
Logarithmic Pruning is All You Need

Laurent Orseau
DeepMind, London, UK
lorseau@google.com

Marcus Hutter
DeepMind, London, UK
www.hutter1.net

Omar Rivasplata
DeepMind, London, UK

rivasplata@google.com

Abstract

The Lottery Ticket Hypothesis is a conjecture that every large neural network
contains a subnetwork that, when trained in isolation, achieves comparable per-
formance to the large network. An even stronger conjecture has been proven
recently: Every sufficiently overparameterized network contains a subnetwork
that, at random initialization, but without training, achieves comparable accuracy
to the trained large network. This latter result, however, relies on a number of
strong assumptions and guarantees a polynomial factor on the size of the large
network compared to the target function. In this work, we remove the most limiting
assumptions of this previous work while providing significantly tighter bounds:
the overparameterized network only needs a logarithmic factor (in all variables but
depth) number of neurons per weight of the target subnetwork.

1 Introduction

The recent success of neural network (NN) models in a variety of tasks, ranging from vision [Khan
et al., 2020] to speech synthesis [van den Oord et al., 2016] to playing games [Schrittwieser et al.,
2019, Ebendt and Drechsler, 2009], has sparked a number of works aiming to understand how and
why they work so well. Proving theoretical properties for neural networks is quite a difficult task, with
challenges due to the intricate composition of the functions they implement and the high-dimensional
regimes of their training dynamics. The field is vibrant but still in its infancy, many theoretical tools
are yet to be built to provide guarantees on what and how NNs can learn. A lot of progress has been
made towards understanding the convergence properties of NNs (see e.g., Allen-Zhu et al. [2019],
Zou and Gu [2019] and references therein). The fact remains that training and deploying deep NNs
has a large cost [Livni et al., 2014], which is problematic. To avoid this problem, one could stick
to a small network size. However, it is becoming evident that there are benefits to using oversized
networks, as the literature on overparametrized models [Ma et al., 2018] points out. Another solution,
commonly used in practice, is to prune a trained network to reduce the size and hence the cost of
prediction/deployment. While missing theoretical guarantees, experimental works show that pruning
can considerably reduce the network size without sacrificing accuracy.

The influential work of Frankle and Carbin [2019] has pointed out the following observation: a) train
a large network for long enough and observe its performance on a dataset, b) prune it substantially
to reveal a much smaller subnetwork with good (or better) performance, c) reset the weights of the
subnetwork to their original values and remove the rest of the weights, and d) retrain the subnetwork
in isolation; then the subnetwork reaches the same test performance as the large network, and trains
faster. Frankle and Carbin [2019] thus conjecture that every successfully trained network contains
a much smaller subnetwork that, when trained in isolation, has comparable performance to the
large network, without sacrificing computing time. They name this phenomenon the Lottery Ticket
Hypothesis, and a ‘winning ticket’ is a subnetwork of the kind just described.

Ramanujan et al. [2019] went even further by observing that if the network architecture is large
enough, then it contains a smaller network that, even without any training, has comparable accuracy
to the trained large network. They support their claim with empirical results using a new pruning

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

algorithm, and even provide a simple asymptotic justification that we rephrase here: Starting from
the inputs and progressing toward the outputs, for any neuron of the target network, sample as many
neurons as required until one calculates a function within small error of the target neuron; then, after
pruning the unnecessary neurons, the newly generated network will be within some small error of
the target network. Interestingly, Ulyanov et al. [2018] pointed out that randomly initialized but
untrained ConvNets already encode a great deal of the image statistics required for restoration tasks
such as de-noising and inpainting, and the only prior information needed to do them well seems to be
contained in the network structure itself, since no part of the network was learned from data.

Very recently, building upon the work of Ramanujan et al. [2019], Malach et al. [2020] proved
a significantly stronger version of the “pruning is all you need” conjecture, moving away from
asymptotic results to non-asymptotic ones: With high probability, any target network of ` layers and
n neurons per layer can be approximated within ε accuracy by pruning a larger network whose size
is polynomial in the size of the target network. To prove their bounds, Malach et al. [2020] make
assumptions about the norms of the inputs and of the weights. This polynomial bound already tells
us that unpruned networks contain many ‘winning tickets’ even without training. Then it is natural to
ask: could the most important task of gradient descent be pruning?

Building on top of these previous works, we aim at providing stronger theoretical guarantees still
based on the motto that “pruning is all you need” but hoping to provide further insights into how
‘winning tickets’ may be found. In this work we relax the aforementioned assumptions while greatly
strengthening the theoretical guarantees by improving from polynomial to logarithmic order in all
variables except the depth, for the number of samples required to approximate one target weight.

How this paper is organized. After some notation (Section 2) and the description of the problem
(Section 3), we provide a general approximation propagation lemma (Section 4), which shows the
effect of the different variables on the required accuracy. Next, we show how to construct the large,
fully-connected ReLU network in Section 5 identical to Malach et al. [2020], except that weights are
sampled from a hyperbolic weight distribution instead of a uniform one. We then give our theoretical
results in Section 6, showing that only Õ(log(`nmax/ε)) neurons per target weight are required under
some similar conditions as the previous work (with ` layers, nmax neurons per layer and ε accuracy)
or Õ(` log(nmax/ε)) (with some other dependencies inside the log) if these conditions are relaxed.
For completeness, the most important technical result is included in Section 7. Other technical results,
a table of notation, and further ideas can be found in Appendix C.

2 Notation and definitions

A network architecture A(`,n,σ) is described by a positive integer ` corresponding to the number of
fully connected feed-forward layers, and a list of positive integers n = (n0, n1, . . . , n`) corresponding
to the profile of widths, where ni is the number of neurons in layer i ∈ [`] = {1, . . . , `} and n0 is the
input dimension, and a list of activation functions σ = (σ1, . . . , σ`)—all neurons in layer i use the
activation function σi. Networks from the architecture A(`,n,σ) implement functions from Rn0 to
Rn` that are obtained by successive compositions: Rn0 −→ Rn1 −→ · · · −→ Rn` .

Let F be a target network from architecture A(`,n,σ). The composition of such F is as follows:
Each layer i ∈ [`] has a matrix W ∗i ∈ [−wmax, wmax]ni×ni−1 of connection weights, and an activation
function σi, such as tanh, the logistic sigmoid, ReLU, Heaviside, etc. The network takes as input
a vector x ∈ X ⊂ Rn0 where for example X = {−1, 1}n0 or X = [0, xmax]n0 , etc. In layer i,
the neuron j with in-coming weights W ∗i,j calculates fi,j(y) = σi(W

∗
i,jy), where y ∈ Rni−1 is

usually the output of the previous layer. Note that W ∗i,j is the j-th row of the matrix W ∗i . The vector
fi(y) = [fi,1(y), . . . , fi,ni

(y)]> ∈ Rni denotes the output of the whole layer i when it receives
y ∈ Rni−1 from the previous layer. Furthermore, for a given network input x ∈ X we recursively
define Fi(x) by setting F0(x) = x, and for i ∈ [l] then Fi(x) = fi(Fi−1(x)). The output of neuron
j ∈ [ni] in layer i is Fi,j(x) = fi,j(Fi−1(x)). The network output is F (x) = F`(x).

