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Summary
•We derive a new method for the joint estimation

of CN events and IBD/UPD regions

• It takes into account all errors in the microarray
genotyping measurements, due to CN aberrations

•The goodness of our model is supported by the
results on real data
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Genotyping and copy number data

• Single nucleotide polymorphism (SNPs) = single base-pair loca-
tion in the genome where the nucleotide can assume two possible values
among the four bases (T, A, C, G)

•We have two copies of each chromosome ⇒ at each SNP corresponds a
pair of nucleotides:

AB
}

Heterozygosity or Het

AA
BB

}
Homozygosity or Hom

where A and B are the two possible values of the SNP

•DNA copy number (CN) = for a given genomic region, is
the number of copies of DNA of that region (normal CN = 2)
⇒ we can divide the genome
in regions of constant CN, i.e.
is a piecewise constant function
of k̂cn intervals with boundaries
tcn=(0 = t̂cn0 , t̂cn1 , . . ., tcnk0

= n)
and levels of the segments m ∈

R
k̂cn

(usually a log2ratio scale is
used)

• Type of aberrations regarding genotyping and copy number data:

– amplification (CN>4) ⇒ {Z = 2}

– gain (CN=3,4) ⇒ {Z = 1}

– loss (CN=1) ⇒ {Z = −1}

– homozygous deletion (CN=0) ⇒ {Z = −2}

– Loss of heterozygosity (LOH) with normal copy number, i.e. un-
usual long stretches of homozygous SNPs due to uniparental disomy
or autozygosity (called IBD/UPD regions)

where Z is the r.v. which represents the CN aberration occurred
({Z = 0} is the normal CN)

SNP microarray

• SNP microarrays are able to measure simultaneously genotyping and copy
number data

•Microarray technology is not able to distinguish between the loss of one
allele (e.g. A) or an Homozygosity (e.g. AA)

⇒ Integration of the two types of data to better identifies the aberrations
(e.g. it possible to distinguish between IBD/UPD and loss or between
gain and high amplification)

⇒ Bayesian regression to estimate the piecewise constant profile of the
aberrations W̃=(W̃1, . . . , W̃n) at n SNP loci. The profile consists of
k0 intervals, with boundaries 0 = t00 < t01 < . . . < t0k0−1 < t0k0

= n,

so that W̃t0p−1
+1 = . . . = W̃t0p

=: Wp, for all p = 1, . . ., k0.

The model

Y = vector of the SNP genotypes detected by the microarray (Yi ∈ Y),

where Y = {Het, NHet, NoCall} and NHet = not Het

X = vector of the true SNP genotypes in cancer cells (Xi ∈ X),

where X = {Het, Hom}

XN = vector of the true SNP genotypes in normal cells (XN
i ∈ X)

Z̃ = vector of the CN aberrations

Ũ = vector of the occurrence of IBD/UPD

Y cn = vector of the raw CN data

⇒ for each interval p, {Wp = w} = {Zp = z, Up = u}

P(ỹi|w̃i, xN
i ) estimated on two public datasets

(Zhao et al. (2004), Forconi et al. (2008))

The priors & the posterior
The priors are defined as following:

• P(XN
i = Het) set on the basis of the microarray annotation file

• for P(Ũi = 1), we tried two values 0.001 and 0.0001, on the basis of the
estimations obtained using the data in Bacolod et al. (2008) and The
International HapMap Consortium (2007)

• the priors of K and T are similar to mBPCR (Rancoita et al. (2009)):

P (T = t |K = k) =

(
n − 1

k − 1

)−1

, t ∈ Tk,n

P (K = k) =
kmax + 1

kmax

1

k(k + 1)
, k ∈ K = {1, . . . , kmax}

• P(Zp = z) derived from the mBPCR estimated profile of CN data (we
need to map the continuous log2ratio values into the classes of CN aber-
rations):

P(Zp = 2) = P (Mp ≥ µ̂4 + 3σ̂4 | cn)

P(Zp = 1) = P (µ̂2 + 3σ̂2 < Mp ≤ µ̂4 + 3σ̂4 | cn)

P(Zp = 0) = P (µ̂2 − 3σ̂2 < Mp ≤ µ̂2 + 3σ̂2 | cn)

P(Zp = −1) = P (µ̂1 − 3σ1 < Mp ≤ µ̂2 − 3σ̂2 | cn)

P(Zp = −2) = P (Mp ≤ µ̂1 − 3σ̂1 | cn) ,

where:
cn = all the information regarding the copy number data

Mp = CN value in the pth interval, Mp ∼ N (m̂p, V̂p)

(m̂p, V̂p) = posterior mean and variance of Mp estimated by mBPCR

(µ̂cn, σ̂2
cn) = estimated mean and variance of the normal distribution

corresponding to CN = cn

From the model, the posterior of W̃ is:

p(w̃ | y, t0, k0) ∝

k0∏

p=1

t0p∏

i=t0p−1
+1

∑

x∈X

p(yi |X
N
i = x, wp)P(XX

i = x)p(wp),

The estimation

•Method 1 (similar to mBPCR):

K̂01 = arg max
k∈K

p(k |Y , cn),

T̂BinErrAk = arg max
t
′
∈T

k̂,n

E




k̂−1∑

q=1

k0−1∑

p=1

δ
t
′
q, t

0
p

∣∣∣∣∣∣
Y , cn




Ŵp = arg max
w

P(Wp = w |Y , t̂, k̂, cn), p = 1, . . . , k̂

• T̂BinErrAk consists of the k̂01 positions which have the highest posterior
probability to be a breakpoint pi

⇒ problem: we could take some
points in the neighborhood of the
higher maxima of p and not some
maxima with a lower probability

•Method 2: estimate the number of the segments and the breakpoints
with, respectively, the number of peaks and the locations of their max-
ima (W estimated as previously)

• It uses two thresholds: one for the determination of the peaks (thr1) and
one for the definition of the values close to zero (thr2).

