An integrated Bayesian model for genotyping and copy number data

Paola M.V. Rancoita^{1,2}, M. Hutter^{3,4}, F. Bertoni², I. Kwee 1,2

Summary

- We derive a new method for the joint estimation of CN events and IBD/UPD regions
- It takes into account all errors in the microarray genotyping measurements, due to CN aberrations
- The goodness of our model is supported by the results on real data

¹IDSIA, Manno, Switzerland,

²IOSI, Bellinzona, Switzerland,

³ANU, Canberra, Australia,

⁴NICTA, Canberra, Australia

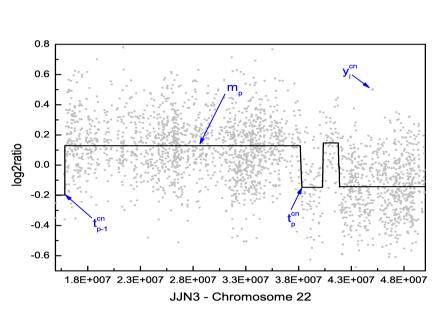
Genotyping and copy number data

- Single nucleotide polymorphism (SNPs) = single base-pair location in the genome where the nucleotide can assume two possible values among the four bases (T, A, C, G)
- ullet We have two copies of each chromosome \Rightarrow at each SNP corresponds a pair of nucleotides:

Heterozygosity or Het AAHomozygosity or Hom BB

where A and B are the two possible values of the SNP

- \bullet DNA copy number (CN) = for a given genomic region, is the number of copies of DNA of that region (normal CN = 2)
- \Rightarrow we can divide the genome in regions of constant CN, i.e. is a piecewise constant function of k^{cn} intervals with boundaries $\underline{t}^{cn} = (0 = \hat{t}_0^{cn}, \hat{t}_1^{cn}, \dots, t_{k_0}^{cn} = n)$ and levels of the segments $\underline{m} \in$ (usually a log_2 ratio scale is used)



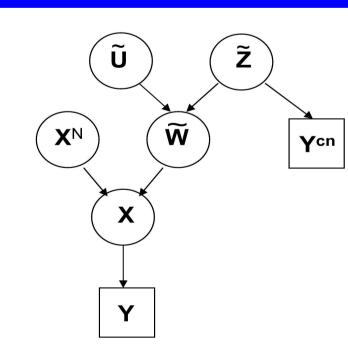
- Type of aberrations regarding genotyping and copy number data:
- -amplification (CN>4) \Rightarrow {Z=2}
- $-gain (CN=3,4) \Rightarrow \{Z=1\}$
- -loss (CN=1) $\Rightarrow \{Z=-1\}$
- -homozygous deletion (CN=0) \Rightarrow {Z=-2}
- Loss of heterozygosity (LOH) with normal copy number, i.e. unusual long stretches of homozygous SNPs due to uniparental disomy or autozygosity (called IBD/UPD regions)

where Z is the r.v. which represents the CN aberration occurred $({Z=0})$ is the normal CN)

SNP microarray

- SNP microarrays are able to measure simultaneously genotyping and copy number data
- Microarray technology is not able to distinguish between the loss of one allele (e.g. A) or an Homozygosity (e.g. AA)
- \Rightarrow Integration of the two types of data to better identifies the aberrations (e.g. it possible to distinguish between IBD/UPD and loss or between gain and high amplification)
- ⇒ Bayesian regression to estimate the piecewise constant profile of the aberrations $\underline{W} = (W_1, \ldots, W_n)$ at n SNP loci. The profile consists of k_0 intervals, with boundaries $0 = t_0^0 < t_1^0 < \ldots < t_{k_0-1}^0 < t_{k_0}^0 = n$, so that $\widetilde{W}_{t_{n-1}^0+1}=\ldots=\widetilde{W}_{t_n^0}=:W_p$, for all $p=1,\ldots,\,k_0$.