For an activation function σ(.), let λ be its Lipschitz factor (when it exists), that is, λ is the smallest
real number such that |σ(x) − σ(y)| ≤ λ|x − y| for all (x, y) ∈ R2. For ReLU and tanh we have
λ = 1, and for the logistic sigmoid, λ = 1/4. Let λi be the λ corresponding to the activation function
σi of all the neurons in layer i, and let λmax = maxi∈[`] λi.

2

Define nmax = maxi∈[0..`] ni to be the maximum number of neurons per layer. The total number of
connection weights in the architecture A(`,n,σ) is denoted N∗, and we have N∗ ≤ `n2max.

For all x ∈ X , let Fmax(x) = maxi∈[`] maxj∈[ni−1] |Fi−1,j(x)| be the maximum activation at any
layer of a target network F , including the network inputs but excluding the network outputs. We
also write Fmax(X) = supx∈X Fmax(x); when X is restricted to the set of inputs of interest (not
necessarily the set of all possible inputs) such as a particular dataset, we expect Fmax(X) to be
bounded by a small constant in most if not all cases. For example, Fmax(X) ≤ 1 for a neural network
with only sigmoid activations and inputs in [−1, 1]n0 . For ReLU activations, Fmax(X) can in principle
grow as fast as (nmaxwmax)`, but since networks with sigmoid activations are universal approximators,
we expect that for all functions that can be approximated with a sigmoid network there is a ReLU
network calculating the same function with Fmax(X) = O(1).

The large network G has an architecture A(`′,n′,σ′), possibly wider and deeper than the target
network F . The pruned network Ĝ is obtained by pruning (setting to 0) many weights of the large
network G. For each layer i ∈ [`′], and each pair of neurons j1 ∈ [ni] and j2 ∈ [ni−1], for the
weight wi,j1,j2 of the large network G there is a corresponding mask bi,j1,j2 ∈ {0, 1} such that the
weight of the pruned network Ĝ is w′i,j1,j2 = bi,j1,j2wi,j1,j2 . The pruned network Ĝ will have
a different architecture from F , but at a higher level (by grouping some neurons together) it will
have the same ‘virtual’ architecture, with virtual weights Ŵ . As in previous theoretical work, we
consider an ‘oracle’ pruning procedure, as our objective is to understand the limitations of even the
best pruning procedures.

For a matrix M ∈ [−c, c]n×m, we denote by ‖M‖2 its spectral norm, equal to its largest singular
value, and its max-norm is ‖M‖max = maxi,j |Mi,j |. In particular, for a vector v, we have ‖Mv‖2 ≤
‖M‖2‖v‖2 and ‖M‖max ≤ ‖M‖2 ≤

√
nm‖M‖max and also ‖M‖max ≤ c. This means for example

that ‖M‖2 ≤ 1 is a stronger condition than ‖M‖max ≤ 1.

3 Objective

Objective: Given an architecture A(`,n,σ) and accuracy ε > 0, construct a network G from some
larger architecture A(`′,n′,σ′), such that if the weights of G are randomly initialized (no training),
then for any target network F from A(`,n,σ), setting some of the weights of G to 0 (pruning)
reveals a subnetwork Ĝ such that with high probability,

sup
x∈X
‖F (x)− Ĝ(x)‖2 ≤ ε

Question: How large must G be to contain all such Ĝ? More precisely, how many more neurons or
how many more weights must G have compared to F ?

Ramanujan et al. [2019] were the first to provide a formal asymptotic argument proving that such
a G can indeed exist at all. Malach et al. [2020] went substantially further by providing the first
polynomial bound on the size of G compared to the size of the target network F . To do so, they make
the following assumptions on the target network: (i) the inputs x ∈ X must satisfy ‖x‖2 ≤ 1, and at
all layers i ∈ [`]: (ii) the weights must be bounded in [−1/

√
nmax, 1/

√
nmax], (iii) they must satisfy

‖W ∗i ‖2 ≤ 1 at all layers i, and (iv) the number of non-zero weights at layer i must be less than nmax:
‖W ∗i ‖0 ≤ nmax. Note that these constraints imply that Fmax(X) ≤ 1. Then under these conditions,
they prove that any ReLU network with ` layers and nmax neurons per layer can be approximated1

within ε accuracy with probability 1 − δ by pruning a network G with 2` ReLU layers and each
added intermediate layer has n2maxd

64`2n3
max

ε2 log
2n2

max`
δ e neurons. These assumptions are rather strong,

as in general this forces the activation signal to decrease quickly with the depth. Relaxing these
assumptions while using the same proof steps would make the bounds exponential in the number of
layers. We build upon the work of Ramanujan et al. [2019], Malach et al. [2020], who gave the first
theoretical results on the Lottery Ticket Hypothesis, albeit under restrictive assumptions. Our work
re-uses some of their techniques to provide sharper bounds while removing these assumptions.

1Note that even though their bounds are stated in the 1-norm, this is because they consider a single output—for
multiple outputs their result holds in the 2-norm, which is what their proof uses.

3

4 Approximation Propagation

In this section, we analyze how the approximation error between two networks with the same
architecture propagates through the layers. The following lemma is a generalization of the (end of
the) proof of Malach et al. [2020, Theorem A.6] that removes their aforementioned assumptions
and provides better insight into the impact of the different variables on the required accuracy, but is
not sufficient in itself to obtain better bounds. For two given networks with the same architecture,
it determines what accuracy is needed on each individual weight so the outputs of the two neural
networks differ by at most ε on any input. Note that no randomization appears at this stage.

Lemma 1 (Approximation propagation). Consider two networks F and Ĝ with the same architecture
A(`,n,σ) with respective weight matrices W ∗ and Ŵ , each weight being in [−wmax, wmax]. Given
ε > 0, if for each weight w∗ of F the corresponding weight ŵ of Ĝ we have |w∗ − ŵ| ≤ εw, and if

εw ≤ ε

/(
e ` λmax n

3/2
max Fmax(X)

∏̀
i=1

max{1, λi‖Ŵi‖2}

)
, then sup

x∈X
‖F (x)− Ĝ(x)‖2 ≤ ε .

The proof is given in Appendix C.
Example 2. Consider an architecture with only ReLU activation function (λ = 1), weights in [−1, 1]

and assume that Fmax(X) = 1 and take the worst case ‖Ŵi‖2 ≤ wmaxnmax = nmax, then Lemma 1
tells us that the approximation error on each individual weight must be at most εw ≤ ε/(e`n

3/2+`
max)

so as to guarantee that the approximation error between the two networks is at most ε. This is
exponential in the number of layers. If we assume instead that ‖Ŵi‖2 ≤ 1 as in previous work then
this reduces to a mild polynomial dependency: εw ≤ ε/(e`n

3/2
max). 4

5 Construction of the ReLU Network G and Main Ideas

We now explain how to construct the large network G given only the architecture A(`,n,σ), the
accuracy ε, and the domain [−wmax, wmax] of the weights. Apart from this, the target network F is
unknown. In this section all activation functions are ReLU σ(x) = max{0, x}, and thus λ = 1.

