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Abstract

We study upper and lower bounds on the sample-complexity of learning near-optimal behaviour in finite-state
discounted Markov Decision Processes (MDPs). We prove a new bound for a modified version of Upper Confidence
Reinforcement Learning (UCRL) with only cubic dependence on the horizon. The bound is unimprovable in all
parameters except the size of the state/action space, where it depends linearly on the number of non-zero transition
probabilities. The lower bound strengthens previous work by being both more general (it applies to all policies) and
tighter. The upper and lower bounds match up to logarithmic factors provided the transition matrix is not too dense.
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1 Introduction
The goal of reinforcement learning is to construct algorithms that learn to act optimally, or nearly so, in unknown
environments. In this paper we restrict our attention to finite state discounted MDPs with unknown transitions, but
known rewards.1 The performance of reinforcement learning algorithms in this setting can be measured in a number
of ways, for instance by using regret or PAC bounds [Kak03]. We focus on the latter, which is a measure of the
number of time-steps where an algorithm is not near-optimal with high probability. Many previous algorithms have
been shown to be PAC with varying bounds [Kak03, SL05, SLW+06, SLL09, SS10].

We construct a new algorithm, UCRLγ, based on Upper Confidence Reinforcement Learning (UCRL) [AJO10] and
prove a PAC bound of

Õ

(
T

ε2(1− γ)3
log

1

δ

)
.

1Learning reward distributions is substantially easier than transitions, so is omitted for clarity as in [SS10].
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where T is the number of non-zero transitions in the unknown MDP. Previously, the best published bound [SS10] is

Õ

(
|S ×A|
ε2(1− γ)6

log
1

δ

)
Our bound is substantially better in terms of the horizon, 1/(1 − γ), but can be worse if the state-space is very large
compared to the horizon and the transition matrix is dense. A bound with quartic dependence on the horizon has been
shown in [Aue11], but this work is still unpublished.

We also present a matching (up to logarithmic factors) lower bound that is both larger and more general than
the previous best given by [SLL09]. This article is an extended version of [LH12] with the most notable difference
being the inclusion of all proofs omitted in that work. It is worth observing that sample-complexity bounds have been
proven for larger classes than finite-state MDPs. The case where the true MDP has (possibly) infinitely many states,
but is known to be contained in some finite set of infinite-state MDPs has been considered by a number of authors
[DMS08, LHS13, LH14]. Factored and partial observable MDPs have also been studied under a variety of assumptions
[CS11, EDKM05]. We expect that many of the improvements given in this paper can be translated with relative ease
to the factored setting.

2 Notation
Proofs of the type found in this paper tend to use a number of complex magic constants. Readers will have an easier
time if they consult the tables of constants and notation found in A and B.

General. N = {0, 1, 2, · · · } is the natural numbers. For the indicator function we write 1{x = y} = 1 if x = y
and 0 if x 6= y. We use ∧ and ∨ for logical and/or respectively. If A is a set, then |A| is its size and A∗ is the
set of all finite ordered subsets (possibly with repetition). Unless otherwise mentioned, log represents the natural
logarithm. For random variable X we write EX and VarX for its expectation and variance respectively. We make
frequent use of the progression defined recursively by z1 := 0 and zi+1 := max {1, 2zi}. Define a set Z(a) :=
{zi : 1 ≤ i ≤ arg mini {zi ≥ a}}. We write Õ (·) for big-O, but where logarithmic multiplicative factors are dropped.

Markov Decision Process. An MDP is a tuple M = (S,A, p, r, γ) where S and A are finite sets of states and actions
respectively, r : S → [0, 1] is the reward function, p : S ×A × S → [0, 1] is the transition function, and γ ∈ (0, 1)
the discount factor. A stationary policy π is a function π : S → A mapping a state to an action. We write ps

′

s,a as
the probability of moving from state s to s′ when taking action a and ps

′

s,π := ps
′

s,π(s). The value of policy π in M

and state s is V πM (s) := r(s) + γ
∑
s′∈S p

s′

s,π(s)V
π
M (s′). We view V πM either as a function V πM : S → R or a vector

V πM ∈ R|S| and similarly ps,a ∈ [0, 1]|S| is a vector. We often use the scalar product between vectors, for example,
ps,a · V πM :=

∑
s′ p

s′

s,aV
π
M (s′). The optimal policy of M is defined π∗M := arg maxπ V

π
M . Common MDPs are M ,

M̂ and M̃ , which represent the true MDP, the estimated MDP using empirical transition probabilities and a model. We
write V := VM , V̂ := V

M̂
and Ṽ := V

M̃
for their values respectively. Similarly, π̂∗ := π∗

M̂
and in general, variables

with an MDP as a subscript will be written with a hat, tilde or nothing as appropriate and the subscript omitted.

3 Estimation
In the next section we will introduce the new algorithm, but first we give an intuitive introduction to the type of
parameter estimation required to prove sample-complexity bounds for MDPs. The general idea is to use concentration
inequalities to show the empiric estimate of a transition probability approaches the true probability exponentially fast
in the number of samples gathered. There are many such inequalities, each catering to a slightly different purpose.
We improve on previous work by using a version of Bernstein’s inequality, which takes variance into account (unlike
Hoeffding). The following example demonstrates the need for a variance dependent concentration inequality when
estimating the value functions of MDPs. It also gives insight into the workings of the proof in the next two sections.
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s0
r = 1

s1
r = 0
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p

1− q

q

Consider the MDP on the right with two states and one action where rewards are shown
inside the states and transition probabilities on the edges. We are only concerned with how
well the value can be approximated. Assume p > γ, q arbitrarily large (but not 1) and let p̂ be
the empiric estimate of p. By writing out the definition of the value function one can show that∣∣∣V (s0)− V̂ (s0)

∣∣∣ ≈ |p̂− p|
(1− γ)2

. (1)

Therefore if V − V̂ is to be estimated with ε accuracy, we need |p̂−p| < ε(1−γ)2. Now suppose we bound |p̂−p| via
a standard Hoeffding bound, then with high probability |p̂−p| .

√
L/nwhere n is the number of visits to state s0 and

L = log(1/δ). Therefore to obtain an error less than ε(1−γ)2 we need n > L
ε2(1−γ)4 visits to state s0, which is already

too many for a bound in terms of 1/(1− γ)3. If Bernstein’s inequality is used instead, then |p̂− p| .
√
Lp(1− p)/n

and so n > Lp(1−p)
ε2(1−γ)4 is required, but Equation (1) depends on p > γ. Therefore n > L

ε2(1−γ)3 visits are sufficient. If
p < γ, then Equation (1) can be improved.

4 Upper Confidence Reinforcement Learning Algorithm
UCRL is based on the optimism principle for solving the exploration/exploitation dilemma. It is model-based in the
sense that at each time-step the algorithm acts according to a model (in this case an MDP, M̃ ) chosen from a model
class. The idea is to choose the smallest model class guaranteed to contain the true model with high probability and act
according to the most optimistic model within this class. With a good choice of model class this guarantees a policy
that biases its exploration towards unknown states that may yield good rewards, while avoiding states that are known
to be bad. The approach has been successful in obtaining uniform sample complexity (or regret) bounds in various
domains where the exploration/exploitation problem is an issue [LR85, SL05, AO07, AJO10]. We modify UCRL2 of
Auer and Ortner (2010) to a new algorithm, UCRLγ, given below.

We start our analysis by considering a restricted setting where for each state/action pair in the true MDP there are
at most two possible next-states, which are known. We will then apply the algorithm and bound in this setting to solve
the general problem.

Assumption 1. For each (s, a) pair the true unknown MDP satisfies ps
′

s,a = 0 for all but two s′ ∈ S denoted sa+, sa− ∈
S. Note that sa+ and sa− are dependent on (s, a) and are known to the algorithm.

Extended value iteration. The function EXTENDEDVALUEITERATION is as used in [SL08]. The only difference is
the definition of the confidence intervals, which are now tighter for small/large values of p̂.

