

It is easy to see that also (ii) and (iii) of Theorem 19 reduce to the first expression
of (ii) and (iii) of Theorem 9 for (α, β, r) = (−1,−a, 0), which shows that the
expressions are equivalent.

The last expression in (ii) follows from the definition of SNM,a in (5) by splitting
the sum into

∑N−M+1
n1=1 and

∑
n2+...+nM=N−n1

and the product into m = 1 and m > 1,

and identifying the terms with
(
N−1
n1−1

)
, Sn1

1,a and SN−n1
M−1,a.

Note that the first expression in (ii) does not reduce to the second expression for
m = 1. Nevertheless, the (very different!) derivations of the two expressions show
that they must be equal.

(iv) Using Γ(N+x)/Γ(N+y) ' Nx−y for large N , we see that the m-contribution
in (iii) is asymptotically proportional to

N−1∏
h=0

(h− am) =
Γ(N − am)

Γ(−am)
=
−amΓ(N)

Γ(1− am)

Γ(N − am)

Γ(N)

N→∞' −amΓ(N)

Γ(1− am)

1

Nam



Buntine & Hutter 21

Due to the factor m, the m = 0 term does not contribute. So the dominant contri-
bution is from m = 1, followed by m = 2, etc. The m = 1 term yields

SNM,a '
1

M !aM
M

aΓ(N)

Γ(1− a)

1

Na
=

1

Γ(1−a)

1

Γ(M) aM−1

Γ(N)

Na

The relative accuracy is O(M/Na), i.e. the approximation is good for M � Na. The
smaller a, the larger N needs to be to reach a reasonable accuracy. Higher m-terms
may be added, but the alternating sign indicates cancelations and hence potential
numerical problems.

(v) follows from SNM,0 = S(n, k;−1, 0, 0) = |S(n, k; 1, 0, 0)| and the fact that
S(n, k; 1, 0, 0) are Stirling numbers of the first kind from [HS88].

D Proof of Lemma 10

We need to differentiate the different M that results from the partition sample IN
as N increases. Subscript M as MN so we can differentiate it as N changes. When
MN is known, the following series relation holds:

IEMN
[MN+1] =

b+MNa

N + b
+MN =

b

N + b
+
a+ b+N

N + b
MN .

Taking expected values across MN yields the recursive form

IE [MN+1] =
b

N + b
+
a+ b+N

N + b
IE [MN ]

The equation for IE [MN ] given in the lemma is proven from this by induction, with
the value 1 when N = 1. Note the derivation of the solution to the above recursive
formula was made by unfolding the recursion into a summation, and then simplifying
the summation using hypergeometric functions.

The approximation for IE [MN ] given in the lemma is derived for N, b � a as
follows:

(a+ b)N
(b)N

= exp (log Γ(a+ b+N)− log Γ(b+N)− (log Γ(a+ b)− log Γ(b)))

' exp (a (ψ0(b+N)− ψ0(b)))

'
(

1 +
N

b

)a
exp

(−a
2

(
1

b+N
− 1

b

))
=

(
1 +

N

b

)a
exp

(
aN

2b(b+N)

)
.

The first approximation step makes a first order Taylor expansion since a is small,
0 < a < 1, and the second approximation step uses an approximation for ψ0(b) with
error O(1/b2).
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For the expected variance, a similar strategy is used but the steps are more
complicated. The following series relation holds:

IEMN

[
M2

N+1

]
=

b+MNa

N + b
(MN + 1)2 +

N −MNa

N + b
M2

N

=
b

N + b
+

2b+ a

N + b
MN +

2a+ b+N

N + b
M2

N ,

where IE [M2
N ] = 1 whenN = 1. Taking expected values overMN yields the recursive

form

IE
[
M2

N+1

]
=

b

N + b
+

2b+ a

N + b
IE [MN ] +

2a+ b+N

N + b
IE
[
M2

N

]
.

Evaluation of this recursive formula can be made as before, and the result is the
formula

IE
[
M2

N

]
=

b(a+ b)

a2

(2a+ b)N
(b)N

− b(2b+ a)

a2

(a+ b)N
(b)N

+
b2

a2
.

The result then comes from evaluating IE [M2
N ]− (IE [MN ])2 and simplifying terms.

The approximation proceeds as before.
To handle the case where a = 0 the same recursive formula for IE [MN ] and

IE [M2
N ] can be used, but are evaluated differently since a = 0. The closed form

formula for IE [MN ] follows clearly by induction on N . The closed form formula for
IE [M2

N ], readily proven by induction, is

b(ψ0(b+N)− ψ0(b)) + b2 (ψ0(b+N)− ψ0(b))2 + b2(ψ1(b+N)− ψ1(b)) .

Subtracting off (IE [MN ])2 yields the result for Var [MN ]. The approximations for
both IE [MN ] and Var [MN ] follow by taking the first order terms of ψ0(·) and ψ1(·),
the log and the inverse respectively.