The model



- $\underline{Y} = \text{vector of the SNP genotypes detected by the microarray <math>(Y_i \in \mathbb{Y})$,
- where $\mathbb{Y} = \{Het, NHet, NoCall\}$ and NHet = not Het
- \underline{X} = vector of the true SNP genotypes in cancer cells $(X_i \in \mathbb{X})$, where $X = \{Het, Hom\}$
- \underline{X}^N = vector of the true SNP genotypes in normal cells $(X_i^N \in \mathbb{X})$
- = vector of the CN aberrations
- = vector of the occurrence of IBD/UPD
- = vector of the raw CN data
 - \Rightarrow for each interval p, $\{W_p = w\} = \{Z_p = z, U_p = u\}$

 $\mathrm{P}(\widetilde{y}_i|\widetilde{w}_i,\,x_i^N)$ estimated on two public datasets (Zhao et al. (2004), Forconi et al. (2008))

The priors & the posterior

The priors are defined as following:

- ullet $P(X_i^N=Het)$ set on the basis of the microarray annotation file
- ullet for $\mathrm{P}(U_i=1)$, we tried two values 0.001 and 0.0001, on the basis of the estimations obtained using the data in Bacolod et al. (2008) and The International HapMap Consortium (2007)
- the priors of K and \underline{T} are similar to mBPCR (Rancoita et al. (2009)):

$$P(\underline{T} = \underline{t} \mid K = k) = \binom{n-1}{k-1}^{-1}, \quad \underline{t} \in \mathbb{T}_{k,n}$$

$$P(K = k) = \frac{k_{\text{max}} + 1}{k_{\text{max}}} \frac{1}{k(k+1)}, \quad k \in \mathbb{K} = \{1, \dots, k_{\text{max}}\}$$

ullet $P(Z_p=z)$ derived from the mBPCR estimated profile of CN data (we need to map the continuous log_2 ratio values into the classes of CN aberrations):

$$P(Z_{p} = 2) = P(M_{p} \ge \hat{\mu}_{4} + 3\hat{\sigma}_{4} \mid cn)$$

$$P(Z_{p} = 1) = P(\hat{\mu}_{2} + 3\hat{\sigma}_{2} < M_{p} \le \hat{\mu}_{4} + 3\hat{\sigma}_{4} \mid cn)$$

$$P(Z_{p} = 0) = P(\hat{\mu}_{2} - 3\hat{\sigma}_{2} < M_{p} \le \hat{\mu}_{2} + 3\hat{\sigma}_{2} \mid cn)$$

$$P(Z_{p} = -1) = P(\hat{\mu}_{1} - 3\sigma_{1} < M_{p} \le \hat{\mu}_{2} - 3\hat{\sigma}_{2} \mid cn)$$

$$P(Z_{p} = -2) = P(M_{p} \le \hat{\mu}_{1} - 3\hat{\sigma}_{1} \mid cn),$$

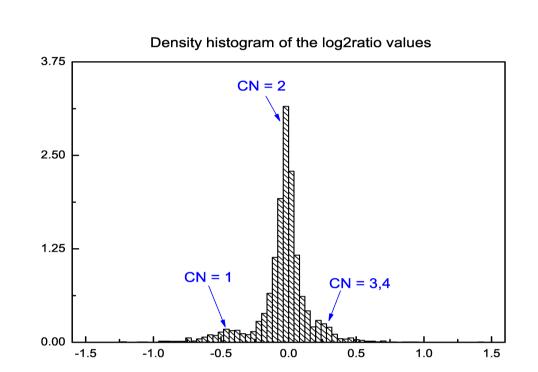
where:

cn = all the information regarding the copy number data

 $M_p = \mathsf{CN}$ value in the p^{th} interval, $M_p \sim \mathcal{N}(\widehat{m}_p, V_p)$

 $(\widehat{m}_p, \widehat{V}_p) = \text{posterior mean and variance of } M_p \text{ estimated by mBPCR}$

 $(\hat{\mu}_{cn},\,\hat{\sigma}_{cn}^2)=$ estimated mean and variance of the normal distribution corresponding to CN = cn



From the model, the posterior of \underline{W} is:

$$p(\underline{\widetilde{w}} \mid \underline{y}, \underline{t}^0, k_0) \propto \prod_{p=1}^{k_0} \prod_{i=t_{p-1}^0+1}^{t_p^0} \sum_{x \in \mathbb{X}} p(y_i \mid X_i^N = x, w_p) P(X_i^X = x) p(w_p),$$