Episodes and phases. UCRLγ operates in episodes, which are contiguous blocks of time-steps ending when UPDATE
is called. The length of each episode is not fixed, instead, an episode ends when either the number of visits to a
state/action pair reaches mwmin for the first time or has doubled since the end of the last episode. We often refer to
time-step t and episode k and unless there is ambiguity we will not define k and just assume it is the episode in which
t resides. A delay phase is the period of H := 1

1−γ log 8|S|
ε(1−γ) contiguous time-steps where UCRLγ is in the function

DELAY, which happens immediately after an update. An exploration phase is a period of H time-steps starting at time
t that is not in a delay phase and where Ṽ πk(st)−V πk(st) ≥ ε/2. Exploration phases do not overlap with each other,
but may overlap with delay phases. More formally, the starts of exploration phases, t1, t2, · · · , are defined inductively
with t0 := −H .

ti := min
{
t : t ≥ ti−1 +H ∧ Ṽ πk(st)− V πk(st) ≥ ε/2 ∧ t not in a delay phase

}
Note there need not, and with high probability will not, be infinitely many such ti. The exploration phases are only
used in the analysis, they are not known to UCRLγ. We will later prove that the maximum number of updates is
Umax := |S ×A| log2

|S|
wmin(1−γ) and that with high probability the number of exploration phases is bounded by
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Algorithm 1 UCRLγ

1: t = 1, k = 1, n(s, a) = n(s, a, s′) = 0 for all s, a, s′ and s1 is the start state.
2: v(s, a) = v(s, a, s′) = 0 for all s, a, s′

3: H := 1
1−γ log 8|S|

ε(1−γ) and wmin := ε(1−γ)
4|S|

4: δ1 := δ
2|S×A|

(
log2 |S| log2 1

wmin(1−γ)

)−1

and L1 := log 2
δ1

5: m := 1280L1
ε2(1−γ)2

(
log log 1

1−γ

)2 (
log |S|

ε(1−γ)

)
log 1

ε(1−γ)
6: loop
7: p̂sa

+

s,a := n(s, a, sa+)/max {1, n(s, a)}
8: Mk :=

{
M̃ : |p̃sa

+

s,a − p̂sa
+

s,a | ≤ CONFIDENCEINTERVAL(p̃sa
+

s,a , n(s, a)), ∀(s, a)
}

9: M̃ = EXTENDEDVALUEITERATION(Mk)
10: πk = π̃∗

11: repeat
12: ACT

13: until v(st−1, at−1) ≥ max {mwmin, n(st−1, at−1)} and n(st−1, at−1) <
|S|m
1−γ

14: UPDATE(st−1, at−1) and DELAY and k = k + 1
15: end loop
16: function DELAY

17: for j = 1→ H do
18: ACT

19: end for
20: end function
21: function UPDATE(s, a)
22: n(s, a) = n(s, a) + v(s, a) and n(s, a, s′) = n(s, a, s′) + v(s, a, s′)∀s′
23: v(s, a) = v(s, a, ·) = 0
24: end function
25: function ACT

26: at = πk(st)
27: st+1 ∼ pst,at . Sample from MDP

28: v(st, at) = v(st, at) + 1 and v(st, at, st+1) = v(st, at, st+1) + 1 and t = t+ 1
29: end function
30: function EXTENDEDVALUEITERATION(M)
31: return optimistic M̃ ∈M such that V ∗

M̃
(s) ≥ V ∗

M̃′
(s) for all s ∈ S and M̃ ′ ∈M.

32: end function
33: function CONFIDENCEINTERVAL(p, n)

34: return min

{√
2L1p(1−p)

n
+ 2L1

3n
,
√

L1
2n

}
35: end function
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Emax := 4m|S ×A| log2 |S| log2
1

wmin(1−γ) . We write nt(s, a) to be the value of n(s, a) at time-step t. The delay
phases are introduced as a trick to ease the analysis. If UCRLγ enters an exploration phase we want to ensure that the
policy is fixed throughout the phase. The delay phase guarantees this because exploration phases do not start in delay
phases, and because updates occur only after the delay phase. In practise we expect the delay phases are unnecessary.

5 Upper PAC Bounds
We present two new PAC bounds. The first improves on all previous analyses, but relies on Assumption 1. The second
is more general and optimal in all terms except the number of states, where it depends on the number of non-zero
transition probabilities, T , rather than |S ×A|. This can be worse than the state-of-the-art if the transition matrix is
dense, but by at most a factor of |S|. We denote the policy followed by UCRLγ by UCRLγ, which is non-stationary.
Therefore the value depends not only on the current state, but the entire history. For this reason we write V UCRLγ(s1:t)
to indicate the discounted expected cumulative future rewards obtained from following non-stationary policy UCRLγ
given the history sequence s1:t = s1s2 · · · st (the policy is deterministic, so actions need not be included).

Theorem 2. Let M be the true MDP satisfying Assumption 1 and 0 < ε ≤ 1 and s1:t the sequence of states seen up to
time t. Then

P

{ ∞∑
t=1

1{V ∗(st)− V UCRLγ(s1:t) > ε} > HUmax +HEmax

}
< δ.

where V UCRLγ(s1:t) is the expected discounted value of UCRLγ from s1:t.

If lower order terms are dropped, then

HUmax +HEmax ∈ Õ
(
|S ×A|
ε2(1− γ)3

log
1

δ

)
.

Theorem 3. Let T be the unknown number of non-zero transitions in the true MDP with 0 < ε ≤ 1. Then there exists
a modification of UCRLγ (see end of this section) such that

P

{ ∞∑
t=1

1{V ∗(st)− V UCRLγ(s1:t) > ε} > T

|S ×A|
H (Umax + Emax)

}
< δ.

If the lower order terms are dropped, then the modified PAC bound is of order

Õ

(
T

ε2(1− γ)3
log

1

δ

)
.

Before the proofs, we briefly compare Thereom 3 with the more recent work on the sample complexity of rein-
forcement learning when a generative model is available [AMK12]. In that paper they obtain a bound equal (up to
logarithmic factors) to that of Theorem 3, but where the dependence on the number of states is linear. The online
version of the problem studied in this paper is harder in two ways. Firstly, access to a generative model allows you
to obtain independent samples from any state/action pair without needing to travel through the model. Secondly, and
more subtly, the difference bounded in [AMK12] is |V ∗(s) − V̂ ∗(s)| rather than the more usual |V ∗(s) − V π̂∗(s)|,
which is closer to what we require. The second problem was resolved with a more subtle proof in [AMK13]. It may be
possible that the techniques used in that work are transferable to the online setting, but not in a very straight-forward
way. It may eventually be a surprising fact that learning with the generative model is no easier than the online case
considered in this paper.

Proof overview. The proof of Theorem 2 borrows components from the work of [AJO10], [SL08] and [SS10]. It also
shares similarities with the proofs in [AMK12], although these were independently and simultaneously discovered.
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1. Bound the number of updates by Õ
(
|S ×A| log 1

ε(1−γ)

)
, which follows from the algorithm. Since a delay

phase only occurs after an update, the number of delaying phases is also bounded by this quantity.

2. Show that the true Markov Decision Process, M , remains in the model classMk for all k with high probability.

3. Use the optimism principle to show that if M ∈ Mk and V ∗ − V UCRLγ > ε, then Ṽ πk − V πk > ε/2. This key
fact shows that if UCRLγ is not nearly-optimal at some time-step t, then the true value and model value of πk
differ and so some information is (probably) gained by following this policy.

4. The most complex part of the proof is then to show that the information gain is sufficiently quick to tightly
bound the number of exploration phases by Emax.

5. Note that V ∗(st) − V UCRLγ(s1:t) > ε implies t is in a delay or exploration phase. Since with high probability
there are at most Umax + Emax of these phases, and both phases are exactly H time-steps long, the number of
time-steps when UCRLγ is not ε-optimal is at most HUmax +HEmax.

Weights and variances. We define the weight2 of state/action pair (s, a) as follows.

wπ(s, a|s′) := 1{(s′, π(s′)) = (s, a)}+ γ
∑
s′′

ps
′′

s′,π(s′)w
π(s, a|s′′)

wt(s, a) := wπk(s, a|st).

