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Abstract

Human intelligence is characterized not only by the capacity to learn complex skills,
but the ability to rapidly adapt and acquire new skills within an ever-changing
environment. In this work we study how the learning of modular solutions can allow
for effective generalization to both unseen and potentially differently distributed
data. Our main postulate is that the combination of task segmentation, modular
learning and memory-based ensembling can give rise to generalization on an
exponentially growing number of unseen tasks. We provide a concrete instantiation
of this idea using a combination of: (1) the Forget-Me-Not Process, for task
segmentation and memory based ensembling; and (2) Gated Linear Networks,
which in contrast to contemporary deep learning techniques use a modular and
local learning mechanism. We demonstrate that this system exhibits a number
of desirable continual learning properties: robustness to catastrophic forgetting,
no negative transfer and increasing levels of positive transfer as more tasks are
seen. We show competitive performance against both offline and online methods
on standard continual learning benchmarks.

1 Introduction

Humans learn new tasks from a single temporal stream (online learning) by efficiently transferring
experience of previously encountered tasks (continual learning). Contemporary machine learning
algorithms struggle in both of these settings, and few attempts have been made to solve challenges
at their intersection. Despite obvious computational inefficiencies, the dominant machine learning
paradigm involves i.i.d. sampling of data at massive scale to reduce gradient variance and stabilize
training via back-propagation. In the case of continual learning, the batch i.i.d. paradigm is often
further extended to sample from a memory of experiences from all previous tasks. This is a popular
method of overcoming “catastrophic forgetting" [CG88,MC89, Rob95]l, whereby a neural network
trained on a new target task rapidly loses in its ability to solve previous source tasks.

Instead of considering “online" and “continual" learning as inconvenient constraints to avoid, in
this paper we describe a framework that leverages them as desirable properties to enable effective,
data-efficient transfer of previously acquired skills. Core to this framework is the ability to ensemble
task-specific neural networks at the level of individual nodes. This leads naturally to a desirable
property we call combinatorial transfer, where a network of m nodes trained on & tasks can generalize
to ™ “pseudo-tasks". Although the distribution of tasks and pseudo-tasks may differ, we show that
this method works very well in practice across a range of online continual learning benchmarks.

The ability to meaningfully ensemble individual neurons is not a property of contemporary deep
neural networks, owing to a lack of explicit modularity in the distributed and tightly coupled feature
representations learnt via backpropagation [BDR™ 19,|CFB ™ 19,[PKRCS17]. To concretely instantiate
our learning framework we instead borrow two complementary algorithms from recent literature: the
Gated Linear Network (GLN) and the Forget-Me-Not Process (FMN). We demonstrate that properties
of both models are complementary and give rise to a system suitable for online continual learning.
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2 Background

Transfer learning can be defined as the improvement of learning a new (target) task by the trans-
fer of knowledge obtained from learning about one or more related (source) tasks [ITS09]. We
focus on a generalization of transfer learning which has been studied under the names continual
learning [PKP™19] or lifelong-learning [CLI8]. Rather than considering just a single source and
target task, continual learning considers a sequence of tasks drawn from a potentially non-stationary
distribution. The aim is to learn future tasks while both (1) not forgetting how to solve past tasks,
and ideally (2) leveraging similarities in previous tasks to improve learning efficiency. Despite the
similarity with online learning, this sequence of tasks is rarely exposed as a temporal stream of data
in the literal sense. We refer to the intersection of these challenges as online continual learning.

A long-standing challenge for neural networks and continual learning is that the performance of a
neural network on a previously encountered source task typically rapidly degrades when it is trained
on a new target task. This phenomenon is widely known as catastrophic forgetting |[CG88, IMC&9,
Rob935]], but we will sometimes refer to it as negative backward transfer to distinguish it from positive
forward transfer (source task training improving target task performance) and positive backward
transfer (target task training improving source task performance).

Previous approaches for overcoming catastrophic forgetting typically fall into two categories. The
first category involves replaying source task data during target task training [Rob95|,[RKSL17,[LPR 17,
CRET19,|/ABT™19]. The second category involves maintaining task-specific network weights that
can be leveraged in various ways [DJV 13| [GDDMT4], typically involving regularization of the
training loss [KPR™ 17, [ZPG17,ISLC™18]. These methods share some combination of the following
limitations: (1) requiring knowledge or accurate estimation of task boundaries; (2) additional compute
and memory overhead for storing task-specific experience and/or weights; and (3) reliance on batch
i.i.d. training that leads to unsuitability for online training. A desirable algorithm for “human-like"
continual learning is one that addresses these limitations while simultaneously encouraging positive
forward and backward transfer.

