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Abstract

We present a new algorithm for general reinforcement learning where the true environment
is known to belong to a finite class of N arbitrary models. The algorithm is shown to be
near-optimal for all but O(N log2 N) time-steps with high probability. Infinite classes are also
considered where we show that compactness is a key criterion for determining the existence of
uniform sample-complexity bounds. A matching lower bound is given for the finite case.

Contents
1 Introduction 2
2 Notation 3
3 Finite Case 3
4 Compact Case 12
5 Unbounded Environment Classes 12
6 Lower Bound 13
7 Conclusions 13
References 14
A Technical Results 15
B Constants 15
C Table of Notation 16

Keywords

Reinforcement learning; sample-complexity; exploration exploitation.

1



1 Introduction

Reinforcement Learning (RL) is the task of learning policies that lead to nearly-optimal rewards
where the environment is unknown. One metric of the efficiency of an RL algorithm is sample-
complexity, which is a high probability upper bound on the number of time-steps when that
algorithm is not nearly-optimal that holds for all environment in some class. Such bounds are
typically shown for very specific classes of environments, such as (partially observable/factored)
Markov Decision Processes (MDP) and bandits. We consider more general classes of environments
where at each time-step an agent takes an action a ∈ A where-upon it receives reward r ∈ [0, 1]
and an observation o ∈ O, which are generated stochastically by the environment and may depend
arbitrarily on the entire history sequence.
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Figure 1: Agent/Environment Interaction

We present a new reinforcement learning algorithm, named Maximum Exploration Reinforce-
ment Learning (MERL), that accepts as input a finite setM := {ν1, · · · , νN} of arbitrary environ-
ments, an accuracy ε, and a confidence δ. The main result is that MERL has a sample-complexity
of

Õ

(
N

ε2(1− γ)3
log2 N

δε(1− γ)

)
,

where 1/(1− γ) is the effective horizon determined by discount rate γ. We also consider the case
where M is infinite, but compact with respect to a particular topology. In this case, a variant
of MERL has the same sample-complexity as above, but where N is replaced by the size of the
smallest ε-cover. A lower bound is also given that matches the upper bound except for logarithmic
factors. Finally, if M is non-compact then in general no finite sample-complexity bound exists.

Related work. Many authors have worked on the sample-complexity of RL in various settings.
The simplest case is the multiarmed bandit problem that has been extensively studied with varying
assumptions. The typical measure of efficiency in the bandit literature is regret, but sample-
complexity bounds are also known and sometimes used. The next step from bandits is finite state
MDPs, of which bandits are an example with only a single state. There are two main settings
when MDPs are considered, the discounted case where sample-complexity bounds are proven and
the undiscounted (average reward) case where regret bounds are more typical. In the discounted
setting the upper and lower bounds on sample-complexity are now extremely refined. See Strehl
et al. [2009] for a detailed review of the popular algorithms and theorems. More recent work on
closing the gap between upper and lower bounds is by Szita and Szepesvári [2010], Lattimore and
Hutter [2012], Azar et al. [2012]. In the undiscounted case it is necessary to make some form
of ergodicity assumption as without this regret bounds cannot be given. In this work we avoid
ergodicity assumptions and discount future rewards. Nevertheless, our algorithm borrows some
tricks used by UCRL2 Auer et al. [2010]. Previous work for more general environment classes is
somewhat limited. For factored MDPs there are known bounds, see Chakraborty and Stone [2011]
and references there-in. Even-dar et al. [2005] give essentially unimprovable exponential bounds on
the sample-complexity of learning in finite partially observable MDPs. Maillard et al. [2013] show
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regret bounds for undiscounted RL where the true environment is assumed to be finite, Markov and
communicating, but where the state is not directly observable. As far as we know there has been no
work on the sample-complexity of RL when environments are completely general, but asymptotic
results have garnered some attention with positive results by Hutter [2002], Ryabko and Hutter
[2008], Sunehag and Hutter [2012] and (mostly) negative ones by Lattimore and Hutter [2011b].
Perhaps the closest related worked is Diuk et al. [2009], which deals with a similar problem in the
rather different setting of learning the optimal predictor from a class of N experts. They obtain an
O(N logN) bound, which is applied to the problem of structure learning for discounted finite-state
factored MDPs. Our work generalises this approach to the non-Markov case and compact model
classes.

2 Notation

The definition of environments is borrowed from the work of ?, although the notation is slightly
more formal to ease the application of martingale inequalities.

General. N = {0, 1, 2, · · · } is the natural numbers. For the indicator function we write [[x = y]] = 1
if x = y and 0 otherwise. We use ∧ and ∨ for logical and/or respectively. If A is a set then |A| is its
size and A∗ is the set of all finite strings (sequences) over A. If x and y are sequences then x @ y
means that x is a prefix of y. Unless otherwise mentioned, log represents the natural logarithm.
For random variable X we write EX for its expectation. For x ∈ R, dxe is the ceiling function.