As usual, w̃ and ŵ are defined as above but with p replaced by p̃ and p̂ respectively. Think of wt(s, a) as the expected
number of discounted visits to state/action pair (s, a) while following policy πk starting in state st. The important
point is that this value is approximately equal to the expected number of visits to state/action pair (s, a) within the next
H time-steps. We also define the local variances of the value function. These measure the variability of values while
following policy π.

σπ(s, a)2 := ps,a · (V π)
2 − (ps,a · V π)

2 and σ̃π(s, a)2 := p̃s,a ·
(
Ṽ π
)2

−
(
p̃s,a · Ṽ π

)2

where (V π)
2 is define component-wise.

Knownness. We define the knownness index of state s at time t as

κt(s, a) := max

{
zi : zi ≤

nt(s, a)

mwt(s, a)

}
,

where m is as in the preamble of the algorithm above. The idea will be that if all states are sufficiently well known
then UCRLγ will be ε-optimal. What we will soon show is that states with low weight need not have their transitions
approximated as accurately as those with high weight. Therefore fewer visits to these states are required. Conversely,
states with high weight need very accurate estimates of their transition probabilities. Fortunately, these states are
precisely those we expect to visit often. By carefully balancing these factors we will show that all states become
known after roughly the same number of exploration phases.

The active set. State/action pairs with very small wt(s, a) cannot influence the differences in value functions. Thus
we define an active set of states where wt(s, a) is not tiny. At each time-step t define the active set Xt by

Xt :=

{
(s, a) : wt(s, a) >

ε(1− γ)

4|S|
=: wmin

}
.

We further partition the active set by knownness and weights.

ιt(s, a) := max

{
zi : zi ≤

wt(s, a)

wmin

}
Xt,κ,ι := {(s, a) : (s, a) ∈ Xt ∧ κt(s, a) = κ ∧ ιt(s, a) = ι}

2Also called the discounted future state-action distribution in [Kak03].
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An easy computation shows that the indices κ and ι are contained in Z(|S|) and Z( 1
(1−γ)wmin

) respectively. We write
the joint index set,

K × I := Z(|S|)×Z(
1

(1− γ)wmin
).

For ι ∈ I we define wι by wι := zιwmin. Therefore if (s, a) ∈ Xt,κ,ι, then by definition we ι(s, a) = ι and
wι ≤ wt(s, a) ≤ wι+1 = 2wι. Additionally,

κ ≡ κt(s, a) ≤ nt(s, a)

mwt(s, a)
≤ 2κ

Therefore

κwιm ≤ κmwt(s, a) ≤ nt(s, a) ≤ 2κmwt(s, a) ≤ 4κwιm.

Analysis. The proof of Theorem 2 follows easily from three key lemmas.

Lemma 4. The following hold:

1. The total number of updates is bounded by Umax := |S ×A| log2
|S|

wmin(1−γ) .
2. If M ∈Mk and t is not in a delay phase and V ∗(st)− V UCRLγ(s1:t) > ε, then

Ṽ πk(st)− V πk(st) > ε/2.

Lemma 5. M ∈Mk for all k with probability at least 1− δ/2.

Lemma 6. The number of exploration phases is bounded by Emax with probability at least 1− δ/2.

The proofs of the lemmas are delayed while we apply them to prove Theorem 2.
Proof of Theorem 2. By Lemma 5,M ∈Mk for all k with probability 1−δ/2. By Lemma 6 we have that the number
of exploration phases is bounded by Emax with probability 1− δ/2. Now if t is not in a delaying or exploration phase
and M ∈ Mk, then by Lemma 4, UCRLγ is nearly-optimal. Finally note that the number of updates is bounded by
Umax and so the number of time-steps in delaying phases is at most HUmax. Therefore UCRLγ is nearly-optimal for
all but HUmax +HEmax time-steps with probability 1− δ.

We now turn our attention to proving Lemmas 4, 5 and 6. Of these, only Lemma 6 presents a substantial challenge.
Proof of Lemma 4. For part 1 we note that no state/action pair is updated once it has been visited more than |S|m/(1−
γ) times. Since updates happen only when the visit counts would double, and only start when they are at least mwmin,
the number of updates to pair (s, a) is bounded by log2

|S|
wmin(1−γ) . Therefore the total number of updates is bounded

by Umax := |S ×A| log2
|S|

wmin(1−γ) .

The proof of part 2 is closely related to the approach taken by [SL08]. Recall that M̃ is chosen optimistically
by extended value iteration. This generates an MDP, M̃ , such that V ∗

M̃
(s) ≥ V ∗

M̃ ′
(s) for all M̃ ′ ∈ Mk. Since we

have assumed M ∈ Mk we have that Ṽ πk(s) ≡ V ∗
M̃

(s) ≥ V ∗M (s). Therefore Ṽ πk(st) − V UCRLγ(s1:t) > ε. By the
assumption that t is a non-delaying time-step we have that the policy of UCRLγ will remain stationary and equal to
πk for at least H time-steps. Using the definition of the horizon, H , we have that |V UCRLγ(s1:t) − V πk(st)| < ε/2.
Therefore Ṽ πk(st)− V πk(st) > ε/2 as required.

Proof of Lemma 5. In the previous lemma we showed that there are at most Umax updates where exactly one
state/action pair is updated. Therefore we only need to check M ∈ Mk after each update. For each update let
(s, a) be the updated state/action pair and apply the best of either Bernstein or Hoeffding inequalities3 to show that

3The application of these inequalities is somewhat delicate since although the samples from state action pair (s, a) are independent by the
Markov property, they are not independent given the number of samples from (s, a). For a detailed discussion, and a proof that using these bounds
is theoretically sound, see [SL08].

7



|p̂sa+s,a − psa
+

s,a | ≤ CONFIDENCEINTERVAL(psa
+

s,a , n(s, a))) with probability 1 − δ1. Setting δ1 := δ
2Umax

and applying
the union bound completes the proof.

We are now ready to work on the Lemma 6, which gives a high-probability bound on the number of exploration phases.
First we will show that if t is the start of an exploration phase, then there exists a (κ, ι) such that |Xt,κ,ι| > κ. Since
Xt,κ,ι consists of active states with similar weights, we expect their visit counts to increase at approximately the same
rate. More formally we show that:

1. If t is the start of an exploration phase, then there exists (κ, ι) such that |Xt,κ,ι| > κ.
2. If |Xt,κ,ι| > κ for sufficiently many t, then sufficient information is gained for an update occur.
3. Combining the results above with the fact that there are at most Umax updates completes the result.

Lemma 7. Let t be a non-delaying time-step and assume M ∈ Mk. If |Xt,κ,ι| ≤ κ for all (κ, ι), then |Ṽ πk(st) −
V πk(st)| ≤ ε/2.

The full proof is long, technical and may be found in Appendix D. We provide a sketch, but first we need some useful
results about MDPs and the differences in value functions. The first shows that less accurate transition probabilities
are required for low-weight states than their high-weight counter parts. The second lemma formalises our intuitions in
Section 3, and motivates the use of Bernstein’s inequalities.

Lemma 8. Let M and M̃ be two Markov decision processes differing only in transition probabilities and π be a
stationary policy. Then

V π(st)− Ṽ π(st) = γ
∑
s,a

wπ(s, a|st)(ps,a − p̃s,a) · Ṽ π. (2)

Proof sketch. Drop the π superscript and write V (st) = r(st) + γ
∑
st+1

p
st+1
st,π V (st+1). Then V (st) − Ṽ (st) =

γ[pst,π − p̃st,π] · Ṽ + γ
∑
st+1

p
st+1
st,π [V (st+1)− Ṽ (st+1)]. The result is obtained by continuing to expand the second

term of the right hand side.

Lemma 9 (Sobel 1982). For any MDP M̃ , stationary policy π and state s′,∑
s,a

w̃π(s, a|s′)σ̃π(s, a)2 ≤ 1

γ2(1− γ)2
. (3)

Proof sketch of Lemma 7. For ease of notation we drop references to πk. We approximate wt(s, a) ≈ w̃t(s, a) and

|(ps,a − p̃s,a) · Ṽ | .
√

L1σ̃(s,a)2

nt(s,a) . Using Lemma 8

|Ṽ (st)− V (st)| .