E Proof of Lemma 11

The value M is equal to the number of indices that have a non-zero count in the
sample of size N . Given probability vector ~q, the probability that index k has a
non-zero count after N samples is 1− (1− qk)N . Summing these over all k gives an
upper bound.

To generate bounds on 1− (1− qk)N , note 1− (1− qk)N ≤ 1, and the bound is
closer the larger qk. Second, by Taylor expansion

1− (1− qk)N = Nqk −
N(N − 1)

2
q′2k

for some 0 ≤ q′k ≤ qk. So 1− (1− qk)N ≤ Nqk, and the bound is closer the smaller
qk, especially when Nqk � 1. Put these two bounds together and we get for any
positive integer m

∞∑
k=1

1− (1− qk)N ≤ m+N
∞∑

k=m+1

qk .
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For the geometric series, qk = rk−1(1− r), the sum in the bound evaluates to rm,
so we seek to minimise m+Nrm. This bound can be modified if we let m ∈ IR+ to

min
m∈IN+

m+Nrm ≤ min
m∈IR+

1 +m+Nrm−1

Differentiating yields a minima at rm−1 = 1
N log 1/r

. The result follows by substitu-
tion.

For the Dirichlet series, qk = k−s

ζ(s)
, the sum in the bound can be bounded by an

integral

∞∑
k=m+1

qk ≤
∫ ∞
m+1/2

1

(k)sζ(s)
,

=
−1

(k)s−1ζ(s)(s− 1)

∣∣∣∣∣
∞

m+1/2

=
1

(m+ 1/2)s−1ζ(s)(s− 1)

As before, modifying the bounds yields the formula to minimise

m+ 1 +
N

(m− 1/2)s−1ζ(s)(s− 1)
.

Differentiation gives a minimum at N = (m− 1/2)sζ(s) and so the bound follows.

F Proof of Lemma 13

Consider the prior measure for p1, ..., pM , p
+
M . Do a change of variables to

p1, ..., pM−1, qM , p
+
M−1 where qM = pM/p

+
M−1 and p+

M−1 = pM + p+
M . The Hes-

sian of this change is 1/p+
M−1, and the domain goes from the constraint set

{p1 ≥ 0, ..., pM ≥ 0, p+
M ≥ 0} to {p1 ≥ 0, ..., pM−1 ≥ 0, p+

M−1 ≥ 0, 0 ≤ qM ≤ 1}.
The prior measure can thus be converted to

(
q−a−1
M (1− qM)b+Ma−1

) (
p+
M−1

)b+(M−1) a−1
M−1∏
m=1

p−a−1
m ,

under the new constraint set. Note the prior measure on sub-vector p1, ..., pM−1, as
given in Definition 12, appears in the second half of this measure. The initial part
involves only qM , but its constraints are simply 0 ≤ qM ≤ 1 which are independent
of the remaining variables. Thus one is left with a measure on p1, ..., pM−1. The
measure on the sub-vector is now consistent with Definition 12. We can repeat this
process recursively to verify consistency for any other sub-vector.



24 The Poisson-Dirichlet Process

G Proof of Lemma 15

Proof sketch. Note for the Proper Posteriors II claim, since H(·) is non-atomic,
each distinct data X∗m has a corresponding distinct index k∗m, thus for the purposes
of analysis, assume the indices are given and w.l.o.g. they are k∗m = m. Thus to
prove the Proper Posteriors I and II claim about posteriors for ~p, multiply the
prior measure for (p1, ..., pM) of Definition 12 by the likelihood, which is in terms
of the same sub-vector, and the posterior measure clearly is proportional to the
corresponding posterior Dirichlet in this lemma. The remaining part of the Proper
Posteriors II claim follows from the model family.

To prove the Sampling claim, note that this just takes the expected value of
the posterior in Proper Posteriors II. To prove the Stick Breaking claim, note this
follows directly from the posterior by standard properties of the Dirichlet.

H Proof of Theorem 14

Consider Definitions 12 and 3. Define Gδ in terms of its projection on the finite
sub-spaces {p1, p2, ..., pM} for all M . Let

p(p1, p2, ..., pM , p
+
M) ∝

(
p+
M

)b+M a−1
M∏
m=1

p−a−1
m , (11)

where p+
M = 1−∑M

m=1 pm and the domain is constrained to be pm > (1−∑m−1
i=1 pi)δ for

m = 1, ...,M , and p+
M ≥ 0. Note that by Definition 12, b > −a, and thus b+Ma >

0. Exploiting pm > δ for m = 1, ...,M , we show below that the proportionality
constant, i.e. the integral over the constrained simplex, is finite. To show Gδ is
proper, we need to show that the finite priors for each M are proper and that
consistency holds between these priors for different M .

