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Abstract. We study upper and lower bounds on the sample-complexity
of learning near-optimal behaviour in finite-state discounted Markov De-
cision Processes (mdps). We prove a new bound for a modified version of
Upper Confidence Reinforcement Learning (ucrl) with only cubic de-
pendence on the horizon. The bound is unimprovable in all parameters
except the size of the state/action space, where it depends linearly on the
number of non-zero transition probabilities. The lower bound strength-
ens previous work by being both more general (it applies to all policies)
and tighter. The upper and lower bounds match up to logarithmic factors
provided the transition matrix is not too dense.

Keywords: Reinforcement learning, sample-complexity, exploration ex-
ploitation, PAC-MDP, Markov decision processes.

1 Introduction

The goal of reinforcement learning is to construct algorithms that learn to act
optimally, or nearly so, in unknown environments. In this paper we restrict
our attention to finite state discounted mdps with unknown transitions, but
known rewards.1 The performance of reinforcement learning algorithms in this
setting can be measured in a number of ways, for instance by using regret or pac
bounds [Kak03]. We focus on the latter, which is a measure of the number of
time-steps where an algorithm is not near-optimal with high probability. Many
previous algorithms have been shown to be pac with varying bounds [Kak03,
SL05, SLW+06, SLL09, SS10, Aue11].

We construct a new algorithm, ucrlγ, based on Upper Confidence Reinforce-
ment Learning (ucrl) [AJO10] and prove a pac bound of

Õ

(
T

ε2(1− γ)3
log

1

δ

)
.

where T is the number of non-zero transitions in the unknown mdp. Previously,
the best published bound [SS10] is

Õ

( |S ×A|
ε2(1− γ)6

log
1

δ

)

1 Learning reward distributions is substantially easier than transitions, so is omitted
for clarity as in [SS10].
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Our bound is substantially better in terms of the horizon, 1/(1− γ), but can be
worse if the state-space is very large compared to the horizon and the transition
matrix is dense. A bound with quartic dependence on the horizon has been
shown in [Aue11], but this work is still unpublished.

We also present a matching (up to logarithmic factors) lower bound that is
both larger and more general than the previous best given by [SLL09].

2 Notation

Proofs of the type found in this paper tend to use a number of complex magic
constants. Readers will have an easier time if they consult the table of constants
found in the appendix.

General. N = {0, 1, 2, · · · } is the natural numbers. For the indicator function
we write [[x = y]] = 1 if x = y and 0 if x �= y. We use ∧ and ∨ for logical and/or
respectively. If A is a set then |A| is its size and A∗ is the set of all finite ordered
subsets. Unless otherwise mentioned, log represents the natural logarithm. For
random variable X we write EX and VarX for its expectation and variance re-
spectively. We make frequent use of the progression defined recursively by z1 := 0
and zi+1 := max {1, 2zi}. Define a set Z(a) := {zi : 1 ≤ i ≤ argmini {zi ≥ a}}.
We write Õ (·) for big-O, but where logarithmic multiplicative factors are
dropped.

Markov Decision Process. An mdp is a tuple M = (S,A, p, r, γ) where S
and A are finite sets of states and actions respectively. r : S → [0, 1] is the
reward function. p : S ×A × S → [0, 1] is the transition function and γ ∈ (0, 1)
the discount rate. A stationary policy π is a function π : S → A mapping a
state to an action. We write ps

′
s,a as the probability of moving from state s to s′

when taking action a and ps
′

s,π := ps
′

s,π(s). The value of policy π in M and state

s is V π
M (s) := r(s) + γ

∑
s′∈S ps

′
s,π(s)V

π
M (s′). We view V π

M either as a function

V π
M : S → R or a vector V π

M ∈ R
|S| and similarly ps,a ∈ [0, 1]|S| is a vector.

ps,a · V π
M :=

∑
s′ p

s′
s,aV

π
M (s′) is the scalar product. The optimal policy of M is

defined π∗
M := argmaxπ V

π
M . Common mdps are M , M̂ and M̃ , which represent

the true mdp, the estimated mdp using empirical transition probabilities and a
model. We write V := VM , V̂ := V

̂M
and Ṽ := V

˜M
for their values respectively.

Similarly, π̂∗ := π∗
̂M

and in general, variables with an mdp as a subscript will be
written with a hat, tilde or nothing as appropriate and the subscript omitted.