∣∣∣∣∣∣
∑

s,a∈Xt

wt(s, a)(ps,a − p̃s,a) · Ṽ

∣∣∣∣∣∣ (4)

.
∑

s,a∈Xt

wt(s, a)

√
L1σ̃(s, a)2

nt(s, a)
.
∑
κ,ι

∑
s,a∈Xt,κ,ι

√
L1w̃t(s, a)σ̃(s, a)2

κm
(5)

≤
∑
κ,ι

√√√√L1|Xt,κ,ι|
κm

∑
s,a∈Xt,κ,ι

w̃t(s, a)σ̃t(s, a)2 ≤

√
L1|K × I|
mγ2(1− γ)2

, (6)

where in Equation (4) we used Lemma 8 and the fact that states not in Xt are visited very infrequently. In Equation
(5) we used the approximations for (p− p̃) · Ṽ , the definition of Xt,κ,ι and the approximation w ≈ w̃. In Equation (6)
we used the Cauchy-Schwarz inequality,4 the fact that κ ≥ |Xt,κ,ι| and Lemma 9. Substituting

m :=
1280L1

ε2(1− γ)2

(
log log

1

1− γ

)2(
log

|S|
ε(1− γ)

)
log

1

ε(1− γ)

4|〈1, v〉| ≤ ‖1‖2 ‖v‖2.
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completes the proof. The extra terms in m are needed to cover the errors in the approximations made here.

The full proof requires formalising the approximations made at the start of the sketch above. The second approximation
is comparatively easy and follows from the definition of the confidence intervals. Showing that w(s, a) ≈ w̃(s, a)
requires substantial work.

We have shown in Lemma 7 that if the value of UCRLγ is not ε-optimal, then |Xt,κ,ι| must be greater than κ for
some (κ, ι). Now we show that this cannot happen too often except with low probability. This will be sufficient to
bound the number of exploration phases and therefore bound the number of times UCRLγ is not ε-optimal. Let t be
the start of an exploration phase and define νt(s, a) to be the number of visits to state s within the next H time-steps.
Formally,

νt(s, a) :=

t+H−1∑
i=t

1{si = s ∧ πk(si) = a} .

The following lemma captures our intuition that state/action pairs with high wt(s, a) will, in expectation, be visited
more often.

Lemma 10. Let t be the start of an exploration phase and wt(s, a) ≥ wmin. Then Eνt(s, a) ≥ wt(s, a)/2.

Proof sketch. Use the definition of the horizon H to show that wt(s, a) is not much larger than a bounded-horizon
version. Compare Eνt(s, a) and the definition of wt(s, a).

wt(s, a) ≡ E

∞∑
i=0

γi1{(st+i, π(st+i)) = (s, a)} ≤ E

H−1∑
i=0

1{(st+i, π(st+i)) = (s, a)}+ wmin/2.

Rearranging completes the result.

Proof of Lemma 6. Let N := 3|S ×A|m, where m is as in the proof of Lemma 7 or the appendix. If κ, ι ∈ K × I,
then we call a visit to state-action pair (s, a) at time-step t (κ, ι)-useful if κmwι ≤ nt(s, a) ≤ 4κmwι. Therefore the
total number of (κ, ι)-useful visits is bounded by 3|S ×A|mκwι = Nκwι. By definition, if nt(s, a) > 4κmwι, then
(s, a) /∈ Xt′,κ,ι for all t′ ≥ t.

Bounding the number of exploration phases. Let t be the start of an exploration phase. Therefore Ṽ πk(st) −
V πk(st) > ε/2 and so by Lemma 7 there exists a (κ, ι) such that |S| ≥ |Xt,κ,ι| > κ. For each (κ, ι), let Eκ,ι be
the number of exploration phases where |Xt,κ,ι| > κ. We shortly show that P {Eκ,ι > 4N} < δ1, which allows us
to apply the union bound over all (κ, ι) pairs to show there are at most Emax := 4N |K × I| exploration phases with
probability at least 1− δ1|K × I| ≡ 1− |K × I| δ

2Umax
> 1− δ/2.

Bounding P {Eκ,ι > 4N}. Consider the sequence of exploration phases, t1, t2, · · · , tEκ,ι , such that |Xti,κ,ι| > κ.
We make the following observations:

1. {ti} is a (finite with probability 1) sequence of random variables depending on the MDP and policy.

2. The first part of this proof shows that the sequence necessarily ends after an exploration phase if the total number
of (κ, ι)-useful visits is at least Nwικ. The sequence may end early for other reasons, such as states becoming
unreachable or being visited while not exploring.

3. Define νi :=
∑
s,a∈Xti,κ,ι

νti(s, a), which is the number of (κ, ι)-useful visits in exploration phase ti. By
Lemma 10 we know that for (s, a) ∈ Xti,κ,ι, the expected number of visits to state-action pair (s, a) is at least
wti(s, a)/2 ≥ wι/2. Therefore since |Xti,κ,ι| > κ we have

E[νi|ν1 · · · νi−1] ≥ (κ+ 1)wι/2

and Var[νi|ν1 · · · νi−1] ≤ E[νi|ν1 · · · νi−1]H .5

5If X ∈ [0, H], then VarX < HEX . νi ∈ [0, H].

9



We now wish to show the sequence has length at most 4N with probability at least 1− δ1. Define auxiliary sequences
of length 4N by

ν+
i :=

{
νi if i ≤ Eκ,ι
wι(κ+ 1)/2 otherwise

ν̄i :=
ν+
i wι(κ+ 1)

2E[ν+
i |ν

+
1 · · · ν

+
i−1]

≤ v+,

which are chosen such that

Eν̄i = E[ν̄i|ν̄1 · · · ν̄i−1] = wι(κ+ 1)/2. (7)

Both equalities follow from the definition of ν̄i, which is normalised. It is straightforward to verify that P {Eκ,ι > 4N} ≤
P
{∑4N

i=1 ν̄i ≤ Nwι(κ+ 1)
}

. We now use the method of bounded differences and the martingale version of Bern-

stein’s inequality [CL06, §6] applied to
∑
ν̄i. Let Bi := E[

∑4N
j=1 ν̄j |ν̄1 · · · ν̄i], which forms a Doob martingale with

B4N =
∑4N
i=1 ν̄i, B0 = 2Nwι(κ + 1) and |Bi+1 − Bi| ≤ H . The expression for B0 from Equation 7. Letting

σ2 :=
∑4N
i=1 Var[Bi|B1 · · ·Bi−1] ≤ 2NHwι(κ+ 1), which follows by the definitions of B, ν̄ and by point 3 above.

Then

P {Eκ,ι > 4N} ≤ P

{
4N∑
i=1

ν̄i ≤ Nwι(κ+ 1)

}
= P {B4N −B0 ≤ −B0/2}

≤ 2 exp

(
−

1
4B

2
0

2σ2 + HB0

3

)
= 2 exp

(
− N2w2

ι (κ+ 1)2

2σ2 + 2HNwι(κ+1)
3

)

≤ 2 exp

(
−Nwι(κ+ 1)

4H + 2H
3

)
.

Setting this equal to δ1, solving for N and noting that wι(κ+ 1) ≥ wmin gives

N ≥ 5H

wmin
log

2

δ1
∈ Õ

(
|S|

ε(1− γ)2
log

1

δ1

)
Since N satisfies this, the result is complete.

Note that although in the final step we did not use a factor of |A| in N , this cannot be omitted from the definition as it
is used elsewhere in the proof. The result above completes the proof of Theorem 2. We now drop the assumption on
the number of next-states by proving the more general Theorem 3. While we believe it is possible to do this directly,
we take the simplest approach by applying the algorithm above to an augmented MDP. A more direct approach would
be to use the Good-Turing estimator to estimate the missing probability, an approach recently used successfully in
[DTC13].
Proof sketch of Theorem 3. The idea is to augment each state/action pair of the original MDP with |S| − 2 states in
the form of a binary tree as pictured in the diagram below. The intention of the tree is to construct an MDP, M , that
with appropriate transition probabilities is functionally equivalent to the true MDP while satisfying Assumption 1. If
we naively add the states as described above, then we will add an unnecessary number of addition state/action pairs
because the new states need only one action. This problem is fixed by modifying the definition of an MDP to allow a
varying number of actions for each state. This adds no difficulty to the proof and means the augmented MDP now has
O(|S|2|A|) state-action pairs. The rewards in the added states are set to zero.
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s, a

. .
.