Environments and policies. Let A, O and R ⊂ R be finite sets of actions, observations
and rewards respectively and H := A × O × R. H∞ is the set of infinite history sequences
while H∗ := (A × O × R)∗ is the set of finite history sequences. If h ∈ H∗ then `(h) is the
number of action/observation/reward tuples in h. We write at(h), ot(h), rt(h) for the tth ac-
tion/observation/reward of history sequence h. For h ∈ H∗, Γh := {h′ ∈ H∞ : h @ h′} is the
cylinder set. Let F := σ({Γh : h ∈ H∗}) and Ft := σ({Γh : h ∈ H∗ ∧ `(h) = t}) be σ-algebras.
An environment µ is a set of conditional probability distributions over observation/reward pairs
given the history so far. A policy π is a function π : H∗ → A. An environment and policy
interact sequentially to induce a measure, Pµ,π, on filtered probability space (H∞,F , {Ft}). For
convenience, we abuse notation and write Pµ,π(h) := Pµ,π(Γh). If h @ h′ then conditional prob-

abilities are Pµ,π(h′|h) := Pµ,π(h′)/Pµ,π(h). Rt(h; d) :=
∑t+d
k=t γ

k−trk(h) is the d-step return
function and Rt(h) := limd→∞Rt(h; d). Given history ht with `(ht) = t, the value function is
defined by V πµ (ht; d) := E[Rt(h; d)|ht] where the expectation is taken with respect to Pµ,π(·|ht).
V πµ (ht) := limd→∞ V πµ (ht; d). The optimal policy for environment µ is π∗µ := arg maxπ V

π
µ , which

with our assumptions is known to exist Lattimore and Hutter [2011a]. The value of the optimal

policy is V ∗µ := V
π∗µ
µ . In general, µ denotes the true environment while ν is a model. π will typically

be the policy of the algorithm under consideration. Q∗µ(h, a) is the value in history h of following
policy π∗µ except for the first time-step when action a is taken. M is a set of environments (models).

Sample-complexity. Policy π is ε-optimal in history h and environment µ if V ∗µ (h)−V πµ (h) ≤ ε.
The sample-complexity of a policy π in environment classM is the smallest Λ such that, with high
probability, π is ε-optimal for all but Λ time-steps for all µ ∈M. Define Lεµ,π : H∞ → N∪{∞} to
be the number of time-steps when π is not ε-optimal.

Lεµ,π(h) :=

∞∑
t=1

[[
V ∗µ (ht)− V πµ (ht) > ε

]]
,

where ht is the length t prefix of h. The sample-complexity of policy π is Λ with respect to accuracy
ε and confidence 1− δ if P

{
Lεµ,π(h) > Λ

}
< δ, ∀µ ∈M.
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3 Finite Case

We start with the finite case where the true environment is known to belong to a finite set of
models, M. The Maximum Exploration Reinforcement Learning algorithm is model-based in the
sense that it maintains a set,Mt ⊆M, where models are eliminated once they become implausible.
The algorithm operates in phases of exploration and exploitation, choosing to exploit if it knows all
plausible environments are reasonably close under all optimal policies and explore otherwise. This
method of exploration essentially guarantees that MERL is nearly optimal whenever it is exploiting
and the number of exploration phases is limited with high probability. The main difficulty is
specifying what it means to be plausible. Previous authors working on finite environments, such as
MDPs or bandits, have removed models for which the transition probabilities are not sufficiently
close to their empirical estimates. In the more general setting this approach fails because states
(histories) are never visited more than once, so sufficient empirical estimates cannot be collected.
Instead, we eliminate environments if the reward we actually collect over time is not sufficiently
close to the reward we expected given that environment.

Before giving the explicit algorithm, we explain the operation of MERL more formally in two
parts. First we describe how it chooses to explore and exploit and then how the model class is
maintained. See Figure 2 for a diagram of how exploration and exploitation occurs.

Exploring and exploiting. At each time-step t MERL computes the pair of environments ν, ν
in the model class Mt and the policy π maximising the difference

∆ := V πν (h; d)− V πν (h; d), d :=
1

1− γ
log

8

(1− γ)ε
.

If ∆ > ε/4, then MERL follows policy π for d time-steps, which we call an exploration phase.
Otherwise, for one time-step it follows the optimal policy with respect to the first environment
currently in the model class. Therefore, if MERL chooses to exploit, then all policies and environ-
ments in the model class lead to similar values, which implies that exploiting is near-optimal. If
MERL explores, then either V πν (h; d) − V πµ (h; d) > ε/8 or V πµ (h; d) − V πν (h; d) > ε/8, which will
allow us to apply concentration inequalities to eventually eliminate either ν (the upper bound) or
ν (the lower bound).

The model class. An exploration phase is a κ-exploration phase if ∆ ∈ [ε2κ−2, ε2κ−1), where

κ ∈ K :=

{
0, 1, 2, · · · , log2

1

ε(1− γ)
+ 2

}
.