We use a similar construction of the large network G as Malach et al. [2020]: both the target network
F and the large network G consist of fully connected ReLU layers, but G may be wider and deeper.
The weights of F are in [−wmax, wmax]. The weights for G (at all layers) are all sampled from the
same distribution, the only difference with the previous work is the distribution of the weights: we
use a hyperbolic distribution instead of a uniform one.

Between layer i− 1 and i of the target architecture, for the large network G we insert an intermediate
layer i− 1/2 of ReLU neurons. Layer i− 1 is fully connected to layer i− 1/2 which is fully connected
to layer i. By contrast to the target network F , in G the layers i− 1 and i are not directly connected.
The insight of Malach et al. [2020] is to use two intermediate (fully connected ReLU) neurons z+
and z− of the large network G to mimic one weight w∗ of the target network (seeFig. 1): Calling
z+

in, z
+

out, z
−
in , z

−
out the input and output weights of z+ and z− that match the input and output of the

connection w∗, then in the pruned network Ĝ all connections apart from these 4 are masked out by a
binary mask b set to 0. These two neurons together implement a ‘virtual’ weight ŵ and calculate the
function x 7→ ŵx by taking advantage of the identity x = σ(x)− σ(−x):

ŵ = z+

outσ(z+

inx) + z−outσ(z−inx)

Hence, if z+

in ≈ w∗ ≈ −z−in and z+

out ≈ 1 ≈ −z−out, the virtual weight ŵ made of z+ and z−

is approximately w∗. Then, for each target weight w∗, Malach et al. [2020] sample many such
intermediate neurons to ensure that two of them can be pruned so that |w∗ − ŵ| ≤ εw with high
probability. This requires Ω(1/ε2w) samples and, when combined with Lemma 1 (see Example 2),
makes the general bound on the whole network grow exponentially in the number of layers, unless
strong constraints are imposed.

To obtain a logarithmic dependency on εw, we use three new insights that take advantage of the
composability of neural networks: 1) ‘binary’ decomposition of the weights, 2) product weights, and
3) batch sampling. We detail them next.

4

w* z⁺ z⁻

z⁺in

z⁺out z⁻out

z⁻in

z⁺ z⁻

layer i

layer i-½

layer i-1

Target weight
in F

Virtual weight in Ĝ
Malach et al. 2020

Virtual weight in Ĝ
This work

ŵ ŵ

Figure 1: The target weight w∗ is simulated in the pruned network Ĝ by 2 intermediate neurons, requiring 1/ε2

sampled neurons (previous work) or by 2 log 1/ε intermediate neurons due to a ‘binary’ decomposition of w∗,
requiring only O(log 1/ε) sampled neurons (this work).

Weight decomposition. Our most important improvement is to build the weight ŵ not with just
two intermediate neurons, but with O(log 1/ε) of them, so as to decompose the weight into pieces of
different precisions, and recombine them with the sum in the neuron at layer i+ 1 (see Fig. 1), using
a suitable binary mask vector b in the pruned network Ĝ. Intuitively, the weight ŵ is decomposed
into its binary representation up to a precision of k ≈ dlog2 1/εe bits:

∑k
s=1 bs2

−s. Using a uniform
distribution to obtain these weights 2−s would not help, however. But, because the high precision
bits are now all centered around 0, we can use a hyperbolic sampling distribution pw(|w|) ∝ 1/w
which has high density near 0. More precisely, but still a little simplified, for a weight w∗ ∈ [−1, 1]
we approximate w∗ within ≈ 2−k accuracy with the virtual weight ŵ such that:

ŵx =

k∑
s=1

bs [z+

out,sσ(z+

in,sx) + z−out,sσ(z−in ,sx)] ≈
k∑
s=1

bssgn(w∗)2−sx ≈ w∗x (1)

where bs ∈ {0, 1} is factored out since all connections have the same mask, and where z+

out,sz
+

in,s ≈
sgn(w∗)2−s ≈ z−out,sz

−
in ,s and z+

out,s > 0, sgn(z+

in,s) = sgn(w∗), z−out,s < 0 and z−in ,s = −sgn(w∗).
Note however that, because of the inexactness of the sampling process, we use a decomposition in
base 3/2 instead of base 2 (Lemma 9 in Section 7).

Product weights. Recall that z+

out,sσ(z+

in,sx) = z+

out,s max{0, z+

in,sx}. For fixed signs of z+

out,s and
z+

in,s, this function can be equivalently calculated for all possible values of these two weights such
that the product z+

out,sz
+

in,s remains unchanged. Hence, forcing z+

out,s and z+

in,s to take 2 specific values
is wasteful as one can take advantage of the cumulative probability mass of all their combinations.
We thus make use of the induced product distribution, which avoids squaring the number of required
samples. Define the distribution pw≥0 for positive weights w ∈ [α, β] with 0 < α < β and pw,
symmetric around 0, for w ∈ [−β,−α] ∪ [α, β]:

pw≥0(w) =
1

w ln(β/α)
∝ 1

w
, and pw(w) = pw(−w) = 1

2pw≥0(|w|) =
1

2|w| ln(β/α)
.

Then, instead of sampling uniformly until both z+

out,s ≈ 1 and z+

in,s ≈ w∗, we sample both from
pw so that z+

out,sz
+

in,s ≈ w∗, taking advantage of the induced product distribution pw× ≈ 1
2pw≥0

(Lemma C.11).

Batch sampling. Sampling sufficiently many intermediate neurons so that a subset of them are
employed in approximating one target weight w∗ with high probably and then discarding (pruning)
all other intermediate neurons is wasteful. Instead, we allow these samples to be ‘recycled’ to be
used for other neurons in the same layer. This is done by partitioning the neurons in different buckets
(categories) and ensuring that each bucket has enough neurons (Lemma C.12).

5

6 Theoretical Results

We now have all the elements to present our central theorem, which tells us how many intermediate
neurons to sample to approximate all weights at a layer of the target network with high probability.
Remark 4 below will then describe the result in terms of number of neurons per target weight.
Theorem 3 (ReLU sampling bound). For a given architecture A(`,n,σ) where σ is the ReLU
function, with weights in [−wmax, wmax] and a given accuracy ε, the network G constructed as
above with weights sampled from pw with [α, β] = [α′/q, β′/q], α′ = 2εw/9, β

′ = 2wmax/3, and
q = (α′β′)1/4, requires only to sample Mi intermediate neurons for each layer i, where

Mi =

⌈
16k′

(
nini−1 + ln

2`k′

δ

)⌉
with k′ = log3/2

3wmax

εw
and

εw = ε

/(
e ` n

3/2
max Fmax(X)

∏̀
i=1

max{1, ‖Ŵi‖2}

)
(εw is in Lemma 1 with λ = 1 for ReLU), in order to ensure that for any target network F with the
given architecture A(`,n,σ), there exist binary masks bi,j = (bi,j,1, . . . bi,j,ni−1) of G such that for
the resulting subnetwork Ĝ,

sup
x∈X
‖F (x)− Ĝ(x)‖2 ≤ ε .