1 . . .

. . .

. . . |S|

d = log2 |S|

Since the tree has depth d = log2 |S|, it now takes d time-steps in the augmented MDP to change states once in
the original MDP. Therefore we must also rescale γ by passing the algorithm γ̄, which satisfies γ > γ̄d = γ. Then the
rewards received at time-steps d, 2d, · · · , kd in the augmented MDP are discounted by

γ̄kd =
(
γ̄d
)k

= γk,

Policies and values can easily be translated between the two and importantly the augmented MDP now satisfies As-
sumption 1. Before we apply UCRLγ to M we note that the sample-complexity bound of the algorithm depends on
the inputted γ̄, rather than the true γ. Since γ̄ < γ, the values 1/(1 − γ̄) ≥ 1/(1 − γ). Fortunately the effect is not
substantial since 1

1−γ̄ <
log |S|
1−γ . Therefore the scaling loses at most log3 |S| in the final PAC bound.

Now if we simply apply UCRLγ to M and use Theorem 2 to bound the number of mistakes, then we obtain a PAC
bound in the general case. Unfortunately, this leads to a bound depending on all the state/action pairs in M , which
total |S|2|A|. To obtain dependence on the number of non-zero transitions, T , requires a little more justification. Let
T (s, a) :=

∑
s′ 1
{
ps
′

s,a > 0
}

be the number of non-zero transitions from state/action pair (s, a). It is easy to show
the number of reachable states in the tree associated with (s, a) is at most T (s, a) log |S|. Therefore the total number
of reachable state/action pairs is log |S|

∑
s,a T (s, a) = T log |S|. Finally note that by Equation (2) from Lemma 8,

state/action pairs that are not reachable do not contribute to the error and need no visits. More specifically, state/action
pairs that are not reachable have wt(s, a) = 0 for all t and so are never part of the active set. So in the proof of Lemma
6 we can replace N := 3|S ×A|m by N = 3Tm log |S|. Note that N was not used by the algorithm, so only the
proof must be altered.

6 Lower PAC Bound
We now turn our attention to the lower bound. The approach is similar to that of [SLL09]. In that work it was assumed
that policies were deterministic and that the action selection policy between one time-step and the next depends only
on the previously visited state. As the authors point out, neither assumption feels too restrictive in the counter-example
used. Nevertheless, in this work we eliminate the second assumption and, more importantly, refine the dependence on
the horizon from quadratic to cubic. We make essentially two modifications to the counter-example used in that paper.
The first is to add a delaying state where no information can be gained, but where an algorithm may still fail to be PAC.
The second is more subtle and will be described in the proof.

Theorem 11. LetA be a (possibly non-stationary) policy depending on S,A, r, γ, ε and δ where ε(1−γ) is sufficiently
small. Then there exists a Markov decision processMhard such that with probability at least δ the number of time-steps
where V ∗(st)− V A(s1:t) > ε is larger than

c1|S ×A|
ε2(1− γ)3

log
c2|S|
δ

where c1, c2 > 0 are independent of the policy A as well as all inputs S,A, ε, δ, γ.
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In light of the recent results in [AMK13], this should not come as a surprise. They show a comparable lower bound,
but in the easier problem where a generative model is available. Since we study a harder problem it is unremarkable
that our lower bound is at least as bad. Perhaps most surprising is that in the worst case both the online setting studied
here and the setting for which a generative model is available are equally difficult.

Counter Example. We prove Theorem 11 by using a class of MDPs where S = {0, 1,⊕,	} andA = {1, 2, · · · , |A|}.
The rewards and transitions for a single action are depicted in Figure 1 where ε(a∗) = 16ε(1 − γ) for some a∗ ∈ A
and ε(a) = 0 for all other actions. Some remarks:

1. States ⊕ and 	 are almost completely absorbing with

(∀a ∈ A) p⊕⊕,a = p		,a = q2 := (1− 2γ + 2γ2)/γ.

The states ⊕ and 	 confer maximum/minimum reward respectively.

2. The transitions are independent of actions for all states except state 1. From this state, actions lead uniformly to
⊕/	 except for one action, a∗, which has a slightly higher probability of transitioning to state⊕ and so a∗ is the
optimal action in state 1.

3. State 0 has an absorption rate p0
0,a = q1 := 1(2− γ) such that, on average, a policy will stay there for 1/(1− γ)

time-steps.

1

r = 0
	

r = 0
⊕

r = 1

0

r = 0

1− q1

q1 := 1/(2− γ)

1
2 − ε(a)1

2 + ε(a)
q2 := (1− 2γ + 2γ2)/γ

1− q2

q2

1− q2

Figure 1: Hard MDP

Intuition. The MDP in Figure 1 is very bandit-like in the sense that once a policy reaches state 1 it should choose the
action most likely to lead to state ⊕ whereupon it will either be rewarded or punished (visit state ⊕ or 	). Eventually
it will return to state 1 when the whole process repeats. This suggests a PAC-MDP algorithm can be used to learn the
bandit with p(a) := p⊕1,a. We then make use of a theorem of Mannor and Tsitsiklis on bandit sample-complexity
[MT04] to show that with high probability the number of times a∗ is not selected is at least

Õ

(
|A|

ε2(1− γ)2
log

1

δ

)
. (8)

Improving the bound to depend on 1/(1 − γ)3 is intuitively easy, but technically somewhat annoying. The idea is to
consider the value differences in state 0 as well as state 1. State 0 has the following properties:

1. The absorption rate is sufficiently large that any policy remains in state 0 for around 1/(1− γ) time-steps.
2. The absorption rate is sufficiently small that the difference in values due to bad actions planned in state 1 still

matter while in state 0.
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While in state 0 an agent cannot make an error in the sense that V ∗(0)−Q∗(0, a) = 0 for all a. But we are measuring
V ∗(0) − V A(0) and so an agent can be penalised if its policy upon reaching state 1 is to make an error. Suppose the
agent is in state 0 at some time-step before moving to state 1 and making a mistake. On average it will stay in state 0
for roughly 1/(1 − γ) time-steps during which time it will plan a mistake upon reaching state 1. Thus the bound in
Equation (8) can be multiplied by 1/(1 − γ). The proof is harder because an agent need not plan to make a mistake
in all future time-steps when reaching state 1 before eventually doing so in one time-step. Dependence on |S| can be
added easily by chaining together |S|/4 copies of the counter-example MDP with arbitrarily low transitions between
them. Note that [SLL09] proved their theorem for a specific class of policies while Theorem 11 holds for all policies.

The proof makes use of a simple form of bandit and Theorem 12 below, which lower bounds the sample-complexity
of bandit algorithms. We need some new notation required for non-stationary policies and bandits.

History Sequences. We write s1:t = s1, s2, · · · , st for the history sequence of length t. Histories can be concatenated,
so s1:t⊕ = s1, s2, · · · , st,⊕ where ⊕ ∈ S.

Bandits. An A-armed stationary bandit is a vector p : A → [0, 1]. A bandit policy is a function π : {0, 1}∗ → A.
A policy interacts with a bandit sequentially with at = π(r1:t−1) and rt sampled from a Bernoulli distribution with
parameter p(at). The optimal arm is a∗ := arg maxa p(a). A policy dependent on ε, δ and A has sample-complexity
T := T (A, ε, δ) if for all bandits the arm chosen on time-step T satisfies p(a∗) − p(aT ) ≤ ε with probability at least
1− δ.

Theorem 12 (Mannor and Tsitsiklis, 2004). There exist positive constants c1, c2, ε0, and δ0, such that for everyA ≥ 2,
ε ∈ (0, ε0) and δ ∈ (0, δ0) there exists a bandit p ∈ [0, 1]A such that

T (A, ε, δ) ≥ c1
|A|
ε2

log
c2
δ

with probability at least δ.

Remark 13. The bandit used in the proof of Theorem 12 satisfies p(a) = 1
2 for all a except a∗ which has p(a∗) :=

1
2 + ε.