For each environment ν ∈ M and each κ ∈ K, MERL associates a counter E(ν, κ), which is
incremented at the start of a κ-exploration phase if ν ∈ {ν, ν}. At the end of each κ-exploration
phase MERL calculates the discounted return actually received during that exploration phase
R ∈ [0, 1/(1− γ)] and records the values

X(ν, κ) := (1− γ)(V πν (h; d)−R)

X(ν, κ) := (1− γ)(R− V πν (h; d)),

where h is the history at the start of the exploration phase. So X(ν, κ) is the difference between
the return expected if the true model was ν and the actual return and X(ν, κ) is the difference
between the actual return and the expected return if the true model was ν. Since the expected
value of R is V πµ (h; d), and ν,ν are upper and lower bounds respectively, the expected values of
both X(ν, κ) and X(ν, κ) are non-negative and at least one of them has expectation larger than
(1− γ)ε/8.

MERL eliminates environment ν from the model class if the cumulative sum of X(ν, κ) over all
exploration phases where ν ∈ {ν, ν} is sufficiently large, but it tests this condition only when the
counts E(ν, κ) has increased enough since the last test. Let αj :=

⌈
αj
⌉

for α ∈ (1, 2) as defined in
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the algorithm. MERL only tests if ν should be removed from the model class when E(ν, κ) = αj
for some j ∈ N. This restriction ensures that tests are not performed too often, which allows us
to apply the union bound without losing too much. Note that if the true environment µ ∈ {ν, ν},
then Eµ,πX(µ, κ) = 0, which will ultimately be enough to ensure that µ remains in the model class
with high probability. The reason for using κ to bucket exploration phases will become apparent
later in the proof of Lemma 3.

Algorithm 1 MERL

1: Inputs: ε, δ and M := {ν1, ν2, · · · , νN}.
2: t = 1 and h empty history
3: d := 1

1−γ log 8
(1−γ)ε

, δ1 := δ

32|K|N3/2

4: α := 4
√
N

4
√
N−1

and αj :=
⌈
αj
⌉

5: E(ν, κ) := 0, ∀ν ∈M and κ ∈ N
6: loop
7: repeat
8: Π := {π∗ν : ν ∈M}
9: ν, ν, π := arg max

ν,ν∈M,π∈Π
V πν (h; d)− V πν (h; d)

10: if ∆ := V πν (h; d)− V πν (h; d) > ε/4 then

11: h̃ = h and R = 0
12: for j = 0→ d do
13: R = R+ γjrt(h)
14: Act(π)
15: end for
16: κ := min

{
κ ∈ N : ∆ > ε2κ−2

}
.

17: E(ν, κ) = E(ν, κ) + 1 and E(ν, κ) = E(ν, κ) + 1
18: X(ν, κ)E(ν,κ) = (1− γ)(V πν (h̃; d)−R)

19: X(ν, κ)E(ν,κ) = (1− γ)(R− V πν (h̃; d))
20: else
21: i := min {i : νi ∈M} and Act(π∗νi)
22: end if
23: until ∃ν ∈M, κ, j ∈ N such that E(ν, κ) = αj and

E(ν,κ)∑
i=1

X(ν, κ)i ≥
√

2E(ν, κ) log
E(ν, κ)

δ1
.

24: M =M−{ν}
25: end loop
26: function Act(π)
27: Take action at = π(h) and receive reward and observation rt, ot from environment
28: t← t+ 1 and h← hatotrt
29: end function

Subscripts. For clarity, we have omitted subscripts in the pseudo-code above. In the analysis we
will refer to Et(ν, κ) andMt for the values of E(ν, κ) andM respectively at time-step t. We write
νt for νi in line 21 and similarly πt := π∗νt .

Phases. An exploration phase is a period of exactly d time-steps, starting at time-step t if

1. t is not currently in an exploration phase.

2. ∆ := V πν (ht; d)− V πν (ht; d) > ε/4.

We say it is a ν-exploration phase if ν = ν or ν = ν and a κ-exploration phase if ∆ ∈
[ε2κ−2, ε2κ−1) ≡ [εκ, 2εκ) where εκ := ε2κ−2. It is a (ν, κ)-exploration phase if it satisfies both
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of the previous statements. We say that MERL is exploiting at time-step t if t is not in an explo-
ration phase. A failure phase is also a period of d time-steps and starts in time-step t if

1. t is not in an exploration phase or earlier failure phase

2. V ∗µ (ht)− V πµ (ht) > ε.

Unlike exploration phases, the algorithm does not depend on the failure phases, which are only
used in the analysis, An exploration or failure phase starting at time-step t is proper if µ ∈ Mt.
The effective horizon d is chosen to ensure that V πµ (h; d) ≥ V πµ (h)− ε/8 for all π, µ and h.

t

V πν (h; d)− V πν (h; d) = 4ε V πν (h; d)− V πν (h; d) = ε

V ∗µ (h)− V πµ (h) > ε

explore, κ = 4 explore, κ = 2

failure phase
exploiting exploiting

Figure 2: Exploration/exploitation/failure phases, d = 4

Test statistics. We have previously remarked that most traditional model-based algorithms with
sample-complexity guarantees record statistics about the transition probabilities of an environ-
ment. Since the environments are assumed to be finite, these statistics eventually become accurate
(or irrelevant) and the standard theory on the concentration of measure can be used for hypoth-
esis testing. In the general case, environments can be infinite and so we cannot collect useful
statistics about individual transitions. Instead, we use the statistics X(ν, κ), which are dependent
on the value function rather than individual transitions. These satisfy Eµ,π[X(µ, κ)i] = 0 while
Eµ,π[X(ν, κ)i] ≥ 0 for all ν ∈Mt. Testing is then performed on the statistic

∑αk
i=1X(ν, κ)i, which

will satisfy certain martingale inequalities.