Proof. Step 1. Sampling intermediate neurons to obtain product weights. Consider a single
target weight w∗. Recalling that z+

out,s > 0 and z−out,s < 0, we rewrite Eq. (1) as

ŵx =

k∑
s=1

bsz
+

out,sσ(z+

in,sx) +

k∑
s=1

bsz
−
out,sσ(z−in ,sx)

=

k∑
s=1

bsσ(z+

out,sz
+

in,s︸ ︷︷ ︸
ŵ+

x) +

k∑
s=1

−bsσ(− z−out,sz
−
in ,s︸ ︷︷ ︸

ŵ−

x)

The two virtual weight ŵ+ and ŵ− are obtained separately. We need both |w∗ − ŵ+| ≤ εw/2 and
|w∗ − ŵ−| ≤ εw/2 so that |w∗ − ŵ| ≤ εw.

Consider ŵ+ (the case ŵ− is similar). We now sample m intermediate neurons, fully connected to
the previous and next layers, but only keeping the connection between the same input and output
neurons as w∗ (the other weights are zeroed out by the mask b). For a single sampled intermediate
neuron z, all its weights, including z+

in and z+

out, are sampled from pw, thus the product |z+

outz
+

in| is
sampled from the induced product distribution pw× and, a quarter of the time, z+

out and z+

in have the
correct signs (recall we need z+

out > 0 and sgn(z+

in) = sgn(w∗)). Define

p+(z+

outz
+

in) = P (w = z+

outz
+

in ∧ z+

out ∼ pw ∧ z+

out > 0

∧ z+

in ∼ pw ∧ sgn(z+

in) = sgn(w∗))

then with p+(z+

outz
+

in) ≥ pw×(|z+

outz
+

in|)/4 ≥ pw≥0(|z+

outz
+

in|)/8 where the last inequality follows
from Lemma C.11 for |z+

outz
+

in| ∈ [α′, β′], z+

out ∈ [α, β] and z+

in ∈ [α, β], and similarly for z−outz
−
in with

p−(z−outz
−
in) ≥ pw≥0(|z−outz

−
in |)/8.

Note that because sgn(z+

out) = −sgn(z−out) and sgn(z+

in) = −sgn(z−in), the samples for ŵ+ and ŵ−
are mutually exclusive which will save us a factor 2 later.

Step 2. ‘Binary’ decomposition/recomposition. Consider a target weight w∗ ∈ [−wmax, wmax].
Noting that Corollary 10 equally applies for negative weights by first negating them, we obtain ŵ+

and ŵ− by two separate applications of Corollary 10 where we substitute Pε Pε/8 = pw≥0/8,
ε εw/2, δ δw. Substituting Pε with pw≥0/8 in Eq. (2) shows that this leads to a factor 8 on
m. Therefore, by sampling m = 8dk′ ln k′

δw
e weights from pw× in [α′, β′] = [2εw/9, 2wmax/3] with

k′ = log3/2
3wmax
εw

ensures that there exists a binary mask b of size at most k′ such that |w∗ − ŵ+| ≤
εw/2 with probability at least 1−δw. We proceed similarly forw−. Note that Corollary 10 guarantees
|ŵ| ≤ |w∗| ≤ wmax, even though the large network G may have individual weights larger than wmax.

6

Step 2’. Batch sampling. Take k := dlog3/2
wmax
2εw
e ≤ k′ to be the number of ‘bits’ required to

decompose a weight with Corollary 10 (via Lemma 9). Sampling m different intermediate neurons
for each target weight and discarding m − k samples is wasteful: Since there are nini−1 target
weights at layer i, we would need nini−1m intermediate neurons, when in fact most of the discarded
neurons could be recycled for other target weights.

Instead, we sample all the weights of layer i at the same time, requiring that we have at least nini−1
samples for each of the k intervals of the ‘binary’ decompositions of ŵ+ and ŵ−. Then we use
Lemma C.12 with 2k categories: The first k categories are for the decomposition of ŵ+ and the next k
ones are for ŵ−. Note that these categories are indeed mutually exclusive as explained in Step 1. and,
adapting Eq. (2), each has probability at least 1

8

∫ γu

w=γu+1 pw≥0(w)dw ≥ 1/(8 log3/2(3wmax/εw)) =

1/(8k′) (for any u). Hence, using Lemma C.12 where we take n nini−1 and δ δi, we only
need to sample d16k′(nini−1 + ln 2k

δi
)e ≤ d16k′(nini−1 + ln 2k′

δi
)e = Mi intermediate neurons

to ensure that with probability at least 1− δi each ŵ+ and ŵ− can be decomposed into k product
weights in each of the intervals of Lemma 9.

Step 3. Network approximation. Using a union bound, we need δi = δ/` for the claim to hold
simultaneously for all ` layers. Finally, when considering only the virtual weights ŵ (constructed
from ŵ+ and ŵ−), Ĝ and F now have the same architecture, hence choosing εw as in Lemma 1
ensures that with probability at least 1− δ, supx∈X ‖F (x)− Ĝ(x)‖ ≤ ε.

Remark 4. Consider ni = nmax for all i and assume ‖Wi‖2 ≤ 1, wmax = 1 and Fmax(X) ≤ 1. Then
εw ≥ ε/(e`n

3/2
max) and k′ ≤ log3/2(3e`n

3/2
max/ε). Then we can interpret Theorem 3 as follows: When

sampling the weights of a ReLU architecture from the hyperbolic distribution, we only need to sample
Mi/n

2
max ≤ 16k′ + ln(2`k′/δ)/n2max = Õ(log(`nmax/ε)) neurons per target weight (assuming

n2max > log(`k′/δ)). Compare with the bound of Malach et al. [2020, Theorem A.6] which, under the
further constraints that wmax ≤ 1/

√
nmax and maxi∈[`] ‖W ∗i ‖0 ≤ nmax and with uniform sampling in

[−1, 1], needed to sample Mi/n
2
max = d64`2n3max log(2N/δ)/ε2e neurons per target weight.

Example 5. Under the same assumptions as Remark 4, for nmax = 100, ` = 10, ε = 0.01, δ = 0.01,
the bound above for Malach et al. [2020] gives Mi/n

2
max ≤ 2 · 1015, while our bound in Theorem 3

gives Mi/n
2
max ≤ 630. 4

Example 6. Under the same conditions as Example 5, if we remove the assumption that ‖Wi‖2 ≤ 1,
then Theorem 3 gives Mi/n

2
max = Õ(` log(nmax/ε)) and numerically Mi/n

2
max ≤ 2 450. 4

We can now state our final result.

Corollary 7 (Weight count ratio). Under the same conditions as Theorem 3, Let N∗ be the number
of weights in the fully connected architecture A(`,n,σ) and NG the number of weights of the large
network G, then the weight count ratio is NG/N∗ ≤ 32nmaxk

′ + Õ(log(k′/δ)).

Proof. We have N∗ =
∑`
i=1 ni−1ni, and the total number of weights in the network G if layers are

fully connected is at most NG =
∑`
i=1(ni−1 + ni)Mi, where Mi = 16k′ni−1ni + O(log(k′/δ)).

Hence the weight count ratio is NG/N∗ ≤ 32nmaxk
′ + Õ(log(k′/δ)).