We now prepare to prove Theorem 11. For the remainder of this section let A be an arbitrary policy and Mhard

be the MDP of Figure 2. As in previous work we write V A := V AMhard
. The idea of the proof will be to use Theorem

12 to show that A cannot be approximately correct in state 1 too often. Then use this to show that while in state 0
before-hand it is also not approximately correct.

Definition 14. Let s1:∞ ∈ S∞ be the sequence of states seen by policy A and for arbitrary history s1:t let

∆(s1:t) := V ∗(s1:t)− V A(s1:t).

Lemma 15. If γ ∈ (0, 1), q1 := 1/(2− γ) and q2 := (1− 2γ + 2γ2)/γ, then

q
1

4(1−γ)
1 > 3/4 and

∞∑
t=0

qt(1− q)γt =
1

2
and

∞∑
n=0

qn2 (1− q2)

n∑
t=0

γt ≥ 1

2γ(1− γ)
.

Note that 0 < q2 < 1 is true under the assumption that 1 > γ > 1/2.
Proof sketch. All results follow from the geometric series and easy calculus.

Lemma 16. Let s1:t be such that st = 1 and a := A(s1:t) 6= a∗. Then

∆(s1:t) ≥ 8ε.
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Proof. The result essentially follows from the definition of the value function.

∆(s1:t) ≡ V ∗(s1:t)− V A(s1:t)

= γ
[
p⊕1,a∗V

∗(s1:t⊕) + p	1,a∗V
∗(s1:t	)

]
− γ

[
p⊕1,aV

A(s1:t⊕) + p	1,aV
A(s1:t	)

]
=
γ

2

[
V ∗(s1:t⊕)− V A(s1:t⊕) + V ∗(s1:t	)− V A(s1:t	)

]
+ γε(a∗) [V ∗(s1:t⊕)− V ∗(s1:t	)]

≥ 16εγ(1− γ) [V ∗(s1:t⊕)− V ∗(s1:t	)]

= 16εγ(1− γ)

∞∑
n=0

qn2 (1− q2)

n∑
t=0

γt

≥ 8ε,

where we used the definition of the value function and MDP, Mhard. The final step follows from Lemma 15.

We now define the blocks of time where the policy is looping in state 0. Recall we chose the absorption in this state
such that the expected number of time-steps a policy remains there is approximately 1/(1−γ). We define the intervals
starting when a policy arrives in state 0 and ending when it leaves to state 1.

Definition 17. Define t01 := 1 and

t0i := min
{
t : t > t0i−1 ∧ st = 0 ∧ st−1 6= 0

}
t1i := min

{
t− 1 : st = 1 ∧ t > t0i

}
.

Define the intervals Ii := [t0i , t
1
i ] ⊆ N. We call interval Ii the ith phase.

Note the following facts:

1. Since all transition probabilities are non-zero, t0i and t1i exist for all i ∈ N with probability 1.
2. |Ii| forms a sequence of i.i.d random variables with distribution independent of A.

Definition 18. Suppose t ∈ N and st = 0 and define ψt(a) to be the discounted probability that action a is chosen by
algorithm A when state 1 is finally reached.

ψt(a) :=

∞∑
k=0

qk1 (1− q1)γk1
{
A(s1:t0

k1) = a
}
.

Lemma 19.
∑
a∈A ψt(a) = 1

2 for all t where st = 0.

Proof. We use Lemma 15. ∑
a∈A

ψi(a) ≡
∑
a∈A

∞∑
k=0

qk1 (1− q1)γk1
{
A(s1:t0

k1) = a
}

=

∞∑
k=0

qk1 (1− q1)γk =
1

2

as required.

Definition 20. Define random variables Yi by Yi := 1{|Ii| ≥ 1/[4(1− γ)]}.

Intuitively, Yi is the event that the ith phase lasts at least 1/[4(1− γ)] time-steps. The following lemma shows that
at least two thirds of all phases have Yi = 1 with high probability.

Lemma 21. For all n ∈ N, P
{∑n

i=1 Yi ≤
2
3n
}
≤ 2e−n/72.
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Proof. Preparing to use Hoeffding’s bound,

P {Yi = 1} := P {|Ii| ≥ 1/[4(1− γ)]} = q
1/[4(1−γ)]
1 > 3/4,

where we used the definitions of Yi, Ii and Lemma 15. Therefore EYi > 3/4.

P

{
n∑
i=1

Yi ≤
2

3
n

}
≤ P

{
n∑
i=1

Yi ≤
1

12
n+ nEYi

}
= P

{
n∑
i=1

Yi −EYi ≤
1

12
n

}
≤ 2e−n/72

where we applied basic inequalities followed by Hoeffding’s bound.

Lemma 22. If γ > 3
4 and

∑
a6=a∗ ψt(a) ≥ 1

4 , then
∑
a6=a∗ ψt+k(a) ≥ 1

8 for all t ∈ N and k satisfying 0 ≤ k ≤
1/[16(1− γ)].

Proof. Working from the definitions.

1

4
≤
∑
a6=a∗

ψt0i (a) ≡
∞∑
j=0

qj1(1− q1)γj1
{
A(s1:t0i

0j1) 6= a∗
}

=

k−1∑
j=0

qj1(1− q1)γj1
{
A(s1:t0i

0j1) 6= a∗
}

+ qk1γ
k
∑
a6=a∗

ψa(s1:t0i
0k)

≤ (1− q1)

k−1∑
j=0

qj1γ
j + qk1γ

k
∑
a 6=a∗

ψa(s1:t0i
0k)

Rearranging, setting 0 ≤ k ≤ 1/[16(1− γ)] and using the geometric series completes the proof.

So far, none of our results have been especially surprising. Lemma 21 shows that at least two thirds of all phases have
length exceeding 1/[4(1− γ)] with high probability. Lemma 22 shows that if at the start of a phase A assigns a high
weight to the sub-optimal actions, then it does so throughout the initial part of the phase. The following lemma is more
fundamental. It shows that the number of phases where A assigns a high weight to the sub-optimal actions is of order

1
ε2(1−γ)2 log 1

δ with high probability.

Lemma 23. Let F := c1A
ε2(1−γ)2 log c2

δ with constants as in Theorem 12, then there exists some a∗ ∈ A such that∣∣∣∣∣∣
i :

∑
a6=a∗

ψt0i (a) >
1

4
∧ i < 2F + 1


∣∣∣∣∣∣ > F

with probability at least δ.

The idea is similar to that in [SLL09]. Assume a policy exists that doesn’t satisfy the condition above and then use
it to learn the bandit defined by p(a) := p⊕1,a.

Proof. Define p ∈ [0, 1]|A| by p(a) := p⊕1,a, which characterises a bandit. Now we use the MDP algorithm A to learn
bandit p. Since the only unknown quantity in the MDP described in Figure 1 we simply simulate the outcomes in
states state 0, ⊕ and 	 and sample from the bandit when in state 1. After 2F + 1 visits to state 1 we return the action

abest := arg max
a

2F+1∑
i=1

1{āi = a} , āi := arg max
a′

wt0i (a
′).

By Theorem 12, the strategy in Algorithm 2 must fail with probability at least δ. Therefore with probability at least
δ, abest 6= a∗. However abest is defined as the majority action of all the āi and so for at least F time-steps āi 6= a∗.
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Suppose ψt0i (a
∗) > 1

4 , then by Lemma 19,
∑
a6=a∗ ψt0i (a) < 1

4 and āi ≡ arg maxa ψt0i (a) = a∗. This implies that
with probability δ, for at least F time-steps

∑
a6=a∗ ψt0i (a) > 1

4 as required.

Proof of Theorem 11. Define Zi to be the event that the ith phase lasts at least 1/[16(1 − γ)] time-steps and the
combined weight of sub-optimal actions at the start of a phase is at least 1/4.

Zi := 1

|Ii| ≥ 1/[16(1− γ)] ∧
∑
a6=a∗

ψt0i (a) ≥ 1/4

 .