The estimation

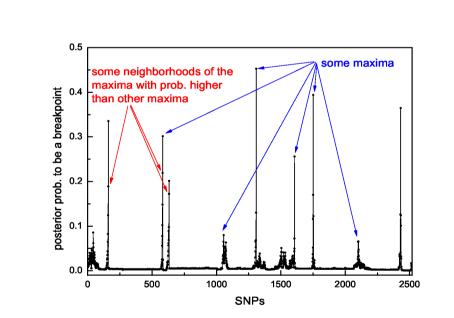
Method 1 (similar to mBPCR):

$$\widehat{K}_{01} = \arg\max_{k \in \mathbb{K}} p(k \mid \underline{Y}, cn),$$

$$\widehat{T}_{BinErrAk} = \arg\max_{\underline{t}' \in \mathbb{T}_{\widehat{k}, n}} \mathbb{E} \left[\sum_{q=1}^{\widehat{k}-1} \sum_{p=1}^{k_0-1} \delta_{t'_q, t^0_p} \mid \underline{Y}, cn \right]$$

$$\widehat{W}_p = \arg\max_{\underline{w}} P(W_p = w \mid \underline{Y}, \underline{\hat{t}}, \hat{k}, cn), \qquad p = 1, \dots, \hat{k}$$

- ullet $\underline{\hat{T}}_{BinErrAk}$ consists of the \hat{k}_{01} positions which have the highest posterior probability to be a breakpoint p_i
- \Rightarrow problem: we could take some points in the neighborhood of the higher maxima of p and not some maxima with a lower probability



- Method 2: estimate the number of the segments and the breakpoints with, respectively, the number of peaks and the locations of their maxima (W estimated as previously)
- It uses two thresholds: one for the determination of the peaks (thr_1) and one for the definition of the values close to zero (thr_2) .
- \Rightarrow corresponding estimators $\hat{K}_{Peaks,thr_1,thr_2}$ and $\underline{T}_{Peaks,thr_1,thr_2}$ (the method is denoted with (thr_1, thr_2)
- Paired thresholds selected on the basis of results obtained on simulations: (01,01), (mad,01), (01,mad), where

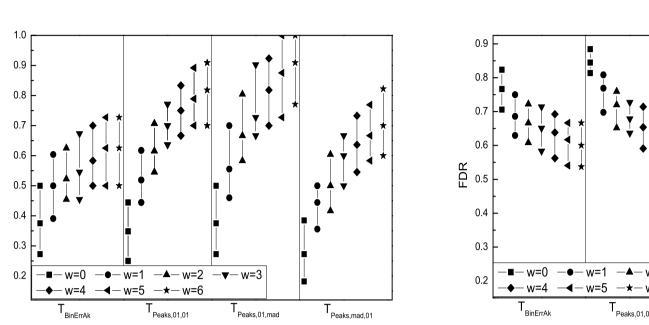
 $01 = \max(0.01, \text{quantile of } p \text{ at } 0.95)$ mad = median(p) + 3 * mad(p)

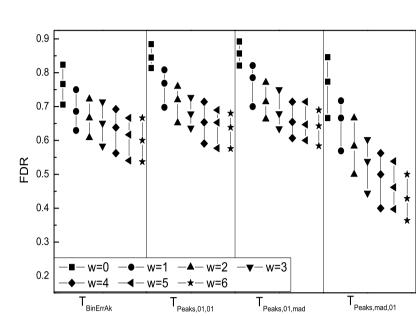
Some results on simulations

- Aberrations not considered in the simulations:
- gain (because it does not influence the genotype detection) – IBD/UPD (difficult to simulate realistically)
- Simulated dataset (100 samples with fixed k_0 and \underline{t}^0): each sample is a raw profile coming from the prior definition of \underline{X}^N given by the annotation file for the SNPs of chr. 22 in the Affymetrix GeneChip Mapping 250K Array (n=2520) and the following prior definition of \underline{Z} $(P(Z_p = z) =: q^z)$

		segment													
		Ш	Ш	IV	V	VI	VII	VIII	IX	X	XI	XII	XIII	XIV	XV
q^1	0	0.1	0	0.1	0.5	0.1	0	0	0.1	0.5	0	0.1	0.5	0.1	0
q^0	0.1	0.6	0.1	0.6	0.4	0.6	0.1	0.1	0.6	0.4	0.1	0.6	0.4	0.6	0.1
q^{-1}	0.6	0.3	0.6	0.3	0.1	0.3	0.6	0.4	0.3	0.1	0.6	0.3	0.1	0.3	0.6
q^{-2}	0.3	0	0.3	0	0	0	0.3	0.5	0	0	0.3	0	0	0	0.3

• Some results on breakpoint estimation:





- ⇒ Method 2 has higher sensitivity and similar or lower FDR.
- Some results CN aberration estimation (- best result, worst result):

method	sum 0-1 err	SSQ	$\sqrt{SSQ/n}$
method 1	421.79	1226.59	0.70
(01, 01)	109.39	286.15	0.34
(01, mad)	109.39	286.15	0.34
(mad, 01)	111.75	283.77	0.34

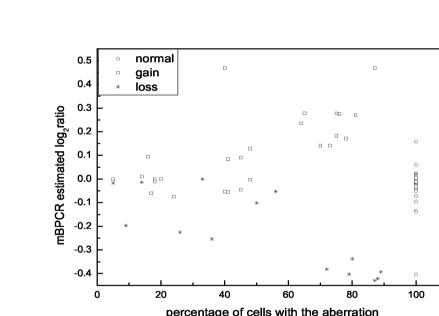
	(maa, or)		111.75		5.11	0.54				
		sensi	tivity		FDR					
method	Z=2	Z=0	Z=-1	Z=-2	Z=2	Z=0	Z=-1	Z=-2		
method 1	0.681	0.932	0.968	0.555	0.017	0.047	0.306	0.025		
(01, 01)										
(01, mad)	0.896	0.983	0.961	0.946	0.043	0.031	0.068	0.020		
				1	l		l			

⇒ Method 2 best estimates the profile (best paired threshold: (01, 01), (01, mad)).

|(mad, 01)| 0.889 | 0.984 | 0.963 | 0.942 | 0.038 | 0.026 | 0.075 | 0.023 |

Applications on real data

- Data: paired samples of patients affected by chronic lymphocytic leukemia (CLL), which then transformed in diffuse large B-cell lymphoma (DLBCL) (Bertoni et al. (2008)). Of two patients, we had three samples.
- detectable CN aberrations = the ones born by at least 60% of cells in the sam-



- Evaluation of the estimation of the CN aberrations: comparison with the estimated CN of some genomic regions with FISH (fluorescent in situ hybridization), which gives also the percentage of cells bearing the aberration
- -15/17 detectable aberrations found by all estimators
- -3/26 not detectable aberrations found by all estimators and another by $(01,\,01)$ and $(01,\,mad)$ with $p_{upd}\,=\,10^{-3}$ and $(mad,\,01)$ with $p_{upd} = 10^{-4}$
- —in only 2/90 normal segments, all estimators discovered an aberration
- Remark: a slightly discordance between the 2 techniques is possible, because the samples used are not exactly the same
- Evaluation of the IBD/UPD region detection: comparison of the regions found in the 3 samples of 2 patients

Patient 1:

Patient 1:								
	I	$p_{upd} = 10$	$)^{-4}$	$p_{upd} = 10^{-3}$				
types of regions	01,01	01, mad		01,01	01, mad			
distinct (total)	413	413	414	494	492	519		
equal (%)	0.79	0.79	0.78	0.78	0.78	0.77		
equal in 2 samples (%)	0.15	0.15	0.20	0.15	0.15	0.18		
overlapping (%)	0.03	0.03	0.01	0.02	0.02	0.03		
validated (%)	0.98	0.98	0.98	0.95	0.95	0.98		
remaining (%)	0.02	0.02	0.02	0.05	0.05	0.02		
% of remaining $< 1 Mb$	0.80	0.80	0.88	0.93	0.92	1.00		
Patient 2:								
distinct (total)	441	441	454	580	580	618		
equal (%)	0.21	0.21	0.25	0.19	0.19	0.24		
equal in 2 samples (%)	0.02	0.02	0.03	0.03	0.03	0.02		
overlapping (%)	0.50	0.50	0.47	0.51	0.51	0.50		
validated (%)	0.73	0.73	0.74	0.74	0.74	0.76		
remaining (%)	0.27	0.27	0.26	0.26	0.26	0.24		
% of remaining $< 1 Mb$	0.88	0.88	0.89	0.91	0.91	0.93		

⇒ the 3 estimators behaved similarly and equally well on real data

Summary and conclusions

- Our method is a new algorithm for the joint estimation of CN events and IBD/UPD regions, which takes into account the errors in the genotyping measurements of microarrays, due to the aberrations affecting the CN.
- Differently from the only other method present in literature (i.e., Scharpf et al. (2008)), it considers all the CN events biologically relevant.
- The goodness of our model is supported by the results obtained on simulated and real data.