The normalization is done as follows. Use the same change of variables as in the
proof of Lemma 13, however now the domain is different. The constraint set for the
initial variables is

Cp,M =

{
p1 ≥ δ, ..., pm ≥

(
1−

m−1∑
i=1

pi

)
δ, ..., pM ≥

(
1−

M−1∑
i=1

pi

)
δ, p+

M ≥ 0

}
.

By the change of variables this gets mapped to

Cq,M =

{
p1 ≥ δ, ..., pM−1 ≥

(
1−

M−2∑
i=1

pi

)
δ, p+

M−1 ≥ 0, δ ≤ qM ≤ 1

}
.

For the purposes of integration, denote the initial and changed variable sets as ~p
and ~q respectively. Thus the integration works as follows:

Za,b,M,δ :=
∫
Cp,M

(
p+
M

)b+M a−1
M∏
m=1

p−a−1
m d ~p
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=
∫
Cq,M

(
p+
M−1

)b+(M−1) a−1
M−1∏
m=1

p−a−1
m (1− qM)b+M a−1 q−a−1

M d q

= Za,b,M−1,δ

∫ 1

δ
(1− q)b+M a−1 q−a−1d q

= ... =
M∏
m=1

∫ 1

δ
(1− q)b+ma−1 q−a−1d q .

Note this is bounded above by bounding the q−a−1 terms from inside the integral
with δ−a−1, and extending the integrals to the range [0, 1]. This yields the upper
bound δ−M(a+1)∏M

m=1
Γ(b+ma)

Γ(b+ma+1)
.

Now we prove consistency. We need to show that the projection from the sub-
set m = 1, ...,M down to some smaller subset m = 1, ...,M ′ < M is consistent.
The change of variables above handled the case where p(p1, p2, ..., pM , p

+
M) was pro-

jected down to p(p1, p2, ..., pM−1, p
+
M−1). Clearly, the projected prior is equivalent

to the direct definition above (see Lemma 13 for details). Thus by induction, one
can project the prior from the subset m = 1, ...,M down to a any smaller subset
m = 1, ...,M ′ < M , and get the same prior. By this condition, and Kolmogorov’s
Consistency Theorem, it follows that the prior Gδ exists and is proper for the full
Hilbert space of ~p.

Now consider the posteriors for a given sample IN . The posterior for IN using
the improper prior on PDDs is given in Lemma 15. To deal with the proper prior
Gδ, the notion of partition size is needed, as given in Definition 3. Let MN be the
partition size for a IN , then p(p1, p2, ..., pM , p

+
M |Gδ, IN) is proportional to

(
p+
M

)b+M a−1
M∏

m=MN+1

p−a−1
m

MN∏
m=1

pnm−a−1
m ,

where the constraints Cp,M hold as before. This is the same form as the posterior
Dirichlet distribution (I) given in Lemma 15 where the probabilities are further
constrained by Cp,M . The normalizing constant can be worked out as above to be

Za,b,MN ,δ =
MN∏
m=1

B1−δ(b+ma, nm − a)

where Bx(u, v) =
∫ x

0 t
u−1(1 − t)v−1dt is the incomplete Beta function defined for

u, v > 0. In our case, nm > 0 for all 1 ≤ m ≤ MN and a + b > 0, so the
Beta function and incomplete Beta function are well defined. Note the normalizing
constant for the posterior Dirichlet distribution (I) given in Lemma 15 is Za,b,MN ,0.

Now consider the L1 distance between the two posteriors,
p(p1, p2, ..., pM , p

+
M |Gδ, IN) and the posterior Dirichlet distribution (I) given in

Lemma 15. Note these differ only in domain. Denote them by Pδ and P0

respectively. Using Pδ ≥ P0 on Gδ, and Pδ = 0 on G0 \Gδ, and
∫
Gδ
Pδd~p = 1, we get

1

2
d1(Pδ, P0) := sup

A
|Pδ[A]− P0[A]|
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=
1

2

∫
G0

|Pδ − P0|d~p

=
1

2

∫
Gδ

|Pδ − P0|d~p+
1

2

∫
G0\Gδ

|Pδ − P0|d~p

=
1

2

∫
Gδ

Pδd~p−
1

2

∫
Gδ

P0d~p+
1

2

∫
G0\Gδ

P0d~p

= 1−
∫
Gδ

P0d~p = 1− Za,b,MN ,δ

Za,b,MN ,0

∫
Gδ

Pδd~p

= 1− Za,b,MN ,δ

Za,b,MN ,0

→ 0 for δ → 0

This implies convergence in distribution.

I Proof of Corollary 17

Proof sketch. In the general case where each draw from H(·) is not nec-
essarily almost surely distinct, the formula of Lemma 7 also applies to
p(X1, X2, ..., XN , k1, ..., kN). Now one can marginalise out the k1, ..., kN , which will
affect the last product of M terms only.