Suppose Zi = 1 and 0 ≤ k ≤ 1/[16(1− γ)], then s1:t0i+k
= s1:t0i

0k and

∆(s1:ti+k) =

∞∑
t=0

qt1(1− q1)γt∆(s1:ti+k0t1) (9)

≥
∞∑
t=0

qt1(1− q1)γt
∑
a6=a∗

1
{
A(s1:t0i+k

0t1) = a
}

8ε (10)

≥
∑
a 6=a∗

ψt0i+k(a)8ε (11)

≥ ε, (12)

where Equation (9) follows from the definition ofMhard and the value function. Equation (10) by Lemma 16. Equation
(11) by the definition of ψti+k(a) and Equation (12) by Lemma 22. Thus for each i where Zi = 1, policy A makes
at least 1/[16(1 − γ)] ε-errors. We now show that Zi = 1 for at least F/3 time-steps with probability at least 2δ,
By Lemma 23 the number of phases within the first 2F + 1 in which ψt0i (a) ≥ 1/4 is at least F with probability at
least δ. By Lemma 21, the probability that less than two thirds of the intervals satisfy |Ii| ≥ 1/(16(1− γ)) is at most
2e−2F/72 ≤ δ/2 where we used the fact that ε(1−γ) are sufficiently small to guarantee that 2F ≥ 72 log 2

δ . Therefore
by the union bound the number of phases in which Zi occurs must be at least F/3 with probability at least δ/2.

Dependence on |S| log |S| is added as by chaining |S|/4 copies of the MDP depicted in Figure 1 together. Let
S =

{
01, 11,⊕1,	1, · · · , 0|S|/4, 1|S|/4,⊕|S|/4,	|S|/4

}
. Where each set of four states {0k, 1k,⊕k,	k} is described

by Figure 1 except that we modify q1 := (1− 2γ + 2γ2)/γ − q3 and p0k+1

0k,a
= q3 for some arbitrarily small q3. Then

apply the analysis in [SLL09] to obtain a bound with on the sample-complexity of

Ω

(
|S ×A|
ε2(1− γ)3

log
|S|
δ

)
as required.

Remark 24. Dependence on S logS can possibly be added by a similar technique used by [SLL09], but details could
be messy.

7 Conclusion

Summary. We presented matching upper and lower bounds on the number of time-steps when a reinforcement learn-
ing algorithm can be nearly-optimal with high probability. We now compare the bound proven in Theorem 2 with the
current state-of-the-art, MORMAX [SS10].

Õ

(
T

ε2(1− γ)3
log

1

δ

)
︸ ︷︷ ︸

UCRLγ

Õ

(
|S ×A|
ε2(1− γ)6

log
1

δ

)
︸ ︷︷ ︸

MORMAX
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The dependence on ε and δ match the lower bound for both algorithms. UCRLγ is optimal in terms of the horizon
where MORMAX loses by three factors. On the other hand, MORMAX has a bound that is linear in the state space
where UCRLγ can depend quadratically. Nevertheless, UCRLγ will be prefered unless the state/action space is both
dense and extremely large relative to the effective horizon. Importantly, the new upper and lower bounds now match
up to logarithmic factors if the MDP has at most |S ×A| log |S ×A| non-zero transitions, so at least for this class
UCRLγ is now unimprovable. Additionally, UCRLγ combined with Theorem 2 is the first demonstration of a PAC
reinforcement learning algorithm with cubic dependence on the effective horizon.

Running time. We did not analyze the running time of UCRLγ, but expect analysis similar to that of [SL08] can be
used to show that UCRLγ can be approximated to run in polynomial time with no cost to sample-complexity.
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A Constants
|K × I| := log2 |S| log2

1
wmin(1−γ) Õ

(
log |S| log 1

ε(1−γ)

)
H := 1

1−γ log 8|S|
ε(1−γ) Õ

(
1

1−γ log |S|ε

)
wmin := ε(1−γ)

4|S| Ω̃
(
ε(1−γ)
|S|

)
δ1 := δ

2Umax
Ω̃

(
δ

|S×A| log 1
ε(1−γ)

)
L1 := log 2

δ1
Õ
(

log |S×A|
δε(1−γ)

)
m := 1280L1

ε2(1−γ)2

(
log log 1

1−γ

)2 (
log |S|

ε(1−γ)

)
log 1

ε(1−γ) Õ
(

1
ε2(1−γ)2 log |S×A|δ

)
N := 3|S ×A|m Õ

(
|S×A|
ε2(1−γ)2 log 1

δ

)
Emax := 4N |K × I| Õ

(
|S×A|
ε2(1−γ)2 log 1

δ

)
Umax := |S ×A| log2

|S|
wmin(1−γ) Õ

(
|S ×A| log 1

ε(1−γ)

)
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B Table of Notation

S,A Finite sets of states and actions respectively.

γ The discount factor. Satisfies γ ∈ (0, 1).

ε The required accuracy.

δ The probability that an algorithm makes more mistakes than its sample-
complexity.

N The natural numbers, starting at 0.

log The natural logarithm.

∧,∨ Logical and/or respectively.

EX,VarX The expectation and variance of random variable X respectively.

zi z1 = 0 and zi = max {1, 2zi−1}.

Z(a) Defined as a set of all zi up to and including a. Formally Z(a) :=
{zi : i ≤ arg mini {zi ≥ a}}. Contains approximately log a elements.

π A policy.

p The transition function, p : S×A×S → [0, 1]. We also write ps
′

s,a := p(s, a, s′)
for the probability of transitioning to state s′ from state s when taking action
a. ps

′

s,π(s) := ps
′

s,π(s). ps,a ∈ [0, 1]|S| is the vector of transition probabilities.

p̂, p̃ Other transition probabilities, as above.

r The reward function r : S → A.

M The true MDP. M := (S,A, p, r, γ).

M̂ The MDP with empirically estimated transition probabilities. M̂ :=
(S,A, p̂, r, γ).

M̃ An MDP in the model class,M. M̃ := (S,A, p̃, r, γ).

V πM The value function for policy π in MDP M . Can either be viewed as a function
V πM : S → R or vector V πM ∈ R|S|.

Ṽ π, V̂ π The values of policy π in MDPs M̃ and M̂ respectively.

π∗ ≡ π∗M The optimal policy in MDP M .

π̃∗ ≡ π∗
M̃

The optimal policy in M̃ .

π̂∗ ≡ π∗
M̂

The optimal policy in M̂ .

πk The (stationary) policy at used in episode k.

nt(s, a) The number of visits to state/action pair (s, a) at time-step t.

nt(s, a, s
′) The number of visits to state s′ from state s when taking action a at time-step.

vtk(s, a) If tk is the start of an exploration phase, then this is the total number of visits
to state (s, a) in that exploration phase.

st, at The state and action in time-step t respectively.

V πd A higher “moment” value function. See Definition 26.
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σπd (s, a)2 The variance of V πd (s′) when taking action a in state s. Defined in Definition
26.

L1 Defined as log(2/δ1).

D Defined as Z(β).

wt(s, a) The expected discounted number of visits to state/action pair (s, a) while fol-
lowing policy πk from state st.

Xt The set of state/action pairs s, a where wt(s, a) ≥ wmin.

Xt,κ,ι The set of state/action pairs where κt(s, a) = κ and ιt(s, a) = ι. Note that⋃
κ,ιKt(κ, ι) contains all states with w(s, a) ≥ wmin.

C Technical Results
We can use Hoeffding and Bernstein inequalities to bound |p − p̂| and |p̂ − p̃|. We now want to combine these to
bound |p− p̃|. The following lemma is easily proven with simple algebra reminiscent of the derivation of the empiric
Bernstein inequality.

Lemma 25. Let p, p̂, p̃ ∈ [0, 1] satisfy

|p− p̂| ≤ min {CI1(p), CI2(p)} |p̃− p̂| ≤ min {CI1(p̃), CI2(p̃)}

where

CI1(p) :=

√
2p(1− p)

n
log

2

δ
+

2

3n
log

2

δ
CI2(p) :=

√
1

2n
log

2

δ
.

Then

|p− p̃| ≤
√

8p̃(1− p̃)
n

log
2

δ
+ 2

(
1

n
log

2

δ

) 3
4

+
4

3n
log

2

δ

D Proof of Lemma 7
We need to define some higher “moments” of the value function. This is somewhat unfortunate as it complicates the
proof, but may be unavoidable.