Updates. As MERL explores, it updates its model class, Mt ⊆ M, by removing environments
that have become implausible. This is comparable to the updating of confidence intervals for
algorithms such as MBIE (Strehl and Littman, 2005) or UCRL2 (Auer et al., 2010). In MBIE,
the confidence interval about the empirical estimate of a transition probability is updated after
every observation. A slight theoretical improvement used by UCRL2 is to only update when the
number of samples of a particular statistic doubles. The latter trick allows a cheap application of
the union bound over all updates without wasting too many samples. For our purposes, however,
we need to update slightly more often than the doubling trick would allow. Instead, we check if
an environment should be eliminated if the number of (ν, κ)-exploration phases is exactly αj for

some j where αj :=
⌈
αj
⌉

and α := 4
√
N

4
√
N−1 ∈ (1, 2). Since the growth of αj is still exponential, the

union bound will still be applicable.

Probabilities. For the remainder of this section, unless otherwise mentioned, all probabilities
and expectations are with respect to Pµ,π where π is the policy of Algorithm 1 and µ ∈ M is the
true environment.
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Analysis. Define Gmax := 216N |K|
ε2(1−γ)2 log2 29N

ε2(1−γ)2δ1 and Emax := 216N
ε2(1−γ)2 log2 29N

ε2(1−γ)2δ1 , which are

high probability bounds on the number of failure and exploration phases respectively.

Theorem 1. Let µ ∈M = {ν1, ν2, · · · νN} be the true environment and π be the policy of Algorithm
1. Then

P
{
Lεµ,π(h) ≥ d · (Gmax + Emax)

}
≤ δ.

If lower order logarithmic factors are dropped then the sample-complexity bound of MERL

given by Theorem 1 is Õ
(

N
ε2(1−γ)3 log2 N

δε(1−γ)

)
. Theorem 1 follows from three lemmas.

Lemma 2. µ ∈Mt for all t with probability 1− δ/4.

Lemma 3. The number of proper failure phases is bounded by

Gmax :=
216N |K|
ε2(1− γ)2

log2 29N

ε2(1− γ)2δ1

with probability at least 1− δ
2 .

Lemma 4. The number of proper exploration phases is bounded by

Emax :=
216N

ε2(1− γ)2
log2 29N

ε2(1− γ)2δ1

with probability at least 1− δ
4 .

Proof of Theorem 1. Applying the union bound to the results of Lemmas 2, 3 and 4 gives the
following with probability at least 1− δ.

1. There are no non-proper exploration or failure phases.

2. The number of proper exploration phases is at most Emax.

3. The number of proper failure phases is at most Gmax.

If π is not ε-optimal at time-step t then t is either in an exploration or failure phase. Since both
are exactly d time-steps long the total number of time-steps when π is sub-optimal is at most
d · (Gmax + Emax). �

We now turn our attention to proving Lemmas 2, 3 and 4. Of these, Lemma 4 is more concep-
tually challenging while Lemma 3 is intuitively unsurprising, but technically difficult.

Proof of Lemma 2. If µ is removed from M, then there exists a κ and j ∈ N such that

αj∑
i=1

X(µ, κ)i ≥
√

2αj log
αj
δ1
.

Fix a κ ∈ K, E∞(µ, κ) := limtEt(µ, κ) and Xi := X(µ, κ)i. Define a sequence of random variables

X̃i :=

{
Xi if i ≤ E∞(µ, κ)

0 otherwise.

Now we claim that Bn :=
∑n
i=1 X̃i is a martingale with |Bi+1−Bi| ≤ 1 and EBi = 0. That it is a

martingale with zero expectation follows because if t is the time-step at the start of the exploration
phase associated with variable Xi, then E[Xi|Ft] = 0. |Bi+1−Bi| ≤ 1 because discounted returns
are bounded in [0, 1/(1− γ)] and by the definition of Xi.
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For all j ∈ N, we have by Azuma’s inequality that

P

{
Bαj ≥

√
2αj log

αj
δ1

}
≤ δ1
αj
.

Apply the union bound over all j.

P

{
∃j ∈ N : Bαj ≥

√
2αj log

αj
δ1

}
≤
∞∑
j=1

δ1
αj
.