3 Estimation

In the next section we will introduce the new algorithm, but first we give an
intuitive introduction to the type of parameter estimation required to prove
sample-complexity bounds for mdps. The general idea is to use concentration
inequalities to show the empiric estimate of a transition probability approaches
the true probability exponentially fast in the number of samples gathered. There
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are many such inequalities, each catering to a slightly different purpose. We im-
prove on previous work by using a version of Bernstein’s inequality, which takes
variance into account (unlike Hoeffding). The following example demonstrates
the need for a variance dependent concentration inequality when estimating the
value functions of mdps. It also gives insight into the workings of the proof in
the next two sections.

s0
r = 1

s1
r = 0

1− p

p

1− q

q

Consider the mdp on the right with two states and one
action where rewards are shown inside the states and tran-
sition probabilities on the edges. We are only concerned
with how well the value can be approximated. Assume
p > γ, q arbitrarily large (but not 1) and let p̂ be the
empiric estimate of p. By writing out the definition of the
value function one can show that∣∣∣V (s0)− V̂ (s0)

∣∣∣ ≈ |p̂− p|
(1− γ)2

. (1)

Therefore if V − V̂ is to be estimated with ε accuracy, we need |p̂−p| < ε(1−γ)2.
Now suppose we bound |p̂− p| via a standard Hoeffding bound, then with high
probability |p̂ − p| � √

L/n where n is the number of visits to state s0 and
L = log(1/δ). Therefore to obtain an error less than ε(1 − γ)2 we need n >

L
ε2(1−γ)4 visits to state s0, which is already too many for a bound in terms of

1/(1−γ)3. If Bernstein’s inequality is used instead, then |p̂−p| � √
Lp(1− p)/n

and so n > Lp(1−p)
ε2(1−γ)4 is required, but Equation (1) depends on p > γ. Therefore

n > L
ε2(1−γ)3 visits are sufficient. If p < γ then Equation (1) can be improved.

4 Upper Confidence Reinforcement Learning Algorithm

ucrl is based on the optimism principle for solving the exploration/exploitation
dilemma. It is model-based in the sense that at each time-step the algorithm acts
according to a model (in this case an mdp, M̃) chosen from a model class. The
idea is to choose the smallest model class guaranteed to contain the true model
with high probability and act according to the most optimistic model within this
class. With a good choice of model class this guarantees a policy that biases its
exploration towards unknown states that may yield good rewards, while avoiding
states that are known to be bad. The approach has been successful in obtaining
uniform sample complexity (or regret) bounds in various domains where the ex-
ploration/exploitation problem is an issue [LR85, SL05, AO07, AJO10, Aue11].
We modify ucrl2 of Auer and Ortner (2010) to a new algorithm, ucrlγ, given
below.

We start our analysis by considering a restricted setting where for each
state/action pair in the true mdp there are at most two possible next-states,
which are known. We will then apply the algorithm and bound in this setting to
solve the general problem.
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Assumption 1. For each (s, a) pair the true unknown mdp satisfies ps
′

s,a = 0
for all but two s′ ∈ S denoted sa+, sa− ∈ S. Note that sa+ and sa− are dependent
on (s, a) and are known to the algorithm.

Algorithm 1. ucrlγ

1: t = 1, k = 1, n(s, a) = n(s, a, s′) = 0 for all s, a, s′ and s1 is the start state.
2: v(s, a) = v(s, a, s′) = 0 for all s, a, s′

3: H := 1
1−γ

log 8|S|
ε(1−γ)

and wmin := ε(1−γ)
4|S|

4: δ1 := δ
2|S×A|

(
log2 |S| log2 1

wmin(1−γ)

)−1

and L1 := log 2
δ1

5: m := 1280L1
ε2(1−γ)2

(
log log 1

1−γ

)2 (
log |S|

ε(1−γ)

)
log 1

ε(1−γ)

6: loop

7: p̂sa
+

s,a := n(s, a, sa+)/max {1, n(s, a)}
8: Mk :=

{
M̃ : |p̃sa+s,a − p̂sa

+

s,a | ≤ ConfidenceInterval(p̃sa
+

s,a , n(s, a)), ∀(s, a)
}

9: M̃ = ExtendedValueIteration(Mk)
10: πk = π̃∗

11: repeat
12: Act
13: until v(st−1, at−1) ≥ max {mwmin, n(st−1, at−1)} and n(st−1, at−1) <

|S|m
1−γ

14: Update(st−1, at−1) and Delay and k = k + 1

15: function Delay
16: for j = 1 → H do
17: Act

18: function Update(s, a)
19: n(s, a) = n(s, a) + v(s, a) and n(s, a, s′) = n(s, a, s′) + v(s, a, s′)∀s′
20: v(s, a) = v(s, a, ·) = 0

21: function Act
22: at = πk(st)
23: st+1 ∼ pst,at � Sample from mdp
24: v(st, at) = v(st, at) + 1 and v(st, at, st+1) = v(st, at, st+1) + 1 and t = t+ 1

25: function ExtendedValueIteration(M)

26: return optimistic M̃ ∈ M such that V ∗
˜M
(s) ≥ V ∗

˜M′(s) for all s ∈ S and M̃ ′ ∈ M.

27: function ConfidenceInterval(p, n)

28: return min

{√
2L1p(1−p)

n
+ 2L1

3n
,
√

L1
2n

}

Extended Value Iteration. The function ExtendedValueIteration is as
used in [SL08]. The only difference is the definition of the confidence intervals,
which are now tighter for small/large values of p̂.