3 Combinatorial Transfer Learning

We start with a short thought experiment. Consider two neural networks trained on two different
tasks, as shown in Figure (1] If the networks are modular in the sense that we could locally (per
node/neuron) ensemble the two networks, one could reasonably expect a global ensemble to work
beyond the range of tasks it was trained on by leveraging its previously learnt building blocks across
the two tasks. Now consider a network with m nodes, independently trained on h tasks, resulting
in h sets of parameters. If we locally ensemble these h networks, such that for each position in the
ensemble network we can pick a node of same position from any of the networks, we would have A"
possible instantiations. We refer to the task solved by each instantiation as a pseudo-task and claim
that such a system exhibits combinatorial transfer.

There are two issues with this thought experiment. First, contemporary neural networks do not exhibit
the modularity necessary for local ensembling. Many recent studies aim at identifying reusable
modular mechanisms to support causal and transfer learning [BDR™ 19} ICFB™ 19} [PKRCS17], but this
is made fundamentally difficult by the nature of the distributed and tightly coupled representations
learnt via backpropagation. Second, it is not obvious whether the distribution of pseudo-tasks
(ensembles of partial solutions to source tasks) meaningfully captures the complexities of the unseen
target tasks in a useful fashion. To address these issues, we seek a solution that satisfies the following
desiderata: (1) associated to every node is a learning algorithm with its own local loss function;
and (2) the nodes coordinate, in the sense that they work together to achieve a common goal. In
Section il we propose an algorithm that fulfills these requirements. In Section [5] we evaluate its
performance on a number of diagnostic and benchmark tasks, demonstrating that the combinatorial
transfer property is present and leads to improved continual learning performance compared with
previous state-of-the-art online and offline methods.
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Figure 1: Neural Combinatorial Transfer Learning (NCTL). (Left) Consider two 6-node networks
trained separately on tasks A and B. These networks can be locally ensembled (keeping node positions
fixed) to form 2° new networks. One particular instantiation is shown with small nodes placed within
each (large) node of the local ensemble. Rather than ensembling by selecting models/nodes, we
perform Bayesian Model Averaging, which is indicated using the colour gradients. (Center) Each
NCTL node uses the FMN Process as its ensembling technique. Best solutions identified by the
GGM base model are stored in a model pool and combined via Bayesian Model Averaging. Further
(hierachical) Bayesian Model Averaging is performed over postulationed task segmentations, each
of which is a temporal partition of the input stream into task segments. (Right) A candidate task
segmentation can be any pruning of the tree structure shown, with the segmentation described by the
set of leaves.

4 Algorithm

In this Section we describe the Neural Combinatorial Transfer Learning (NCTL) algorithm, a
concrete instantiation (see Figure[l)) of the above ideas using (1) Gated Geometric Mixer (GGM) as
the node-level modular learning algorithm; and (2) Forget-Me-Not Process (FMN) for automatic task
segmentation and local ensembling of the learnt GGM solutions.

Gated Geometric Mixer. Geometric Mixing is a well studied ensemble technique for combining
probabilistic forecasts [Mat12} Mat13]. Given p := (p1, ..., px ) input probabilities predicting the
occurrence of a single binary event, geometric mixing predicts probability p’ := o(w ' - a=(p)),
where o(x) := 1/(1 + e®) denotes the sigmoid function, o~ defines the logit function, and
w € R¥ is the weight vector which controls the relative importance of the input forecasts.

A Gated Geometric Mixer (GGM) [VLB™19] is the combination of a gating procedure and geometric
mixing. Gating has the intuitive meaning of mapping particular input examples to a particular choice
of weight vector for use with geometric mixing. The key change compared with normal geometric
mixing is that now our neuron will also take in an additional type of input, side information z € Z,
which will be used by the contextual gating procedure to determine an active subset of the neuron
weights to use for a given example. Associated with each GGM is a context function ¢ : Z — C,
where C = {1,...,C} for some C € N is the context space. Each GGM is parameterized by a matrix
W = [w],...,w]]T with row vector w; € R¥. The context function c is responsible for mapping
a given piece of side information z € Z to a particular row w(,) of W, which we then use with
standard geometric mixing. Formally, GGM. w (P, z) := o(W,(,) - ¢~ *(p)). One can efficiently
adapt the weights W online using Online Gradient Descent [Zin03]] by exploiting convexity under
the logarithmic loss as described in [VLBT19].