Complete the result by the union bound over all κ, applying Lemma 10 (see Appendix) and the
definition of δ1 to bound

∑
κ∈K

∑∞
j=1

δ1
αj
≤ δ/4. �

We are now ready to give a high-probability bound on the number of proper exploration phases.
If MERL starts a proper exploration phase at time-step t then at least one of the following holds:

1. E[X(ν, κ)E(ν,κ)|Ft] > (1− γ)ε/8.

2. E[X(ν, κ)E(ν,κ)|Ft] > (1− γ)ε/8.

This contrasts with E[X(µ, κ)E(µ,κ)|Ft] = 0, which ensures that µ remains inM for all time-steps.
If one could know which of the above statements were true at each time-step then it would be
comparatively easy to show by means of Azuma’s inequality that all environments that are not ε-
close are quickly eliminated after O( 1

ε2(1−γ)2 ) ν-exploration phases, which would lead to the desired

bound. Unfortunately though, the truth of (1) or (2) above cannot be determined, which greatly
increases the complexity of the proof.

Proof of Lemma 4. Fix a κ ∈ K and let Emax,κ be a constant to be chosen later. Let ht be the
history at the start of some κ-exploration phase. We say an (ν, κ)-exploration phase is ν-effective
if

E[X(ν, κ)E(ν,κ)|Ft] ≡ (1− γ)(V πµ (ht; d)− V πν (ht; d))

> (1− γ)εκ/2

and ν-effective if the same condition holds for ν. Now since t is the start of a proper exploration
phase we have that µ ∈Mt and so

V πν (ht; d) ≥ V πµ (ht; d) ≥ V πν (ht; d)

V πν (ht; d)− V πν (ht; d) > εκ.

Therefore every proper exploration phase is either ν-effective or ν-effective. Let Et,κ :=∑
ν Et(ν, κ), which is twice the number of κ-exploration phases at time t and E∞,κ := limtEt,κ,

which is twice the total number of κ-exploration phases.1 Let Ft(ν, κ) be the number of ν-effective
(ν, κ)-exploration phases up to time-step t. Since each proper κ-exploration phase is either ν-
effective or ν-effective or both,

∑
ν Ft(ν, κ) ≥ Et,κ/2. Applying Lemma 8 to yν := Et(ν, κ)/Et,κ

and xν := Ft(ν, κ)/Et(ν, κ) shows that if E∞,κ > Emax,κ then there exists a t′ and ν such that
Et′,κ = Emax,κ and

Ft′(ν, κ)2

Emax,κEt′(ν, κ)
≥ 1

4N
, (1)

which implies that

Ft′(ν, κ) ≥
√
Emax,κEt′(ν, κ)

4N

(a)

≥ Et′(ν, κ)√
4N

, (2)

1Note that it is never the case that ν = ν at the start of an exploration phase, since in this case ∆ = 0.

8



where (a) follows because Emax,κ = Et′,κ ≥ Et′(ν, κ). Let Z(ν) be the event that there exists a t′

satisfying (1). We will shortly show that P {Z(ν)} < δ/(4N |K|). Therefore

P {E∞,κ > Emax,κ} ≤ P {∃ν : Z(ν)} ≤
∑
ν∈M

P {Z(ν)}

≤ δ/(4|K|)

Finally take the union bound over all κ and let

Emax :=
∑
κ∈K

1

2
Emax,κ,

where we used 1
2Emax,κ because Emax,κ is a high-probability upper bound on E∞,κ, which is twice

the number of κ-exploration phases.

Bounding P {Z(ν)} < δ/(4N |K|). Fix a ν ∈M and let X1, X2, · · · , XE∞(ν,κ) be the sequence
with Xi := X(ν, κ)i and let ti be the corresponding time-step at the start of the ith (ν, κ)-
exploration phase. Define a sequence

Yi :=

{
Xi −E[Xi|Fti ] if i ≤ E∞(ν, κ)

0 otherwise

Let λ(E) :=
√

2E log E
δ1

. Now if Z(ν), then the largest time-step t ≤ t′ with Et(ν, t) = αj for some

j ∈ N is

t := max {t ≤ t′ : ∃j ∈ N s.t. αj = Et(ν, t)} ,

which exists and satisfies

1. Et(ν, κ) = αj for some j.

2. E∞(ν, κ) > Et(ν, κ).

3. Ft(ν, κ) ≥
√
Et(ν, κ)Emax,κ/(16N).

4. Et(ν, κ) ≥ Emax,κ/(16N).

where parts 1 and 2 are straightforward and parts 3 and 4 follow by the definition of {αj}, which
was chosen specifically for this part of the proof. Since E∞(ν, κ) > Et(ν, κ), at the end of the
exploration phase starting at time-step t, ν must remain in M. Therefore

λ(αj)
(a)

≥
αj∑
i=1

Xi

(b)

≥
αj∑
i=1

Yi +
εκ(1− γ)Ft(ν, κ)

2

(c)

≥
αj∑
i=1

Yi +
εκ(1− γ)

8

√
αjEmax,κ

N
, (3)

where in (a) we used the definition of the confidence interval of MERL. In (b) we used the definition
of Yi and the fact that EXi ≥ 0 for all i and EXi ≥ εκ(1 − γ)/2 if Xi is effective. Finally we
used the lower bound on the number of effective ν-exploration phases, Ft(ν, κ) (part 3 above). If

Emax,κ := 211N
ε2κ(1−γ)2

log2 29N
ε2(1−γ)2δ1 , then by applying Lemma 9 with a = 29N

ε2κ(1−γ)2
and b = 1/δ1 we

obtain

Emax,κ ≥
29N

ε2κ(1− γ)2
log

Emax,κ

δ1
≥ 29N

ε2κ(1− γ)2
log

αj
δ1
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Multiplying both sides by αj and rearranging and using the definition of λ(αj) leads to

εκ(1− γ)

8

√
αjEmax,κ

N
≥ 2λ(αj).