Episodes and Phases. ucrlγ operates in episodes, which are contiguous blocks
of time-steps ending when update is called. The length of each episode is not
fixed, instead, an episode ends when either the number of visits to a state/action
pair reaches mwmin for the first time or has doubled since the end of the last
episode. We often refer to time-step t and episode k and unless there is ambiguity
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we will not define k and just assume it is the episode in which t resides. A
delay phase is the period of H := 1

1−γ log 8|S|
ε(1−γ) contiguous time-steps where

ucrlγ is in the function delay, which happens immediately after an update.
An exploration phase is a period of H time-steps starting at time t that is not
in a delay phase and where Ṽ πk(st)−V πk(st) ≥ ε/2. Exploration phases do not
overlap with each other, but may overlap with delay phases. More formally, the
starts of exploration phases, t1, t2, · · · , are defined inductively with t0 := −H .

ti := min
{
t : t ≥ ti−1 +H ∧ Ṽ πk(st)− V πk(st) ≥ ε/2 ∧ t not in a delay phase

}

Note there need not, and with high probability will not, be infinitely many
such ti. The exploration phases are only used in the analysis, they are not
known to ucrlγ. We will later prove that the maximum number of updates
is Umax := |S ×A| log2 |S|

wmin(1−γ) and that with high probability the number of

exploration phases is bounded by Emax := 4m|S ×A| log2 |S| log2 1
wmin(1−γ) . We

write nt(s, a) to be the value of n(s, a) at time-step t.

5 Upper PAC Bounds

We present two new pac bounds. The first improves on all previous analyses, but
relies on Assumption 1. The second is more general and optimal in all terms ex-
cept the number of states, where it depends on the number of non-zero transition
probabilities, T , rather than |S ×A|. This can be worse than the state-of-the-art
if the transition matrix is dense, but by at most a factor of |S|.
Theorem 1. Let M be the true mdp satisfying Assumption 1 and 0 < ε ≤ 1
and s1:t the sequence of states seen up to time t. Then

P

{ ∞∑
t=1

[[V ∗(st)− V ucrlγ(s1:t) > ε]] > HUmax +HEmax

}
< δ.

where V ucrlγ(s1:t) is the expected discounted value of ucrlγ from s1:t.

If lower order terms are dropped then

HUmax +HEmax ∈ Õ

( |S ×A|
ε2(1− γ)3

log
1

δ

)
.

Theorem 2. Let T be the unknown number of non-zero transitions in the true
mdp with 0 < ε ≤ 1. Then there exists a modification of ucrlγ (see end of this
section) such that

P

{ ∞∑
t=1

[[V ∗(st)− V ucrlγ(s1:t) > ε]] >
T

|S ×A|H (Umax + Emax)

}
< δ.

If the lower order terms are dropped then the modified pac bound is of order

Õ

(
T

ε2(1− γ)3
log

1

δ

)
.
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Before the proofs, we briefly compare Thereom 2 with the more recent work
on the sample complexity of reinforcement learning when a generative model is
available [AMK12]. In that paper they obtain a bound equal (up to logarithmic
factors) to that of Theorem 2, but where the dependence on the number of states
is linear. The online version of the problem studied in this paper is harder in
two ways. Firstly, access to a generative model allows you to obtain independent
samples from any state/action pair without needing to travel through the model.
Secondly, and more subtly, the difference bounded in [AMK12] is |V ∗(s)− V̂ ∗(s)|
rather than the more usual |V ∗(s)−V π̂∗

(s)|, which is closer to what we require.
Unfortunately, bounding the latter quantity appears to be somewhat more chal-
lenging due to subtle additional dependencies. Note that one can easily translate
from the first type of bound to the second, but a naive method costs a factor of
1/(1 − γ). In fact, it seems there is no clear way to modify the work in either
this paper or theirs to achieve a bound on |V ∗(s) − V π̂∗

(s)| that is both linear
in the state space and cubic in the horizon, although either is possible at the
expense of the other. It may eventually be a surprising fact that learning with
the generative model is no easier than the online case considered in this paper.

Proof Overview. The proof of Theorem 1 borrows components from the work
of [AJO10], [SL08] and [SS10]. It also shares similarities with the proofs in
[AMK12], although these were independently and simultaneously discovered.

1. Bound the number of updates by Õ
(
|S ×A| log 1

ε(1−γ)

)
, which follows from

the algorithm. Since a delay phase only occurs after an update, the number
of delaying phases is also bounded by this quantity.

2. Show that the true Markov Decision Process, M , remains in the model class
Mk for all k with high probability.

3. Use the optimism principle to show that if M ∈ Mk and V ∗ − V ucrlγ > ε
then Ṽ πk − V πk > ε/2. This key fact shows that if ucrlγ is not nearly-
optimal at some time-step t then the true value and model value of πk differ
and so some information is (probably) gained by following this policy.