Remark 8. Since in the pruned network Ĝ each target weight requires k′ neurons, the large network
has at most a constant factor more neurons than the pruned network.

7 Technical lemma: Random weights

The following lemma shows that if m weights are sampled from a hyperbolic distribution, we can
construct a ‘goldary’ (as opposed to ‘binary’) representation of the weight with only Õ(ln 1

ε ln 1
δ)

samples. Because of the randomness of the process, we use a “base” 3/2 instead of a base 2 for
logarithms, so that the different ‘bits’ have overlapping intervals. As the proof clarifies, the optimal
base is 1/γ = 1

2 (
√

5 + 1)=̇1.62. The base 1/γ = 3/2 is convenient. The number 1
2 (
√

5 + 1) is
known as the ‘golden ratio’ in the mathematical literature, which explains the name we use.

7

Lemma 9 (Golden-ratio decomposition). For any given ε > 0 and 1/ϕ ≤ γ < 1, where ϕ :=
1
2 (
√

5 + 1) is the golden ratio, define the probability density Pε(v) := c′

v for v ∈ [εγ2, γ] with
normalization c′ := [ln 1

γε]−1. For any δ ∈ (0, 1), if m = dk′ ln k′/δe = Ω̃(ln ε · ln δ) with
k′ := logγ(γε), then with probability at least 1 − δ over the random sampling of m ‘weights’
vs ∼ Pε for s = 1, ...,m, the following holds: For every ‘target weight’ w ∈ [0, 1], there exists
a mask b ∈ {0, 1}m with |b| ≤ k′ such that ŵ := b1v1 + ... + bmvm is ε-close to w, indeed
w − ε ≤ ŵ ≤ w.

Proof. Let k = dlogγ εe ≤ 1 + logγ ε = k′. First, consider a sequence (vi)i∈[k] such each vi is
in the interval Ii := (γi+1, γi] for i = 1, ..., k. We construct an approximating ŵ for any weight
w0 := w ∈ [0, 1] by successively subtracting vi when possible. Formally

for(i = 1, ..., k) {if wi−1 ≥ γi then {wi := wi−1 − vi; bi = 1} else {wi := wi−1; bi = 0}}

By induction we can show that 0 ≤ wi ≤ γi. This holds for w0. Assume 0 ≤ wi−1 ≤ γi−1: If
wi−1 < γi then wi = wi−1 < γi.

If wi−1 ≥ γi then wi = wi−1 − vi ≤ γi−1 − γi+1 = (γ−1 − γ)γi ≤ γi.

The last inequality is true for γ ≥ 1
2 (
√

5− 1), which is satisfied due to the restriction 1/ϕ ≤ γ < 1.
Hence the error 0 ≤ w − ŵ = wk ≤ γk ≤ ε ≤ γk−1 for k := dlogγ εe ≥ 0.

Now consider a random sequence (vi)i∈[m] where we sample vs
iid∼ P over the interval [γ2ε, γ]

for s = 1, ...,m > k. In the event that there is at least one sample in each interval Ii, we can use
the construction above with a subsequence ṽ of v such that ṽi ∈ Ii and

∑
i∈[k] biṽi = wk as in

the construction above. Next we lower bound the probability p that each interval Ii contains at
least one sample. Let Ei be the event “no sample is in Ii” and let c = mini∈[k] P [v ∈ Ii]. Then
P [Ei] = (1− P [v ∈ Ii])m ≤ (1− c)m, hence

p = 1− P [E1 ∨ ... ∨ Ek] ≥ 1−
k∑
i=1

P [Ei] ≥ 1− k(1− c)m ≥ 1− k exp(−cm)

and thus choosing m ≥
⌈
1
c ln(k/δ)

⌉
ensures that p ≥ 1− δ. Finally,

c = min
i∈[k]

P [v ∈ Ii] = min
i
P [γi+1< v≤γi] = min

i

∫ γi

γi+1

c′

v
dv = c′ ln

1

γ
= 1/ logγ(γε) =

1

k′
(2)

and so we can take m =
⌈
k′ ln k′

δ

⌉
.

Corollary 10 (Golden-ratio decomposition for weights in [0, wmax]). For any given ε > 0, define
the probability density Pε(v) := c′

v for v ∈ [49ε,
2
3wmax] with normalization c′ := 1/ ln 3wmax

2ε . Let
k′ := log3/2

3wmax
2ε , For any δ ∈ (0, 1), if m = dk′ ln k′

δ e = Ω̃(ln 1
ε · ln

1
δ), then with probability at

least 1 − δ over the random sampling of m ‘weights’ vs ∼ Pε (s = 1, ...,m) the following holds:
For every target ‘weight’ w ∈ [0, wmax], there exists a mask b ∈ {0, 1}m with |b| ≤ k′ such that
ŵ := b1v1 + ...+ bmvm is ε-close to w, indeed w − ε ≤ ŵ ≤ w.

Proof. Follows from Lemma 9 with γ = 2/3 and a simple rescaling argument: First rescale
w′ = w/wmax and apply Lemma 9 with w′ and accuracy ε/wmax. Then the constructed ŵ′ satisfies
w′ − ε/wmax ≤ ŵ′ ≤ w′ and multiplying by wmax gives the required accuracy. Also note that the
density Pε(v) ∝ 1/v is scale-invariant.

8

8 Related Work

In the version of this paper that was submitted for review, we conjectured with supporting experimental
evidence that high precision could be obtained also with uniform sampling when taking advantage of
sub-sums (see Appendix A). After the submission deadline, we have been made aware that Pensia
et al. [2020] concurrently and independently submitted a paper that resolves this conjecture, by using
a theorem of Lueker [1998]. Pensia et al. [2020] furthermore use a different grouping of the samples
in each layer, leading to a refined bound with a logarithmic dependency on the number of weights per
target weight and provide a matching lower bound (up to constant factors). Their results are heavily
anchored in the assumptions that the max norms of the weights and of the inputs are bounded by 1,
leaving open the question of what happens without these constraints—this could be dealt with by
combining their results with our Lemma 1.

9 Conclusion

We have proven that large randomly initialized ReLU networks contain many more subnetworks
than previously shown, which gives further weight to the idea that one important task of stochastic
gradient descent (and learning in general) may be to effectively prune connections by driving their
weights to 0, revealing the so-called winning tickets. One could even conjecture that the effect of
pruning is to reach a vicinity of the global optimum, after which gradient descent can perform local
quasi-convex optimization. Then the required precision ε may not need to be very high.

Further questions include the impact of convolutional and batch norm layers, skip-connections and
LSTMs on the number of required sampled neurons to maintain a good accuracy.

Statement of broader impact

This work is theoretical, and in this regard we do not expect any direct societal or ethical consequences.
It is our hope, however, that by studying the theoretical foundations of neural networks this will
eventually help the research community make better and safer learning algorithms.

Acknowledgements

The authors would like to thank Claire Orseau for her great help with time allocation, Tor Lattimore
for the punctual help and insightful remarks, András György for initiating the Neural Net Readathon,
and Ilja Kuzborskij for sharing helpful comments.

References
Z. Allen-Zhu, Y. Li, and Z. Song. A convergence theory for deep learning via over-parameterization.