Inserting this into Equation (3) shows that Z(ν) implies that there exists an αj such that
∑αj
i=1 Yi ≤

−λ(αj). Now by the same argument as in the proof of Lemma 2, Bn :=
∑n
i=1 Yi is a martingale

with |Bi+1 −Bi| ≤ 1. Therefore by Azuma’s inequality

P

{
αj∑
i=1

Yi ≤ −λ(αj)

}
≤ δ1
αj
.

Finally apply the union bound over all j. �

Recall that if MERL is exploiting at time-step t, then πt is the optimal policy with respect to
the first environment in the model class. To prove Lemma 3 we start by showing that in this case
πt is nearly-optimal.

Lemma 5. Let t be a time-step and ht be the corresponding history. If µ ∈ Mt and MERL is
exploiting (not exploring), then V ∗µ (ht)− V πtµ (ht) ≤ 5ε/8.

Proof of Lemma 5. Since MERL is not exploring

V ∗µ (ht)− V πtµ (ht)
(a)

≤ V ∗µ (ht; d)− V πtµ (ht; d) +
ε

8
(b)

≤ V
π∗µ
νt (ht; d)− V πtνt (ht; d) + 5ε/8

(c)

≤ 5ε/8,

(a) follows by truncating the value function. (b) follows because µ ∈Mt and MERL is exploiting.
(c) is true since πt is the optimal policy in νt. �

Lemma 5 is almost sufficient to prove Lemma 3. The only problem is that MERL only follows
πt = π∗νt until there is an exploration phase. The idea to prove Lemma 3 is as follows:

1. If there is a low probability of entering an exploration phase within the next d time-steps
following policy πt, then π is nearly as good as πt, which itself is nearly optimal by Lemma
5.

2. The number of time-steps when the probability of entering an exploration phase within the
next d time-steps is high is unlikely to be too large before an exploration phase is triggered.
Since there are not many exploration phases with high probability, there are also unlikely to
be too many time-steps when π expects to enter one with high probability.

Before the proof of Lemma 3 we remark on an easier to prove (but weaker) version of Theorem 1.
If MERL is exploiting then Lemma 5 shows that V ∗µ (h)−Q∗µ(h, π(h)) ≤ 5ε/8 < ε. Therefore if we
cared about the number of time-steps when this is not the case (rather than V ∗µ − V πµ ), then we
would already be done by combining Lemmas 4 and 5.

Proof of Lemma 3. Let t be the start of a proper failure phase with corresponding history, h.
Therefore V ∗µ (h)−V πµ (h) > ε. By Lemma 5, V ∗µ (h)−V πµ (h) = V ∗µ (h)−V πtµ (h)+V πtµ (h)−V πµ (h) ≤
5ε/8 + V πtµ − V πµ (h) and so

V πtµ (h)− V πµ (h) ≥ 3ε

8
. (4)
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We define set Hκ ⊂ H∗ to be the set of extensions of h that trigger κ-exploration phases. Formally
Hκ ⊂ H∗ is the prefix free set such that h′ in Hκ if h @ h′ and h′ triggers a κ-exploration phase
for the first time since t. Let Hκ,d := {h′ : h′ ∈ Hκ ∧ `(h′) ≤ t+ d}, which is the set of extensions
of h that are at most d long and trigger κ-exploration phases. Therefore

3ε

8

(a)

≤ V πtµ (h)− V πµ (h)

(b)
=
∑
κ∈K

∑
h′∈Hκ

P (h′|h)γ`(h
′)−t (V πtµ (h′)− V πµ (h′)

)
(c)

≤
∑
κ∈K

∑
h′∈Hκ,d

P (h′|h)
(
V πtµ (h′)− V πµ (h′)

)
+
ε

8

(d)

≤
∑
κ∈K

∑
h′∈Hκ,d

P (h′|h)
(
V ∗µ (h′; d)− V πµ (h′; d)

)
+
ε

4

(e)

≤
∑
κ∈K

∑
h′∈Hκ,d

P (h′|h)4εκ +
ε

4
,

(a) follows from Equation (4). (b) by noting that that π = πt until an exploration phase is triggered.
(c) by replacing Hκ with Hκ,d and noting that if h′ ∈ Hκ−Hκ,d, then γ`(h

′)−t ≤ (1−γ)ε/8. (d) by
substituting V ∗µ (h′) ≥ V πtµ (h′) and by using the effective horizon to truncate the value functions.
(e) by the definition of a κ-exploration phase.