Given the constraints that tm represents the multiplicity of X∗k and nk represents
the total count of X∗k , then all values for k1, ..., kN must be included that satisfy the
constraints. Each nk will be partitioned into tk different indices, each occurring
at least once, and totaling nk. Thus the problem of marginalising out the indices
k1, ..., kN to the multiplicities t1, ..., tM is equivalent to the summation over configu-
rations of the standard renumbering, done for Lemma 8, and an identical result can
be applied.

J Proof of Lemma 18

Let ~p ∼ PDP(a, b,H). Let ~q ∼ PDD(a, b) be the underlying PDD, and let the
corresponding independent samples from H(·) be Xl ∈ N . From the definition of a
PDP,

pk =
∑
l

ql1Xl=k

Taking the expected value of this over ~X, yields
∑
l qlθk, and hence θk irrespective

of ~q.

Now consider any moment. We present one case, and others can be treated
similarly. For k1, k2, k3 three indices

IE~q, ~X

[(∑
l

ql1Xl=k1 − θk1

)(∑
l

ql1Xl=k2 − θk2

)(∑
l

ql1Xl=k3 − θk3

)]



Buntine & Hutter 27

= IE~q, ~X

 ∑
l1,l2,l3

ql1ql2ql3
(
1Xl1=k1 − θk1

) (
1Xl2=k2 − θk2

) (
1Xl3=k3 − θk3

)
Now Xl1 is independent of Xl2 whenever l1 6= l2. So we have to express the sum∑
l1,l2,l3 into different equal and unequal parts so that the expected value over ~X can

be applied. This would be∑
l1,l2,l3

· =
∑

l1,l2,l3 disjoint
·+

∑
l1=l2 6=l3

·+
∑

l1=l3 6=l2
·+

∑
l2=l3 6=l1

·+
∑

l1=l2=l3

·

Any sum which has a term with one index, l1 say, not equal to the others, will
contain the expression

IEXl1

[
1Xl1=k1 − θk

]
= θk1 − θk1 = 0 ,

and hence can be discarded. Thus for the first three central moments, the expansion
of sums that remains non-zero are∑

l1,l2

· =
∑
l1=l2

·
∑
l1,l2,l3

· =
∑

l1=l2=l3

·
∑

l1,l2,l3,l4

· =
∑

l1=l2 6=l3=l4

·+
∑

l1=l3 6=l2=l4

·+
∑

l1=l4 6=l2=l3

·+
∑

l1=l2=l3=l4

·

Applying these summations to the three moments leads to:

IE~q

[∑
l

q2
l

]
IEX [(1X=k1 − θk1) (1X=k2 − θk2)]

IE~q

[∑
l

q3
l

]
IEX [(1X=k1 − θk1) (1X=k2 − θk2) (1X=k3 − θk3)]

IE~q

[∑
l

q4
l

]
IEX [(1X=k1 − θk1) (1X=k2 − θk2) (1X=k3 − θk3) (1X=k4 − θk4)]

+

(IE~q

[∑
l

q2
l

])2

− IE~q

[∑
l

q4
l

]
(
IEX [(1X=k1 − θk1) (1X=k2 − θk2)] IEX [(1X=k3 − θk3) (1X=k4 − θk4)]
IEX [(1X=k1 − θk1) (1X=k3 − θk3)] IEX [(1X=k2 − θk2) (1X=k4 − θk4)]
IEX [(1X=k1 − θk1) (1X=k4 − θk4)] IEX [(1X=k2 − θk2) (1X=k3 − θk3)]

)
The expected sum of powers of ~q we solve for below. The expectation of X
is for the multivariate discrete (or a multinomial with N = 1), so the val-
ues are known for the various cases of k1, k2, .... For example, when k1 6= k2,
IEX [(1X=k1 − θk1) (1X=k2 − θk2)] = −θk1θk2 .
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The expected sum of powers of ~q is obtained as follows. From first principles, it
can be seen that

IE~q [M ] = IE~q

[
1− (1− qk)N

]
For N = 2 and rearranging terms we get

IE~q [M2] = 2− IE~q

[∑
l

q2
l

]

Applying Lemma 10 one gets the closed form expression for the left-hand side.
Likewise, we get:

IE~q

[∑
l

q2
l

]
=

1− a
1 + b

IE~q

[∑
l

q3
l

]
=

(1− a)(2− a)

(1 + b)(2 + b)

IE~q

[∑
l

q4
l

]
=

(1− a)(2− a)(3− a)

(1 + b)(2 + b)(3 + b)

IE~q

[∑
l

q5
l

]
=

(1− a)(2− a)(3− a)(4− a)

(1 + b)(2 + b)(3 + b)(4 + b)

Combining the resultant formula yields the cases in the lemma.
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