In International Conference on Machine Learning, pages 242–252, 2019.

R. Ebendt and R. Drechsler. Weighted A∗ search – unifying view and application. Artificial
Intelligence, 173(14):1310 – 1342, 2009.

J. Frankle and M. Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural networks. In
ICLR, 2019.

A. Khan, A. Sohail, U. Zahoora, and A. S. Qureshi. A survey of the recent architectures of deep
convolutional neural networks. Artificial Intelligence Review, Apr. 2020.

R. Livni, S. Shalev-Shwartz, and O. Shamir. On the computational efficiency of training neural
networks. In Advances in neural information processing systems, pages 855–863, 2014.

G. Lueker. Exponentially small bounds on the expected optimum of the partition and subset sum
problems. Random Structures and Algorithms, 12:51–62, 1998.

S. Ma, R. Bassily, and M. Belkin. The power of interpolation: Understanding the effectiveness of sgd
in modern over-parametrized learning. In International Conference on Machine Learning, pages
3325–3334, 2018.

9

E. Malach, G. Yehudai, S. Shalev-Shwartz, and O. Shamir. Proving the lottery ticket hypothesis:
Pruning is all you need. arXiv preprint arXiv:2002.00585. To appear in ICML-2020, 2020.

A. Pensia, S. Rajput, A. Nagle, H. Vishwakarma, and D. Papailiopoulos. Optimal lottery tickets via
subsetsum: Logarithmic over-parameterization is sufficient. arXiv preprint arXiv:2006.07990. To
appear in NeurIPS-2020, 2020.

V. Ramanujan, M. Wortsman, A. Kembhavi, A. Farhadi, and M. Rastegari. What’s hidden in a
randomly weighted neural network? arXiv preprint arXiv:1911.13299, 2019.

J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre, S. Schmitt, A. Guez, E. Lockhart,
D. Hassabis, T. Graepel, T. Lillicrap, and D. Silver. Mastering atari, go, chess and shogi by
planning with a learned model. arXiv preprint arXiv:1911.08265, 2019.

D. Ulyanov, A. Vedaldi, and V. Lempitsky. Deep image prior. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 9446–9454, 2018.

A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner,
A. Senior, and K. Kavukcuoglu. Wavenet: A generative model for raw audio, 2016.

D. Zou and Q. Gu. An improved analysis of training over-parameterized deep neural networks. In
Advances in Neural Information Processing Systems, pages 2053–2062, 2019.

10

A Sub-sums of Uniform Samples

Sampling uniformly requires many samples to obtain high precision anywhere in the region of interest
(Fig. 2, Top). In this work we have taken advantage the summing function in neurons, combined
with pruning, so as to be able to consider all 2k sub-sums of k samples (Fig. 2, Middle). However,
we conjecture that a similar effect appears with sub-sums of uniform samples (Fig. 2, Bottom, but
observe the large offset): For example, it suffices that 2 among k samples x1 and x2 are within ε of
each other so that for all other samples x3, x3 + x1 and x3 + x2 are within ε of each other too.

B Variations and Improvements

Remark B.1. Sampling from Pε is easy using the inverse CDF: To obtain a sample from Pε in [α, β],
first draw a uniform sample u ∼ U [0, 1] then return α(β/α)u.

Remark B.2. The sampling procedure can be made independent of ε by sampling from P (v) =
ln 1

γ /v(ln v)2 for 0 ≤ v ≤ γ with γ = 2
3 . It is easy to see that c in the proof becomes (ln γ/ ln(εγ2))2,

leading to a slightly worse bound m = Ω̃((ln 1
ε)2 · ln 1

δ). For P (v) ∝ [v ln 1
v (ln(ln 3

v))2]−1 we get
the same bound m = Ω̃(ln 1

ε · ln
1
δ) as in Lemma 9.

Remark B.3. Instead of using batch sampling and Lemma C.12, we can ‘recycle’ samples in a
different way, which removes the leading factor 16 at the expense of a larger second order term. See
Appendix D.

Remark B.4. What if wmax is not known? A simple trick is to take wmax = 2j+1 with j ∼ P (j) ∝
1/(j ln2(j + 1)). Then the total number of samples required to obtain M∗i samples in layer i for the
a priori unknown w∗max is O(M∗i logw∗max log2 logw∗max).

Remark B.5. In practice, weights are often initialized uniformly in [−O(
√

1/n),+O(
√

1/n)],
where n is the layer width, potentially somehow averaged over two layers, i.e. weights are initially
very small. All our initializations need some large weights but only very few (O(log n) outside this
interval), most weights are very small too. We could even eliminate the large weights and limit our
sampling procedure to weights in this interval, but sample O(

√
n) times more weights to reconstruct

large weights.

Remark B.6. Extreme case: Pruning ‘Boolean’ networks. The difficulty of pruning can be easily
seen for ‘Boolean’ networks with a Heaviside transition function and binary inputs, and Boolean
weights everywhere. Then, the network G should need only twice as many weights as the target
network, but can still represent exponentially many functions. It is then clear that not only “Pruning
really is all you need,” but also that “Pruning is as hard as learning.”

C Technical Results

Proof of Lemma 1.

11

Figure 2: y-axis: Difference between two consecutive points on the x-axis. Top: 1000 uniform samples in [0,
1], x-axis is sample value (previous work); Middle: 15 hyperbolic samples in [0, 1], each point is one of 215

possible sub-sums, x-axis is the sub-sums (this work); Bottom: Like Middle, but with uniform samples in [0, 1]
(future work?).

12

Proof. For all x ∈ X , for a layer i:

‖Fi(x)− Ĝi(x)‖2
(a)
= ‖fi(Fi−1(x))− ĝi(Ĝi−1(x))‖2

=

 ∑
j∈[ni]

(σi(W
∗
i,jFi−1(x))− σi(Ŵi,jĜi−1(x)))2

1/2

(b)
≤ λi‖W ∗i Fi−1(x)− ŴiĜi−1(x)‖2
(c)
≤ λi‖Ŵi(Fi−1(x)− Ĝi−1(x))‖2 + λi‖(W ∗i − Ŵi)Fi−1(x)‖2
(d)
≤ λi‖Ŵi‖2 ‖Fi−1(x)− Ĝi−1(x)‖2 + λi‖W ∗i − Ŵi‖2 ‖Fi−1(x)‖2
(e)
≤ λi‖Ŵi‖2‖Fi−1(x)− Ĝi−1(x)‖2 + λmax

√
nini−1εwwmax

√
niFmax(x)

≤ λi‖Ŵi‖2‖Fi−1(x)− Ĝi−1(x)‖2 + εwλmaxn
3/2
maxFmax(x)

(f)
≤ εweiλmaxn

3/2
maxFmax(x)

i∏
u=1

max{1, λu‖Ŵu‖2}

where (a) follows from the definition of Fi and Ĝi, (b) follows from |σi(x)−σi(y)| ≤ λi|x−y| by the
definition of λi, (c) follows from the Minkowski inequality, (d) follows from ‖Mv‖2 ≤ ‖M‖2‖v‖2
applied to both terms, (e) is by assumption that |w∗ − ŵ| ≤ εw and ‖M‖2 ≤ c

√
ab for any

M ∈ [−c, c]a×b, and finally (f) follows from Corollary C.10, using ‖F0(x)−Ĝ0(x)‖2 = 0. Therefore

‖F (x)− Ĝ(x)‖2 = ‖F`(x)− Ĝ`(x)‖2 ≤ εwe`λmaxn
3/2
maxFmax(x)

∏̀
i=1

max
{

1, λi‖Ŵi‖2
}

and taking εw as in the theorem statement proves the result.