4. Themost complex part of the proof is then to show that the information gain is
sufficiently quick to tightly bound the number of exploration phases by Emax.

5. Note that V ∗(st) − V ucrlγ(s1:t) > ε implies t is in a delay or exploration
phase. Since with high probability there are at most Umax + Emax of these
phases, and both phases are exactly H time-steps long, the number of time-
steps when ucrlγ is not ε-optimal is at most HUmax +HEmax.

Weights and Variances. We define the weight2 of state/action pair (s, a) as
follows.

wπ(s, a|s′) := [[(s′, π(s′)) = (s, a)]] + γ
∑
s′′

ps
′′

s′,π(s′)w
π(s, a|s′′)

wt(s, a) := wπk(s, a|st).
As usual, w̃ and ŵ are defined as above but with p replaced by p̃ and p̂ re-
spectively. Think of wt(s, a) as the expected number of discounted visits to

2 Also called the discounted future state-action distribution in [Kak03].
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state/action pair (s, a) while following policy πk starting in state st. The im-
portant point is that this value is approximately equal to the expected number
of visits to state/action pair (s, a) within the next H time-steps. We also define
the local variances of the value function. These measure the variability of values
while following policy π.

σπ(s, a)2 := ps,a · V π2 − [ps,a · V π]2 and σ̃π(s, a)2 := p̃s,a · Ṽ π2 − [p̃s,a · Ṽ π]2.

Knownness. We define the knownness index of state s at time t as

κt(s, a) := max

{
zi : zi ≤ nt(s, a)

mwt(s, a)

}
,

where m is as in the preamble of the algorithm above. The idea will be that
if all states are sufficiently well known then ucrlγ will be ε-optimal. What we
will soon show is that states with low weight need not have their transitions
approximated as accurately as those with high weight. Therefore fewer visits to
these states are required. Conversely, states with high weight need very accurate
estimates of their transition probabilities. Fortunately, these states are precisely
those we expect to visit often. By carefully balancing these factors we will show
that all states become known after roughly the same number of exploration
phases.

The Active Set. State/action pairs with very small wt(s, a) cannot influence
the differences in value functions. Thus we define an active set of states where
wt(s, a) is not tiny. At each time-step t define the active set Xt by

Xt :=

{
(s, a) : wt(s, a) >

ε(1− γ)

4|S| =: wmin

}
.

We further partition the active set by knownness and weights.

ιt(s, a) := min

{
zi : zi ≥ wt(s, a)

wmin

}

Xt,κ,ι := {(s, a) : (s, a) ∈ Xt ∧ κt(s, a) = κ ∧ ιt(s, a) = ι}
An easy computation shows that the indices κ and ι are contained in Z(|S|) and
Z( 1

(1−γ)wmin
) respectively. We write the joint index set,

K × I := Z(|S|)×Z(
1

(1 − γ)wmin
).

Analysis. Space does not permit us to provide proofs for all results. Simple
proofs are omitted while time-consuming ones are often only sketched. All details
can be found in the technical report [LH12]. The proof of Theorem 1 follows easily
from three key lemmas.

Lemma 3. The following hold:

1. The total number of updates is bounded by Umax := |S ×A| log2 |S|
wmin(1−γ) .

2. If M ∈ Mk and t is not in a delay phase and V ∗(st)−V ucrlγ(s1:t) > ε then

Ṽ πk(st)− V πk(st) > ε/2.
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Lemma 4. M ∈ Mk for all k with probability at least 1− δ/2.

Lemma 5. The number of exploration phases is bounded by Emax with proba-
bility at least 1− δ/2.

The proofs of the lemmas are delayed while we apply them to prove Theorem 1.

Proof of Theorem 1. By Lemma 4, M ∈ Mk for all k with probability
1− δ/2. By Lemma 5 we have that the number of exploration phases is bounded
by Emax with probability 1 − δ/2. Now if t is not in a delaying or exploration
phase and M ∈ Mk then by Lemma 3, ucrlγ is nearly-optimal. Finally note
that the number of updates is bounded by Umax and so the number of time-steps
in delaying phases is at most HUmax. Therefore ucrlγ is nearly-optimal for all
but HUmax +HEmax time-steps with probability 1− δ. �
We now turn our attention to proving Lemmas 3, 4 and 5. Of these, only Lemma
5 presents a substantial challenge.

Proof of Lemma 3. For part 1 we note that no state/action pair is updated
once it has been visited more than |S|m/(1−γ) times. Since updates happen only
when the visit counts would double, and only start when they are at leastmwmin,
the number of updates to pair (s, a) is bounded by log2

|S|
wmin(1−γ) . Therefore the

total number of updates is bounded by Umax := |S ×A| log2 |S|
wmin(1−γ) .