Forget-Me-Not Process. Generalizing stationary algorithms to non-stationary environments is a
key challenge in continual learning. In this work we choose to apply the Forget-Me-Not (FMN)
process [MVK™16]| as our choice of node-level ensembling technique. The FMN process is a
probabilistic meta-algorithm tailored towards non-i.i.d., piecewise stationary, repeating sources. This



meta-algorithm takes as input a single base measure p on target strings and extends the Partition
Tree Weighting algorithm [VWBG13] to incorporate a memory of up to k£ previous model states in
a data structure known as a model pool. It efficiently applies Bayesian model averaging over a set
of postulated segmentations of time (task boundaries) and a growing set M of stored base model
states p(-|s) for some subsequence s of x1.,,, while providing a mechanism to either learn a new
local solution or adapt/recall previous learnt solutions. Here our base measure p will be (implicitly)
defined from a sequential application of GGM, and formally defined later.

The FMN algorithm is derived and described in [MVK™16]. It computes the probability p’ =
FMNg4(Z1.,) € [0; 1] of a string of binary targets x1., € {0, 1}" of length n, e.g. 2+ could be a binary
class label (of feature z; introduced later). For this, it hierarchically Bayes-mixes an exponentially
large self-generated class of models from a base measure p in O(kn logn) time and O(k log n) space,
roughly as follows: For n = 2¢ and for j = 0, .., d, it breaks up string z.,, into 27 strings, each of
length 2977, which conceptually can be thought of in terms of a complete binary tree of depth d (see
Figure [I] right). For each substring .5, associated to each node of the tree will be a probability
&(x4.p) obtained from a Bayesian mixture of all models in the model pool M, at time a. Taking any
(variable depth) subtree (which induces a particular segmentation of time), concatenating the strings
at its leaves gives back x1.,, therefore the product of their associated mixture probabilities gives a
probability for x1.,,. Doing and averaging this (see [MVK™ 16, Eq.7]) for all possible O(2") subtrees,
which can be done incrementally in time O(k log n) per string element, gives FMNg(21.,,|p).

The models in the model pool are generated from an arbitrary adaptive base measure p by conditioning
it on past substrings x,.;. For example, p could be a Beta-Bernoulli model whose weights are updated
using Bayesian inference, or something more sophisticated such as a GGM. At time ¢, M, contains
at most k “versions” of p, with M := {p}. For t = 2, ..., n, the path leading to the ¢th leaf of the
tree in Figure|[T] (right) is traversed; whenever a string z,., with b = ¢ is encountered, then the model
p* € M, assigning the highest probability to the node’s string x,.p is either added to the model pool,
ie. M1 = My U{p*(-|zap)}, or ignored based on a Bayesian hypothesis test criterion given in
IMVKT16].

Neural Combinatorial Transfer Learning (NCTL). We now instantiate the Combinatorial Trans-
fer Learning framework. This will involve defining a feed-forward network structure exactly the
same as for a GLN, but replacing the basic notion of neuron, a GGM, with the more intricate FMN
process applied to a GGM. Informally, the output of GGM is first piped through FMN before being
used in the NCTL neuron, so that each node is now well-suited to non-stationary continual learning.
We use random half-space gating [VLBT 17, ISHB¥20] to generate the gates for each neuron.

A GLN is a network of GGMs with two types of input to each node: the first is side information
z € Z, which can be thought of as the input features in a standard supervised learning setup; the
second is the input p € [0; 1]¥ to the node, which are the predictions output by the previous layer, or
in the case of layer 0, p, := f(z) for some function f of the side information z. Upon receiving
an input p and side information z, each node attempts to directly predict the target probability
Pz} = 1|2]. Formally, neuron j in layer 4 outputs g}; := GGM,, (. w,, (P{_;, 2t). A GLN would
now feed p! := q} := (¢}, ..., d{g,), where K is the number of neurons in layer i, as input to the
next layer.

NCTL works in the same way but instantiates p! differently. Formally, ¢;; determines base measures
pi; on the target string 2., by p;;(z: = l|r<y) = qu, where all dependencies (on z,c¢, W and
previous layers) have been suppressed, and p;;(21.,) := [}, pij(@t|x<¢). Now p;; is determined
by pi; := FMNg(z; = 1|z <4; pij), Where FMNg(2¢|2<¢; p) 1= FMNg(21.4[p) / FMNg(2<¢|p) is the
probability for z; predicted by FMN based on p. Finally, P[z, = 1|z,] = p, is the output of the top
layer L neuron, which is taken as the output of NCTL.