⇒ corresponding estimators K̂Peaks,thr1,thr2
and T̂Peaks,thr1,thr2

(the
method is denoted with (thr1, thr2))

• Paired thresholds selected on the basis of results obtained on simulations:
(01, 01), (mad, 01), (01,mad), where

01 = max(0.01, quantile of p at 0.95)

mad = median(p) + 3 ∗ mad(p)

Some results on simulations

• Aberrations not considered in the simulations:

– gain (because it does not influence the genotype detection)

– IBD/UPD (difficult to simulate realistically)

• Simulated dataset (100 samples with fixed k0 and t0): each sample is
a raw profile coming from the prior definition of XN given by the an-
notation file for the SNPs of chr. 22 in the Affymetrix GeneChip Map-
ping 250K Array (n = 2520) and the following prior definition of Z
(P(Zp = z) =: qz)

segment
I II III IV V VI VII VIII IX X XI XII XIII XIV XV

q1 0 0.1 0 0.1 0.5 0.1 0 0 0.1 0.5 0 0.1 0.5 0.1 0

q0 0.1 0.6 0.1 0.6 0.4 0.6 0.1 0.1 0.6 0.4 0.1 0.6 0.4 0.6 0.1

q−1 0.6 0.3 0.6 0.3 0.1 0.3 0.6 0.4 0.3 0.1 0.6 0.3 0.1 0.3 0.6

q−2 0.3 0 0.3 0 0 0 0.3 0.5 0 0 0.3 0 0 0 0.3

• Some results on breakpoint estimation:
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⇒ Method 2 has higher sensitivity and similar or lower FDR.

• Some results CN aberration estimation (- best result, - worst result):

method sum 0-1 err SSQ
√

SSQ/n
method 1 421.79 1226.59 0.70
(01, 01) 109.39 286.15 0.34

(01, mad) 109.39 286.15 0.34
(mad, 01) 111.75 283.77 0.34

sensitivity FDR
method Z=2 Z=0 Z=-1 Z=-2 Z=2 Z=0 Z=-1 Z=-2

method 1 0.681 0.932 0.968 0.555 0.017 0.047 0.306 0.025
(01, 01) 0.896 0.983 0.961 0.946 0.043 0.031 0.068 0.020

(01, mad) 0.896 0.983 0.961 0.946 0.043 0.031 0.068 0.020
(mad, 01) 0.889 0.984 0.963 0.942 0.038 0.026 0.075 0.023

⇒ Method 2 best estimates the profile
(best paired threshold: (01, 01), (01, mad)).

Applications on real data

•Data: paired samples of patients affected by chronic lymphocytic
leukemia (CLL), which then transformed in diffuse large B-cell lymphoma
(DLBCL) (Bertoni et al. (2008)). Of two patients, we had three samples.

• detectable CN aberra-
tions = the ones born by at
least 60% of cells in the sam-
ple

• Evaluation of the estimation of the CN aberrations: comparison with
the estimated CN of some genomic regions with FISH (fluorescent in
situ hybridization), which gives also the percentage of cells bearing the
aberration

– 15/17 detectable aberrations found by all estimators

– 3/26 not detectable aberrations found by all estimators and another
by (01, 01) and (01, mad) with pupd = 10−3 and (mad, 01) with

pupd = 10−4

– in only 2/90 normal segments, all estimators discovered an aberration

– Remark: a slightly discordance between the 2 techniques is possible,
because the samples used are not exactly the same

• Evaluation of the IBD/UPD region detection: comparison of the regions
found in the 3 samples of 2 patients

Patient 1:

pupd = 10−4 pupd = 10−3

types of regions 01, 01 01,mad mad, 01 01, 01 01,mad mad, 01

distinct (total) 413 413 414 494 492 519
equal (%) 0.79 0.79 0.78 0.78 0.78 0.77
equal in 2 samples (%) 0.15 0.15 0.20 0.15 0.15 0.18
overlapping (%) 0.03 0.03 0.01 0.02 0.02 0.03
validated (%) 0.98 0.98 0.98 0.95 0.95 0.98
remaining (%) 0.02 0.02 0.02 0.05 0.05 0.02
% of remaining < 1Mb 0.80 0.80 0.88 0.93 0.92 1.00
Patient 2:
distinct (total) 441 441 454 580 580 618
equal (%) 0.21 0.21 0.25 0.19 0.19 0.24
equal in 2 samples (%) 0.02 0.02 0.03 0.03 0.03 0.02
overlapping (%) 0.50 0.50 0.47 0.51 0.51 0.50
validated (%) 0.73 0.73 0.74 0.74 0.74 0.76
remaining (%) 0.27 0.27 0.26 0.26 0.26 0.24
% of remaining < 1Mb 0.88 0.88 0.89 0.91 0.91 0.93

⇒ the 3 estimators behaved similarly and equally well on real data

Summary and conclusions

•Our method is a new algorithm for the joint estimation of CN events and
IBD/UPD regions, which takes into account the errors in the genotyping
measurements of microarrays, due to the aberrations affecting the CN.

•Differently from the only other method present in literature (i.e., Scharpf
et al. (2008)), it considers all the CN events biologically relevant.

• The goodness of our model is supported by the results obtained on sim-
ulated and real data.