The proof of part 2 is closely related to the approach taken by [SL08]. Re-

call that M̃ is chosen optimistically by extended value iteration. This gener-
ates an mdp, M̃ , such that V ∗

˜M
(s) ≥ V ∗

˜M ′ (s) for all M̃ ′ ∈ Mk. Since we

have assumed M ∈ Mk we have that Ṽ πk(s) ≡ V ∗
˜M
(s) ≥ V ∗

M (s). Therefore

Ṽ πk(st)−V ucrlγ(s1:t) > ε. Finally note that t is a non-delaying time-step and so
policy of ucrlγ will remain stationary and equal to πk for at least H time-steps.
Using the definition of the horizon, H , we have that |V ucrlγ(s1:t) − V πk(st)| <
ε/2. Therefore Ṽ πk(st)− V πk(st) > ε/2 as required. �

Proof of Lemma 4. In the previous lemma we showed that there are at most
Umax updates where exactly one state/action pair is updated. Therefore we only
need to check M ∈ Mk after each update. For each update let (s, a) be the
updated state/action pair and apply the best of either Bernstein or Hoeffding
inequalities3 to show that |p̂sa+s,a − psa

+

s,a | ≤ ConfidenceInterval(psa
+

s,a , n(s, a)))

with probability 1 − δ1. Setting δ1 := δ
2Umax

and applying the union bound
completes the proof. �
We are now ready to work on the Lemma 5, which gives a high-probability bound
on the number of exploration phases. First we will show that if t is the start of
an exploration phase then there exists a (κ, ι) such that |Xt,κ,ι| > κ. Since Xt,κ,ι

3 The application of these inequalities is somewhat delicate since although the samples
from state action pair (s, a) are independent by the Markov property, they are not
independent given the number of samples from (s, a). For a detailed discussion, and
a proof that using these bounds is theoretically sound, see [SL08].
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consists of active states with similar weights, we expect their visit counts to
increase at approximately the same rate. More formally we show that:

1. If t is the start of an exploration phase then there exists (κ, ι) such that
|Xt,κ,ι| > κ.

2. If |Xt,κ,ι| > κ for sufficiently many t then sufficient information is gained for
an update occur.

3. Combining the results above with the fact that there at most Umax updates
completes the result.

Lemma 6. Let t be a non-delaying time-step and assume M ∈ Mk. If |Xt,κ,ι| ≤
κ for all (κ, ι) then |Ṽ πk(st)− V πk(st)| ≤ ε/2.

The full proof is long, technical and may be found in the associated technical
report [LH12]. We provide a sketch, but first we need some useful results about
mdps and the differences in value functions. The first shows that less accurate
transition probabilities are required for low-weight states than their high-weight
counter parts. The second lemma formalises our intuitions in Section 3, motivates
the use of Bernstein’s inequalities and is the key observation to improve on the
unpublished work in [Aue11], which has quartic dependence on the horizon.

Lemma 7. Let M and M̃ be two Markov decision processes differing only in
transition probabilities and π be a stationary policy then

V π(st)− Ṽ π(st) = γ
∑
s,a

wπ(s, a|st)(ps,a − p̃s,a) · Ṽ π. (2)

Proof sketch. Expand and rearrange the definition of the value functions. �

Lemma 8 (Sobel 1982). For any MDP M̃ , stationary policy π and state s′,∑
s,a

w̃π(s, a|s′)σ̃π(s, a)2 ≤ 1

γ2(1 − γ)2
. (3)

Proof sketch of Lemma 6. For ease of notation we drop references to πk.

We approximate wt(s, a) ≈ w̃t(s, a) and |(ps,a − p̃s,a) · Ṽ | �
√

L1σ̃(s,a)2

nt(s,a)
. Using

Lemma 7

|Ṽ (st)− V (st)| �

∣∣∣∣∣∣
∑

s,a∈Xt

wt(s, a)(ps,a − p̃s,a) · Ṽ
∣∣∣∣∣∣ (4)

�
∑

s,a∈Xt

wt(s, a)

√
L1σ̃(s, a)2

nt(s, a)
�

∑
κ,ι

∑
s,a∈Xt,κ,ι

√
L1w̃t(s, a)σ̃(s, a)2

κm
(5)

≤
∑
κ,ι

√√√√L1|Xt,κ,ι|
κm

∑
s,a∈Xt,κ,ι

w̃t(s, a)σ̃t(s, a)2 ≤
√

L1|K × I|
mγ2(1− γ)2

, (6)

where in Equation (4) we used Lemma 7 and the fact that states not in Xt

are visited very infrequently. In Equation (5) we used the approximations for
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(p − p̃) · Ṽ , the definition of Xt,κ,ι and the approximation w ≈ w̃. In Equation
(6) we used the Cauchy-Schwartz inequality,4 the fact that κ ≥ |Xt,κ,ι| and
Lemma 8. Substituting

m :=
1280L1

ε2(1− γ)2

(
log log

1

1− γ

)2 (
log

|S|
ε(1− γ)

)
log

1

ε(1− γ)

completes the proof. The extra terms in m are needed to cover the errors in the
approximations made here. �
The full proof requires formalising the approximations made at the start of the
sketch above. The second approximation is comparatively easy and follows from
the definition of the confidence intervals. Showing that w(s, a) ≈ w̃(s, a) requires
substantial work.