Definition 26. We define the space of bounded value/reward functionsR by

R(i) :=

[
0,

(
1

1− γ

)i]|S|
⊂ R|S|.

Let π be some stationary policy. For rd ∈ R(d) define values V πd by the Bellman equations

V πd (s) = rd(s) + γ
∑
s′

ps
′

s,π(s)V
π
d (s′).

Additionally,

σπd (s, a)2 := ps,a · (V πd )
2 − (ps,a · V πd )

2
.

Note that V πd ∈ R(d+ 1) and σ2
d ∈ R(2d+ 2). Let r0 ∈ R(0) be the true reward function r0(s) := r(s) and define

a recurrence by r2d+2(s) := σπd (s, π(s))2. We define r̃d, r̂d, Ṽ πd , V̂ πd and σ̃πd , σ̂πd similarly but where all parameters
have hat/tilde.
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Lemma 27. Let M ∈Mk at time-step t and π = πk. Then

|(ps,π − p̃s,π) · Ṽ πd | ≤

√
8L1σ̃πd (s, π(s))2

nt(s, π(s))
+ 2

(
L1

nt(s, π(s))

) 3
4 1

(1− γ)d+1
+

4L1

3nt(s, π(s))(1− γ)d+1
(13)

Proof. Drop references to π and let p := psa
+

s,π(s), p̃ := p̃sa
+

s,π(s) and n := nt(s, π(s)). Since M, M̃ ∈ Mk then apply
Lemma 25 to obtain

|p− p̃| ≤
√

8L1p̃(1− p̃)
n

+ 2

(
L1

n

) 3
4

+
4L1

3n

Assume without loss of generality that Ṽd(sa+) ≥ Ṽd(sa−). Therefore we have

|(ps,π(s) − p̃s,π(s)) · Ṽd| ≤
√

8L1p̃(1− p̃)
n

(
Ṽd(sa

+)− Ṽd(sa−)
)

+ 2

(
L1

n

) 3
4 1

(1− γ)d+1

+
4L1

3n(1− γ)d+1
, (14)

where we used Assumption 1 and the fact that Vd ∈ Rd+1.

p̃(1− p̃)
(
Ṽd(sa

+)− Ṽd(sa−)
)2

= p̃(1− p̃)
(
Ṽd(sa

+)2 + Ṽd(sa
−)2 − 2Ṽd(sa

+)Ṽd(sa
−)
)

= σ̃d(s, π(s))2.

Substituting into Equation (14) completes the proof.

Proof of Lemma 7. For ease of notation we drop π and t super/subscripts. Let

∆d :=

∣∣∣∣∣∑
s,a

[w(s, a)− w̃(s, a)]rd(s)

∣∣∣∣∣ ≡ |Ṽd(st)− Vd(st)|.
Using Lemmas 8 and 27:

∆d = γ

∣∣∣∣∣∑
s,a

w(s, a)(ps,a − p̃s,a) · Ṽd

∣∣∣∣∣
≤ ε

4(1− γ)d
+

∣∣∣∣∣∣
∑
s,a∈X

w(s, a)(ps,a − p̃s,a) · Ṽd

∣∣∣∣∣∣
≤ ε

4(1− γ)d
+Ad +Bd + Cd,

where

Ad :=
∑
s,a∈X

w(s, a)

√
8L1σ̃d(s, a)2

n(s, a)
Bd :=

∑
s,a∈X

w(s, a)
4L1

3n(s, a)(1− γ)d+1

Cd :=
∑
s,a∈X

w(s, a)
2

(1− γ)d+1

(
L1

n(s, a)

)3/4

.
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The expressions Bd and Cd are substantially easier to bound than Ad. First we give a naive bound on Ad, which we
use later.

Ad ≤
∑
s,a∈X

√
8w(s, a)σ̃d(s, a)2L1

n(s, a)
≡

∑
κ,ι∈K×I

∑
s,a∈Xκ,ι

√
8w(s, a)σ̃d(s, a)2L1

n(s, a)
(15)

≤
∑

κ,ι∈K×I

√√√√8L1|Xκ,ι|
mκ

∑
s,a∈Xκ,ι

w(s, a)σ̃d(s, a)2 ≤
∑

κ,ι∈K×I

√√√√8L1

m

∑
s,a∈Xκ,ι

w(s, a)σ̃d(s, a)2 (16)

≤

√√√√8|K × I|L1

m

∑
κ,ι∈K

∑
s,a∈Xκ,ι

w(s, a)σ̃d(s, a)2 ≤

√√√√8|K × I|L1

m

∑
s,a∈X

w(s, a)σ̃d(s, a)2 (17)

≤

√
8|K × I|L1

m(1− γ)2d+3
, (18)

where in Equation (15) we used the definition ofAd. In Equation (16) we applied Cauchy-Schwarz and the assumption
that |Xκ,ι| ≤ κ. In Equation (17) we used Cauchy-Schwarz again and the definition of K. Finally we apply the trivial
bound of

∑
w(s, a)σ̃d(s, a)2 ≤ 1/(1− γ)2d+3. Unfortunately, this bound is not sufficient for our needs. The solution

is approximate w(s, a) by w̃(s, a) and use Lemma 9 to improve the last step above.

Ad ≤

√√√√8|K × I|L1

m

∑
s,a

w(s, a)σ̃d(s, a)2 (19)

≡

√√√√8|K × I|L1

m

∑
s,a

w̃(s, a)σ̃d(s, a)2 +
8|K × I|L1

m

∑
s,a

(w(s, a)− w̃(s, a))σ̃d(s, a)2 (20)

≤

√
8|K × I|L1

m(1− γ)2d+2
+

8|K × I|L1

m
∆2d+2, (21)

where Equation (19) is as in the naive bound. Equation (20) is substituting w(s, a) for w̃(s, a) and Equation (20) uses
the definition of ∆. Therefore

∆d ≤
ε

4(1− γ)d
+Bd + Cd +

√
8L1|K × I|
m(1− γ)2d+2

+

√
8L1|K × I|

m
∆2d+2. (22)

The bounds on Bd and Cd are somewhat easier, and follow similar lines to the naive bound on Ad.

Bd ≡
∑
s,a∈X

w(s, a)
4L1

3n(s, a)(1− γ)d+1
=

4L1

3(1− γ)d+1

∑
κ,ι

|Xκ,ι|
mκ

≤ 4|K × I|L1

3m(1− γ)d+1
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and

Cd ≡ 2
∑
s,a∈X

w(s, a)

(
L1

n(s, a)

) 3
4 1

(1− γ)d+1

≤ 2

(1− γ)d+1+1/4

∑
κ,ι∈K×I

∑
s,a∈Xκ,ι

(
w(s, a)L1

n(s, a)

) 3
4

≤ 2

(1− γ)d+1+1/4

∑
κ,ι∈K×I

(
L1|Xκ,ι|
mκ

) 3
4

≤ 2

(1− γ)d+1+1/4

∑
κ,ι∈K×I

(
L1

m

) 3
4

≤ 2|K × I|
(1− γ)d+1+1/4

(
L1

m

) 3
4

where in the second line we used Cauchy-Schwarz. For sufficiently large m (to be chosen shortly) it can be checked
that Cd ≤ Ad and Bd ≤ Ad. Expanding the recurrence in Equation (22) up to depth d = β :=

⌈
1

2 log 2 log 1
1−γ

⌉
with

D = {0, 2, 6, 14, · · · , β}leads to

∆0 ≤
∑

d∈D−{β}

(
8L1|K × I|

m

)d/(d+2)
[

ε

4(1− γ)d
+ 3

√
8L1|K × I|
m(1− γ)2d+2

]2/(d+2)

+

(
8L1|K × I|

m

)β/(β+2)
[

ε

4(1− γ)β
+ 3

√
8L1|K × I|
m(1− γ)2β+3

]2/(β+2)

, (23)

where we used the naive bound to control Aβ .

Letting m := 1280L1

ε2(1−γ)2

(
log log 1

1−γ

)2 (
log |S|

ε(1−γ)

)
log 1

ε(1−γ) completes the proof.
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