Since the maximum of a set is greater than the average, there exists a κ ∈ K such that∑
h′∈Hκ,d P (h′|h) ≥ 2−κ−3/|K|, which is the probability that MERL encounters a κ-exploration

phase within d time-steps from h. Now fix a κ and let t1, t2, · · · , · · · , tGκ be the sequence of time-
steps such that ti is the start of a failure phase and the probability of a κ-exploration phase within
the next d time-steps is at least 2−κ−3/|K|. Let Yi ∈ {0, 1} be the event that a κ-exploration
phase does occur within d time-steps of ti and define an auxiliary infinite sequence Ỹ1, Ỹ2, · · · by
Ỹi := Yi if i ≤ Gκ and 1 otherwise. Let Eκ be the number of κ-exploration phases and Gmax,κ

be a constant to be chosen later and suppose Gκ > Gmax,κ, then
∑Gmax,κ

i=1 Ỹi =
∑Gmax,κ

i=1 Yi and

either
∑Gmax,κ

i=1 Ỹi ≤ Emax,κ or Eκ > Emax,κ, where the latter follows because Yi = 1 implies a
κ-exploration phase occurred. Therefore

P {Gκ > Gmax,κ}

≤ P


Gmax,κ∑
i=1

Ỹi < Emax,κ

+ P {Eκ > Emax,κ}

≤ P


Gmax,κ∑
i=1

Ỹi < Emax,κ

+
δ

4|K|
.

We now choose Gmax,κ sufficiently large to bound the first term in the display above by δ/(4|K|).
By the definition of Ỹi and Yi, if i ≤ Gκ then E[Ỹi|Fti ] ≥ 2−κ−3/|K| and for i > Gκ, Ỹi is always
1. Setting

Gmax,κ := 2κ+4|K|Emax,κ

=
217N |K|
εεκ(1− γ)2

log2 29N

ε2(1− γ)2δ1

is sufficient to guarantee E[
∑Gmax,κ

i=1 Ỹi] > 2Emax,κ and an application of Azuma’s inequality to the
martingale difference sequence completes the result. Finally we apply the union bound over all κ
and set Gmax :=

∑
κ∈NGmax,κ >

∑
κ∈KGmax,κ. �
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4 Compact Case

In the last section we presented MERL and proved a sample-complexity bound for the case when
the environment class is finite. In this section we show that if the number of environments is
infinite, but compact with respect to the topology generated by a natural metric, then sample-
complexity bounds are still possible with a minor modification of MERL. The key idea is to use
compactness to cover the space of environments with ε-balls and compute statistics on these balls
rather than individual environments. Since all environments in the same ε-ball are sufficiently close,
the resulting statistics cannot be significantly different and all analysis goes through identically to
the finite case. Define a topology on the space of all environments induced by the pseudo-metric

d(ν1, ν2) := sup
h,π
|V πν1(h)− V πν2(h)|.

Theorem 6. Let M be compact and coverable by N ε-balls then a modification of Algorithm 1
satisfies

P
{
L2ε
µ,π(h) ≥ d · (Gmax + Emax)

}
≤ δ.

The main modification is to define statistics on elements of the cover, rather than specific
environments.

1. Let U1, · · · , UN be an ε-cover of M.

2. At each time-step choose U and U such that ν ∈ U and ν ∈ U .

3. Define statistics {X} on elements of the cover, rather than environments, by

X(U, κ)E(U,κ) := inf
ν∈U

(1− γ)(R− V πν (h))

X(U, κ)E(U,κ) := inf
ν∈U

(1− γ)(V πν (h)−R)

4. If there exists a U where the test fails then eliminate all environments in that cover.

The proof requires only small modifications to show that with high probability the U containing
the true environment is never discarded, while those not containing the true environment are if
tested sufficiently often.

5 Unbounded Environment Classes

If the environment class is non-compact then we cannot in general expect finite sample-complexity
bounds. Indeed, even asymptotic results are usually not possible.

Theorem 7. There exist non-compact M for which no agent has a finite PAC bound.

The obvious example is when M is the set of all environments. Then for any policy M
includes an environment that is tuned to ensure the policy acts sub-optimally infinitely often. A
more interesting example is the class of all computable environments, which is non-compact and
also does not admit algorithms with uniform finite sample-complexity. See negative results by
Lattimore and Hutter [2011b] for counter-examples.

12



6 Lower Bound

We now turn our attention to the lower bound. In specific cases, the bound in Theorem 1 is
very weak. For example, if M is the class of finite MDPs with |S| states then a natural covering
leads to a PAC bound with exponential dependence on the state-space while it is known that the
true dependence is at most quadratic. This should not be surprising since information about the
transitions for one state gives information about a large subset ofM, not just a single environment.
We show that the bound in Theorem 1 is unimprovable for general environment classes except for
logarithmic factors. That is, there exists a class of environments where Theorem 1 is nearly tight.