We have shown in Lemma 6 that if the value of ucrlγ is not ε-optimal then
|Xt,κ,ι| must be greater than κ for some (κ, ι). Now we show that this cannot
happen too often except with low probability. This will be sufficient to bound the
number of exploration phases and therefore bound the number of times ucrlγ
is not ε-optimal. Let t be the start of an exploration phase and define νt(s, a) to
be the number of visits to state s within the next H time-steps. Formally,

νt(s, a) :=

t+H−1∑
i=t

[[si = s ∧ πk(si) = a]].

The following lemma captures our intuition that state/action pairs with high
wt(s, a) will, in expectation, be visited more often.

Lemma 9. Let t be the start of an exploration phase and wt(s, a) ≥ wmin then
Eνt(s, a) ≥ wt(s, a)/2.

Proof of Lemma 5. Let N := |S ×A|m, where m is as in the proof of Lemma
6 or the appendix. We proceed in two stages. First we bound the total number
of useful visits before |Xt,κ,ι| ≤ κ. Note that if the knownness, κ, is equal to |S|
then |Xt,κ,ι| ≤ κ is vacuously true because the number of active state/action
pairs is bounded by |S|. We then use this show that the number of exploration
phases is at most Õ (N) with high probability.

Bounding the Number of Useful Visits. A visit to state/action pair (s, a)
in exploration phase starting at time-step t is (κ, ι)-useful if (s, a) ∈ Xt,κ,ι

and |Xt,κ,ι| > κ. Fixing a (κ, ι) we bound the number of (κ, ι)-useful vis-
its to state/action pair (s, a). Suppose t1 < t2 with t1 the start of an ex-
ploration phase and (s, a) ∈ Xt1,κ,ι. Therefore nt1(s, a) < κwιm. Now if
nt2(s, a) − nt1(s, a) ≥ κwιm then an update ocurrs and for every t3 ≥ t2
such that ιt(s, a) = ι, κt(s, a) > κ. Therefore for each (κ, ι) pair there at most
|S ×A|mwικ ≡ Nwικ visits that are (κ, ι)-useful.

Bounding the Number of Exploration Phases. Let t be the start of an
exploration phase. Therefore Ṽ πk(st)−V πk(st) > ε/2 and so by Lemma 6 there
exists a (κ, ι) such that |S| ≥ |Xt,κ,ι| > κ. For each (κ, ι), let Eκ,ι be the number

4 |〈1, v〉| ≤ ‖1‖2 ‖v‖2.
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of exploration phases where |Xt,κ,ι| > κ. We shortly show that P {Eκ,ι > 4N} <
δ1, which allows us to apply the union bound over all (κ, ι) pairs to show there
are at most Emax := 4N |K × I| exploration phases with probability at least
1− δ1|K × I| ≡ 1− |K × I| δ

2Umax
> 1− δ/2.

Bounding P {Eκ,ι > 4N}. Consider the sequence of exploration phases,
t1, t2, · · · , tEκ,ι , such that |Xti,κ,ι| > κ. We make the following observations:

1. {ti} is a (finite with probability 1) sequence of random variables depending
on the mdp and policy.

2. The first part of this proof shows that the sequence necessarily ends after
an exploration phase if the total number of (κ, ι)-useful visits is at least
Nwικ. The sequence may end early for other reasons, such as states becoming
unreachable or being visited while not exploring.

3. Define νi :=
∑

s,a∈Xti,κ,ι
νti(s, a), which is the number of (κ, ι)-useful visits

in exploration phase ti. Since |Xti,κ,ι| > κ and by Lemma 9, we have that
E[νi|ν1 · · · νi−1] ≥ (κ+ 1)wι/2 and Var[νi|ν1 · · · νi−1] ≤ E[νi|ν1 · · · νi−1]H .5

We now wish to show the sequence has length at most 4N with probability at
least 1− δ1. Define auxiliary sequences of length 4N by

ν+i :=

{
νi if i ≤ Eκ,ι

wι(κ+ 1)/2 otherwise
ν̄i :=

ν+i wι(κ+ 1)

2E[ν+i |ν+1 · · · ν+i−1]
,

which are chosen such that Eν̄i = E[ν̄i|ν̄1 · · · ν̄i−1] = wι(κ+ 1)/2. It is straight-

forward to verify that P {Eκ,ι > 4N} ≤ P
{∑4N

i=1 ν̄i ≤ Nwι(κ+ 1)
}
. We now use

the method of bounded differences and the martingale version of Bernstein’s in-
equality [CL06, §6] applied to

∑
ν̄i. Let Bi := E[

∑4N
j=1 ν̄j |ν̄1 · · · ν̄i], which forms

a Doob martingale with B4N =
∑4N

i=1 ν̄i, B0 = 2Nwι(κ+1) and |Bi+1−Bi| ≤ H .