Lemma C.1 (Bound on positive sequences). Assuming x0 ≥ 0, and if, for all t = 0, 1, . . ., xt ≤
atxt−1 + bt with at ≥ 0 and bt ≥ 0, then

∀τ s.t. |{at < 1 + 1/τ}t∈[T]| ≤ τ we have xT ≤ e (x0 + c)

T∏
t∈[T]

at≥1+1/τ

at

with c = min

{
τ max

t
bt, max

t

bt
at − 1

}
.

Proof. First, observe that τ ≥ 0, with τ = 0 iff T = 0. Let ãt = max{at, 1 + 1/τ}. Then

c = min

{
τ max

t
bt, max

t

bt
at − 1

}
= max

t

bt
max{1/τ, at − 1}

= max
t

bt
ãt − 1

.

Define yt = ãtyt−1 + (ãt − 1)c and y0 = x0. Then we have yt + c = ãt (yt−1 + c) and so
by recurrence yT + c = (y0 + c)

∏T
t=1 at and thus yT ≤ (y0 + c)

∏T
t=1 ãt. Now, observe that

yt ≥ ãtyt−1 + bt ≥ 0 and so by recurrence with base case y0 = x0, xT ≤ yT .

Furthermore∏
t∈[T]

ãt ≤
∏

t:at<1+1/τ

(1 + 1/τ)
∏

t:at≥1+1/τ

at ≤ (1 + 1/τ)τ
∏

t:at≥1+1/τ

at ,

noting that (1 + 1/τ)τ ≤ e.

Remark C.2. The factor e should be 1 if mint at ≥ 1 + 1/τ .

Remark C.3. τ = T is always feasible.

Remark C.4. If mint at ≥ 2, then τ = 1 is feasible.

13

Corollary C.5 (Feasible τ for Lemma C.1). In the context of Lemma C.1, for all x > 1 taking
τ = max{1/(x− 1), |{at < x}t∈[T]|} is feasible.

Proof. Take y = 1/(x − 1), so x = 1 + 1/y and τ = max{y, |{at < 1 + 1/y}t|}. Thus
|{at < 1 + 1/τ}t| ≤ |{at < 1 + 1/y}t| ≤ τ as required.

Remark C.6. If 1 < mint at ≤ x then taking τ = 1/(x− 1) is feasible.

Remark C.7. Taking τ = max{1, |{at < 2}t|} is feasible.

Remark C.8. For ϕ = (1 +
√

5)/2 ≤ 1.62, taking τ = max{ϕ, |{at < ϕ}t|} is feasible.

Remark C.9. If mint at > 1 then τ = 1/(mint at − 1) is feasible (but useful only if mint at ≥
1 + 1/T).

Corollary C.10 (Simpler bound on positive sequences). Assuming x0 = 0, and if, for all t = 0, 1, . . .,
xt ≤ atxt−1 + bt with at ≥ 0 and bt ≥ 0, then

xT ≤ eT max
t
bt

T∏
t∈[T]

max{1, at} .

Proof. Follows from Lemma C.1 with τ = T which is always feasible and observing that∏
t:at≥1+1/T at ≤

∏
t max{1, at}, and that c ≤ τ maxt bt = T maxt bt.

Lemma C.11 (Product of weights). Let probability densities Pv(v) := c/v for v ∈ [a, b] and
0 < a < b with normalization c := 1/ ln b

a . Let weight w := v · v′ with v and v′ both sampled from
Pv . Then Pw(w) ≥ c/2w for w ∈ [a′, b′], where Pw is the probability density of w, and a′ := a

√
ab

and b′ := b
√
ab.

Note that w may be outside of [a′, b′], but at least half of the time is inside [a′, b′]. The lemma implies
that the bound in Lemma 9 also applies to the product of two weights, only getting a factor of 2 worse.
Note that the scaling ranges b

a = b′

a′ are the same.

Proof. ln v is uniformly distributed in [ln a, ln b]: indeed, taking y = ln v, we have Py(y) =

Pv(v)/dydv = c. Let us scale and shift this to t := c(2 ln v − ln ab) ∈ [−1,+1] and similarly t′ :=

c(2 ln v′ − ln ab) ∈ [−1,+1]. Then Pt(t) = Pv(v)/ dtdv = c
v/

2c
v = 1

2 for t ∈ [−1,+1], and same for
t′. Let u := t+ t′ ∈ [−2,+2]. The sum of two uniformly distributed random variables is triangularly
distributed: Pu(u) = 1

2 (1− 1
2 |u|). Using w = v · v′ we can write u = t+ t′ = 2c(lnw − ln(ab)).

Then Pw(w) = Pu(u) dudw = 1
2 (1 − 1

2 |u|)
2c
w . For |u| ≤ 1 this is ≥ c/2w. Finally |u| ≤ 1 iff

| lnw − ln(ab)| ≤ 1/2c iff lnw R ln ab∓ 1
2 ln b

a iff w ∈ [a′, b′].

Lemma C.12 (Filling k categories each with at least n samples). Let Pc be a categorical distribution
of at least k ∈ N (mutually exclusive) categories {1, 2, . . . k, . . .} such that the first k categories have
probability at least c and at most 1/2, that is, if X ∼ Pc, then c ≤ Pc(X = j) ≤ 1/2 for all j ∈ [k].
Let (Xi)i∈[M] be a sequence of M random variables sampled i.i.d. from Pc. For all δ ∈ (0, 1), for
all n ∈ N, if

M =

⌈
2

c

(
n+ ln

k

δ

)⌉
then with probability at least 1 − δ each category j ∈ [k] contains at least n samples, i.e., |{Xi =
j}i∈[M]| ≥ n.

Proof. Let cj ≥ c be the probability of category j ∈ [k]. Using the Chernoff-Hoeffding theorem on
the Bernoulli random variable JXi = jK, —where JtestK is the indicator function and equals 1 if test
is true, 0 otherwise— with Mcj − x = n ≥ 0, that is, x = Mcj − n, for each category j ∈ [k] we

14

have

P

(
M∑
i=1

(1− JXi = jK) > M(1− cj) + x

)
≤ exp

(
− x2

2Mcj(1− cj)

)

P

(
M∑
i=1

JXi = jK < Mc− x

)
≤ exp

(
− x2

2Mcj(1− cj)

)

P

(
M∑
i=1

JXi = jK < n

)
≤ exp (−(Mcj/2− n))

and the condition (1− cj) ≥ 1/2 is satisfied. Name Ej the event “the category j ∈ [k] contains fewer
than n samples,” then P (Ej) ≤ exp(−(Mc/2−n)). Then, using a union bound, the probability that
any of the k categories contain fewer than n samples is at most

P (E1 ∨ E2 ∨ . . . Ek) ≤
k∑
j=1

P (Ej) ≤ k exp (−(Mc/2− n))

and since M ≥ 2
c

(
n+ ln k

δ

)
P (E1 ∨ E2 ∨ . . . Ek) ≤ δ ,

1− P (E1 ∨ E2 ∨ . . . Ek) ≥ 1− δ ,
which proves the claim.