The simplest counter-example is a set of MDPs with four states, S = {0, 1,⊕,	} and N actions,
A = {a1, · · · , aN}. The rewards and transitions are depicted in Figure 3 where the transition
probabilities depend on the action. Let M := {ν1, · · · , νN} where for νk we set ε(ai) = [[i =
k]]ε(1 − γ). Therefore in environment νk, ak is the optimal action in state 1. M can be viewed
as a set of bandits with rewards in (0, 1/(1 − γ)). In the bandit domain tight lower bounds on
sample-complexity are known and given in Mannor and Tsitsiklis [2004]. These results can be
applied as in Strehl et al. [2009] and Lattimore and Hutter [2012] to show that no algorithm has
sample-complexity less than O( N

ε2(1−γ)3 log 1
δ ).

1
r = 0

	
r = 0

⊕
r = 1

0
r = 0

1− p

p := 1/(2− γ)

1
2 − ε(a)

1
2 + ε(a)

q := 2− 1/γ

1− q

q

1− q

Figure 3: Counter-example

7 Conclusions

Summary. The Maximum Exploration Reinforcement Learning algorithm was presented. For
finite classes of arbitrary environments a sample-complexity bound was given that is linear in the
number of environments. We also presented lower bounds that show that in general this cannot
be improved except for logarithmic factors. Learning is also possible for compact classes with the
sample complexity depending on the size of the smallest ε-cover where the distance between two
environments is the difference in value functions over all policies and history sequences. Finally,
for non-compact classes of environments sample-complexity bounds are typically not possible.

Running time. The running time of MERL can be arbitrary large since computing the policy
maximising ∆ depends on the environment class used. Even assuming the distribution of obser-
vation/rewards given the history can be computed in constant time, the values of optimal policies
can still only be computed in time exponential in the horizon.
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Future work. MERL is close to unimprovable in the sense that there exists a class of environments
where the upper bound is nearly tight. On the other hand, there are classes of environments where
the bound of Theorem 1 scales badly compared to the bounds of tuned algorithms (for example,
finite state MDPs). It would be interesting to show that MERL, or a variant thereof, actually
performs comparably to the optimal sample-complexity even in these cases. This question is likely
to be subtle since there are unrealistic classes of environments where the algorithm minimising
sample-complexity should take actions leading directly to a trap where it receives low reward
eternally, but is never (again) sub-optimal. Since MERL will not behave this way it will tend to
have poor sample-complexity bounds in this type of environment class. This is really a failure of
the sample-complexity optimality criterion rather than MERL, since jumping into non-rewarding
traps is clearly sub-optimal by any realistic measure.
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A Technical Results

Lemma 8. Let x, y ∈ [0, 1]N satisfy
∑N
i=1 yi = 1 and

∑N
i=1 xiyi ≥ 1/2. Then maxi x

2
i yi > 1/(4N).

Proof. The result essentially follows from the fact that a maximum is greater than an average.

N∑
i=1

x2i yi =

N∑
i=1

xiyi −
N∑
i=1

xiyi(1− xi)

≥ 1

2
−

N∑
i=1

xiyi(1− xi) ≥
1

2
−

N∑
i=1

yi
4

=
1

4

Therefore there exists an i such that x2i yi ≥ 1/(4N) as required. �

Lemma 9. Let a, b > 2 and x := 4a(log ab)2. Then x ≥ a log bx.

Lemma 10. Let αj :=
⌈
αj
⌉

where α := 4
√
N

4
√
N−1 . Then

∑∞
j=1 α

−1
j ≤ 4

√
N .

Proof. We have 1
αj
≤
(
1
α

)j
< 1. Therefore by the geometric series,

∞∑
j=1

1

αj
≤ 1

1− 1
α

≡ 1

1− 4
√
N−1

4
√
N

= 4
√
N

as required. �

B Constants

d 1
1−γ log 8

(1−γ)ε

εκ 2κ−2ε

Gmax
216N |K|
ε2(1−γ)2 log2 29N

ε2(1−γ)2δ1

Gmax,κ
217N |K|
εεκ(1−γ)2 log2 29N

ε2(1−γ)2δ1

Emax
216N

ε2(1−γ)2 log2 29N
ε2(1−γ)2δ1

Emax,κ
211N

ε2κ(1−γ)2
log2 29N

ε2(1−γ)2δ1

α 4
√
N

4
√
N−1

δ1
δ

32|K|N3/2

|K| log2
1

ε(1−γ) + 2
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C Table of Notation

N number of candidate models

ε required accuracy

δ probability that an algorithm makes more mistakes than its sample-complexity

t time-step

ht history at time-step t

V πµ (h) value of policy π in environment µ given history h

d effective horizon

µ true environment

ν an environment

ν, ν models achieving upper and lower bounds on the value of the exploration policy

γ discount factor Satisfies γ ∈ (0, 1)

Emax,κ high probability bound on the number of κ-exploration phases

Emax high probability bound on the number of exploration phases

E∞ number of exploration phases

E∞(ν, κ) number of ν-exploration phases

Et(ν, κ) number of (ν, κ)-exploration phases at time-step t

Ft(ν, κ) number of effective (ν, κ)-exploration phases at time-step t

X(ν, κ)i ith test statistic for (ν, κ) pair
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