Letting σ2 :=
∑4N

i=1 Var[Bi|B1 · · ·Bi−1] ≤ 2NHwι(κ + 1), which follows by the
definitions of B, ν̄ and by point 3 above. Then

P {Eκ,ι > 4N} ≤ P

{
4N∑
i=1

ν̄i ≤ Nwι(κ+ 1)

}
= P {Bn −B0 ≤ −B0/2}

≤ 2 exp

(
−

1
4B

2
0

2σ2 + HB0

3

)
= 2 exp

(
− N2w2

ι (κ+ 1)2

2σ2 + 2HNwι(κ+1)
3

)

≤ 2 exp

(
−Nwι(κ+ 1)

4H + 2H
3

)
.

Setting this equal to δ1, solving for N and noting that wι(κ+ 1) ≥ wmin gives

N ≥ 5H

wmin
log

2

δ1
∈ Õ

( |S|
ε(1− γ)2

log
1

δ1

)

Since N satisfies this, the result is complete. �
5 If X ∈ [0, H ] then VarX < HEX. νi ∈ [0, H ].
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The result above completes the proof of Theorem 1. We now drop the assumption
on the number of next-states by proving the more general Theorem 2. While it
is possible to do this directly, we use the algorithm above.

s, a

. .
.

1 . . .

. . .

. . . |S|

d = log2 |S|

Proof sketch of Theorem 2. The idea is to aug-
ment each state/action pair of the original mdp with
|S|−2 states in the form of a tree as pictured in the di-
agram below. The intention of the tree is to construct
an mdp, M , that with appropriate transition proba-
bilities is functionally equivalent to the true mdp while
satisfying Assumption 1. If we naively add the states as
described above then we will add an unnecessary num-
ber of addition state/action pairs because the new states need only one action.
This problem is fixed by modifying the definition of an mdp to allow a varying
number of actions for each state. This adds no difficulty to the proof and means
the augmented mdp now has O(|S|2|A|) state-action pairs. The rewards in the
added states are set to zero.

To make the augmented mdp functionally equivalent to the true one we must
also rescale γ. Let d be the depth of the tree then γ must be rescaled to γ̄ such
that γ̄d = γ. The augmented mdp is now functionally equivalent to the original
in the obvious way. Policies and values can easily be translated between the
two and importantly the augmented mdp now satisfies Assumption 1. Before
we apply ucrlγ to M we note that the rescaling of γ has the potential to
damange the bound. This is true, but fortunately the effect is not substantial
since 1

1−γ̄ < log |S|
1−γ . Therefore the scaling loses at most log3 |S| in the final pac

bound.
Now if we simply apply ucrlγ to M and use Theorem 1 to bound the

number of mistakes then we obtain a pac bound in the general case. Unfor-
tunately, this leads to a bound depending on all the state/action pairs in M ,
which total |S|2|A|. To obtain dependence on the number of non-zero transi-
tions, T , requires a little more justification. Let T (s, a) :=

∑
s′ [[p

s′
s,a > 0]] be

the number of non-zero transitions from state/action pair (s, a). It is easy to
show the number of reachable states in the tree associated with (s, a) is at
most T (s, a) log |S|. Therefore the total number of reachable state/action pairs
is |S ×A| + log |S|∑s,a T (s, a) < 2T log |S|. Finally note that by Equation (2)
from Lemma 7, state/action pairs that are not reachable do not contribute to the
error and need no visits. This allows the analysis in Lemma 5 to be tightened,
which completes the proof. �

6 Lower PAC Bound

We now turn our attention to the lower bound. The approach is similar to that
of [SLL09], but we make two refinements to improve the bound to depend on
1/(1−γ)3 and remove the policy restrictions. The first is to add a delaying state
where no information can be gained, but where an algorithm may still fail to be
pac. The second is more subtle and will be described in the proof.
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Theorem 10. Let A be a (possibly non-stationary) policy depending on
S,A, r, γ, ε and δ, then there exists a Markov decision process Mhard such that
V ∗(st)− V A(s1:t) > ε for at least N time-steps with probability at least δ where

N :=
c1|S ×A|
ε2(1− γ)3

log
c2
δ

and c1, c2 > 0 are independent of the policy A as well as all inputs S,A, ε, δ, γ.

The proof is omitted, but we give the counter-example and intuition.

Counter Example. We prove Theorem 10 for a class of mdps where S =
{0, 1,⊕,�} and A = {1, 2, · · · , |A|}. The rewards and transitions for a single
action are depicted in Figure 1 where ε(a∗) = 16ε(1 − γ) for some a∗ ∈ A and
ε(a) = 0 for all other actions. Some remarks:

1. States ⊕ and � are almost completely absorbing and confer maxi-
mum/minimum rewards respectively.

2. The transitions are independent of actions for all states except state 1. From
this state, actions lead uniformly to ⊕/� except for one action, a∗, which
has a slightly higher probability of transitioning to state ⊕ and so a∗ is the
optimal action in state 1.