D Sample recycling

Theorem D.1 (ReLU sampling bound #2). Theorem 3 holds simultaneously also with

Mi =

⌈
2k′
(
nini−1 + 4 max{ni, ni−1} ln

2k′N∗

δ

)⌉
and all other quantities are unchanged.

Proof. Step 1 and 2. Same as for Theorem 3.

Step 2’. Sample recycling. Let

m =

⌈
8k′ ln

k′

δw

⌉
, k′ = log3/2

3wmax

εw
, k =

⌈
log3/2

2wmax

εw

⌉
,

where m is the number of neurons that need to be sampled according to Corollary 10 to εw-
approximate one target weight with probability at least 1−δw, and k is an upper bound on the number
of unit bits of the corresponding mask. One neuron with some pruned weights cannot be shared to
approximate two target weights at the same time, which means we need at least 2knini−1 neurons (k
for each ŵ+, and k for each ŵ−). For a specific target weight w∗, out of m ≥ 2k sampled neurons,
only at most 2k of them are actually used to approximate the target weight; all others are ‘discarded’.
But discarding them is wasteful, because only the product weight on the same input/output as the
target weight has been filtered by Corollary 10 (via Lemma 9); all other product weights are still inde-
pendent samples since their values have not been queried by any process. Each intermediate neuron
is connected in input and output with ni + ni−1 weights, but it contains exactly only min{ni, ni−1}
independent product weight samples, since each input weight and each output weight can be used at
most as one independent product weight sample. Algorithm 1 shows that we can use all of them and,
following the algorithm’s notation and the assumption that ni ≥ ni−1, that for each j we only need
m + 2(k − 1)ni−1 sampled neurons, that is, only nim + 2(k − 1)nini−1 for the whole layer. To
also cover the case ni−1 > ni, we need to sample max{ni, ni−1}m+ 2(k − 1)nini−1 neurons to
ensure that every target weight of layer i can be decomposed into 2k product weights, each based on
m independent product weight samples.

Step 3. Network approximation. For the guarantee to hold simultaneously over all ŵ+ and ŵ−,
using a union bound we can take δw = δ/(2N∗). Finally the claim follows from Lemma 1 and noting
that k ≤ k′.

15

Remark D.2. Observe that even though the factor in front of m is larger than for Theorem 3, (also
` N∗ in the log) we gain a constant factor 8 in front of the leading term nini−1k.
Example D.3. Under the same conditions as Example 5, Theorem D.1 gives Mi/n

2
max ≤ 144, and

under the same conditions as Example 6 we have Mi/n
2
max ≤ 574. 4

Therefore, since both Theorem 3 and Theorem D.1 hold simultaneously, we can take:

Mi = min

{⌈
16k′

(
nini−1 + ln

2k′`

δ

)⌉
,⌈

2k′
(
nini−1 + 4 max{ni, ni−1} ln

2k′N∗

δ

)⌉}
to ensure that, with probability at least 1− δ,

sup
x∈X
‖F (x)− Ĝ(x)‖2 ≤ ε .

Algorithm 1 Recycling samples. We assume that ni ≥ ni−1, otherwise the loops and the increments
need to be exchanged.

1 # Sample recycling at layer i.
2 for j= 1 to ni: # Assumes ni ≥ ni−1
3 # Discard old samples and generate fresh ones.
4 M = sample m fully-connected intermediate neurons
5 for d = 1 to ni−1:
6 # These indices ensure that
7 # * all target weights are approximated,
8 # * no input weight and no output weight is used for more
9 # than one target weight.

10 idx_in = d
11 idx_out = (d+j) % ni
12 w∗ = W ∗[idx_in, idx_out]
13 # ‘Call’ to the golden-ratio decomposition (Corollary 10)
14 # using the provided samples M.
15 # It returns the set K ⊆ M of sampled neurons used to decompose w∗.
16 # Only uses weights at the indices idx_in and idx_out of the neurons

in M.
17 # The indexes above ensure that no weight in M already has idx_in and
18 # idx_out zeroed out.
19 K+ = GRD+(M, idx_in, idx_out, w∗) # Corollary 10 for ŵ+

20 K- = GRD-(M, idx_in, idx_out, w∗) # Corollary 10 for ŵ−

21 # These samples cannot be reused for other neurons, put them aside.
22 M = M \ (K+ ∪ K-)
23
24 # Zero-out the input and output weights that the GRD has filtered,
25 # as they are not independent samples anymore and cannot be reused.
26 for n in M:
27 n.ins[idx_in] = 0
28 n.outs[idx_out] = 0
29
30 # Fill up M to have m intermediate neurons.
31 M_new = sample |K+|+|K-| new independent neurons # |K+|+|K-| ≤ 2k
32 M = M ∪ M_new # such that |M| = m

16

E List of Notation

Symbol Explanation
N natural numbers {1, 2, . . .}
` ∈ N number of network layers
n ∈ N` vector of the number of neurons
nmax ∈ N maximum number of neurons per layer
i ∈ [`] layer index
j ∈ [ni] index of jth neuron in layer i
F a target network
G the large network to be pruned
Ĝ the network G after pruning
Fmax(X) maximum absolute activation of any non-final neuron on all inputs of interest in F
w ∈ [−wmax, wmax] some weight
wmax ∈ R+ max norm of the weights
w∗ ∈ [−wmax, wmax] a weight of the target network F
W ∗ weights of the target network
z+

out, z
+

in, z
−
out, z

−
in actual individual weights of the network G

ŵ+, ŵ−, ŵ virtual individual weights of the network Ĝ
ε > 0 output accuracy
1− δ ∈ [0, 1] high probability
σ : R→ R activation function
σ vector of ` activation functions
λi Lipschitz factor of σi
k ∈ N number of ‘bits’ to represent a weight
m ∈ N number of neurons sampled per target weight
M ∈ N number of neurons sampled per intermediate layer
x ∈ [−xmax, xmax]n0 network input
xmax ∈ R+ max norm of the inputs
P probability
A(`,n,σ) architecture of a network
v vector
b binary mask vector
b binary mask
Fi output of layer i of the target network given network inputs
G the big network i
Ĝi subnetwork of the big network, approximating F
fi layer functions of target network given layer inputs
ĝi same as fi for Ĝ
Pε 1/v distribution
pw≥0 1/v distribution
pw ±1/v distribution
pw× 1/v product distribution
p+ product distribution of z+

out and z+

in
p− product distribution of z−out and z−in

17

	Introduction
	Notation and definitions
	Objective
	Approximation Propagation
	Construction of the ReLU Network G and Main Ideas
	Theoretical Results
	Technical lemma: Random weights
	Related Work
	Conclusion
	Sub-sums of Uniform Samples
	Variations and Improvements
	Technical Results
	Sample recycling
	List of Notation