3. State 0 has an absorption rate such that, on average, a policy will stay there
for 1/(1− γ) time-steps.

1

r = 0
�

r = 0

⊕
r = 1

0

r = 0

1− p

p := 1/(2− γ)

1
2 − ε(a)

1
2 + ε(a)

q := 2− 1/γ

1− q

q

1− q

Fig. 1. Hard mdp

Intuition. The mdp in Figure 1 is very bandit-
like in the sense that once a policy reaches state
1 it should choose the action most likely to lead
to state ⊕ whereupon it will either be rewarded
or punished (visit state ⊕ or �). Eventually it
will return to state 1 when the whole process
repeats. This suggests a pac-mdp algorithm can
be used to learn the bandit with p(a) := p⊕1,a.
We then make use of a theorem of Mannor and
Tsitsiklis on bandit sample-complexity [MT04]
to show that with high probability the number
of times a∗ is not selected is at least

Õ

( |A|
ε2(1− γ)2

log
1

δ

)
. (7)

Improving the bound to depend on 1/(1− γ)3 is intuitively easy, but technically
somewhat annoying. The idea is to consider the value differences in state 0 as
well as state 1. State 0 has the following properties:

1. The absorption rate is sufficiently large that any policy remains in state 0
for around 1/(1− γ) time-steps.

2. The absorption rate is sufficiently small that the difference in values due to
bad actions planned in state 1 still matter while in state 0.

While in state 0 an agent cannot make an error in the sense that V ∗(0) −
Q∗(0, a) = 0 for all a. But we are measuring V ∗(0) − V A(0) and so an agent
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can be penalised if its policy upon reaching state 1 is to make an error. Suppose
the agent is in state 0 at some time-step before moving to state 1 and making
a mistake. On average it will stay in state 0 for roughly 1/(1 − γ) time-steps
during which time it will plan a mistake upon reaching state 1. Thus the bound
in Equation (7) can be multiplied by 1/(1− γ). The proof is harder because an
agent need not plan to make a mistake in all future time-steps when reaching
state 1 before eventually doing so in one time-step. Dependence on |S| can be
added easily by chaining together |S|/4 copies of the counter-example mdp with
arbitrarily low transitions between them. Note that [SLL09] proved their theorem
for a specific class of policies while Theorem 10 holds for all policies.

7 Conclusion

Summary. We presented matching upper and lower bounds on the number of
time-steps when a reinforcement learning algorithm can be nearly-optimal with
high probability. We now compare the bound proven in Theorem 1 with the
current state-of-the-art, mormax [SS10].

Õ

(
T

ε2(1− γ)3
log

1

δ

)
︸ ︷︷ ︸

ucrlγ

Õ

( |S ×A|
ε2(1 − γ)6

log
1

δ

)
︸ ︷︷ ︸

mormax

The dependence on ε and δ match the lower bound for both algorithms. ucrlγ
is optimal in terms of the horizon where mormax loses by three factors. On
the other hand, mormax has a bound that is linear in the state space where
ucrlγ can depend quadratically. Nevertheless, ucrlγ will be prefered unless
the state/action space is both dense and extremely large relative to the effective
horizon. Importantly, the new upper and lower bounds now match up to loga-
rithmic factors if the mdp has at most |S ×A| log |S ×A| non-zero transitions,
so at least for this class ucrlγ is now unimprovable. Additionally, ucrlγ com-
bined with Theorem 1 is the first demonstration of a pac reinforcement learning
algorithm with cubic dependence on the effective horizon.

Running Time. We did not analyze the running time of ucrlγ, but expect
analysis similar to that of [SL08] can be used to show that ucrlγ can be
approximated to run in polynomial time with no cost to sample-complexity.
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A Constants

|K × I| := log2 |S| log2 1
wmin(1−γ) Õ

(
log |S| log 1

ε(1−γ)

)

H := 1
1−γ log 8|S|

ε(1−γ) Õ
(

1
1−γ log |S|

ε

)

wmin := ε(1−γ)
4|S| Ω̃

(
ε(1−γ)

|S|
)

δ1 := δ
2Umax

Ω̃

(
δ

|S×A| log 1
ε(1−γ)

)

L1 := log 2
δ1

Õ
(
log |S×A|

δε(1−γ)

)

m := 1280L1

ε2(1−γ)2

(
log log 1

1−γ

)2 (
log |S|

ε(1−γ)

)
log 1

ε(1−γ) Õ
(

1
ε2(1−γ)2 log

|S×A|
δ

)

N := |S ×A|m Õ
(

|S×A|
ε2(1−γ)2 log

1
δ

)

Emax := 4N |K × I| Õ
(

|S×A|
ε2(1−γ)2 log

1
δ

)

Umax := |S ×A| log2 |S|
wmin(1−γ) Õ

(
|S ×A| log 1

ε(1−γ)

)
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