Computational Complexity Assuming a fixed network structure and a constant-sized memory
pool of k items, the time and space complexity of NCTL to process n symbols is O(nk logn) and
O(k log n) respectively. Furthermore, the per sample running time is bounded by O(k log n).
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Figure 2: Demonstration of positive backward
transfer with NCTL, averaged across 500 task se-
quences with unknown boundaries and identities.
A model trained on increasing numbers of dis-
tractor tasks is rapidly (= 30 steps) able to match
lower bound performance, and tends to improve
on it, implying positive backward transfer.
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Figure 3: Demonstration of positive forward
transfer with NCTL, averaged across 500 task
sequences with unknown boundaries and iden-
tities. The efficiency with which NCTL learns a
randomly sampled held-out target task improves
monotonically in the number of source tasks, im-
plying positive forward transfer.

S Experimental Results

We now explore the properties of the NCTL algorithm empirically. We present our analysis in
three parts: in Section[5.1] we demonstrate that NCTL exhibits combinatorial transfer using a more
challenging variant of the standard Split MNIST protocol; in Section[5.2} we compare the performance
of NCTL to many previous continual learning algorithms across standard Permuted and Split MNIST
variants, using the same test and train splits as previously published; in Section [5.3] we further
evaluate NCTL on a widely used real-world dataset Electricity (Elec2-3) which exhibits temporal
dependencies and distribution drift. We use feature vector of Ky = 784 dimensions for MNIST
(flattened) and Ky = 5 dimensions for Electricity. Each feature vector is standardized component-
wise to have zero mean and unit variance. This normalized feature vector is broadcast to every neuron
as side information z. The inputs to each neuron are the predicted probabilities output by each neuron
in the preceding layer, with the exception of layer 0, which takes p, = o(z) as base predictions.

5.1 Evaluating Online Combinatorial Transfer

In Section [3| we proposed a framework by which a network with m nodes trained on h tasks will
generalize to h"™" pseudo-tasks via local ensembling. What remains to be demonstrated is whether
these pseudo-tasks are meaningful, i.e. whether combinatorial transfer is empirically beneficial for
continual learning. We do this by measuring both forward transfer and backward transfer in an online
regime, from a single stream of experience where both task boundaries and identities are unknown to
the learning algorithm. We report performance in terms of instantaneous log-loss.

Most recent studies on continual learning define a protocol that makes use of an underlying MNIST
(or similar) classification dataset. The popular (Disjoint) Split MNIST [ZPG17] involves separating
the 10-class classification problem with 5 binary classification tasks, digits 0-vs-1, 2-vs-3 and so
on. To assess combinatorial transfer, we propose a more challenging variant of the Disjoint Split
MNIST protocol that includes two additional modifications. First, data is presented online (i.e. a
single temporal stream) with random task durations (number of examples) equal to 100 + X, where
X ~ Geometric(0.01), and no explicit signalling of task boundaries. Second, we generate tasks
representing all unique pairs of different MNIST digits following the convention that the smaller
digit is assigned to label 0. This protocol yields 45 different tasks. Some of these tasks will naturally
conflict, for example in the case of 1-vs-3 versus 3-vs-5, notice that digit 3 has changed class label
between tasks. From here onwards we refer to this protocol as Free Split MNIST.

Positive Backward Transfer. Catastrophic forgetting (negative backward transfer) is one of the
most widely studied topics in continual learning. Here we measure backward transfer by first training
NCTL on a randomly sampled task, followed by a varying number of distractor tasks, before finally
evaluating on the initial task. Figure [2] shows the results. It is important to note that NCTL is not
provided with any knowledge of task information (including task boundaries and task identities). This
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Figure 5: Saliency maps for sequentially training
NCTL on task 1-vs-3, 5-vs-9 and 1-vs-8. (Top)
shows rapid learning of task 1-vs-3 as the charac-
teristic shape of digits emerges. (Bottom) shows
that when task transitions from 5-vs-9 to 1-vs-8
NCTL rapidly recovers learnt solution for quali-
tatively useful task 1-vs-3 and adapts.

can be seen by noting that although the performance is low in the first ~ 5 steps, after ~ 30 steps
the model rapidly achieves the baseline lower bound performance, corresponding with continuous
training without any distractor tasks. It is noteworthy that (1) increasing the number of distractor
tasks from 5 to 15 has no effect on the speed at which the network achieves baseline performance (no
negative transfer), and moreover (2) the introduction of distractor tasks actually improves the final
model performance. This observation implies positive backward transfer; the model has learnt partial
solutions from distractor tasks that can be composed to construct a better solution to the initial task.

Positive Forward Transfer. A key challenge in continual learning is to effectively leverage solu-
tions to previous source tasks to achieve more data efficient learning of an unseen target task. NCTL is
explicitly designed to support forward transfer by identifying locally relevant solutions to form a good
initialization without any knowledge of task information, by performing Bayesian model averaging
over temporal segmentations and previous model states. To assess forward transfer in a continual
learning setting, we evaluate the efficiency with which NCTL is able to solve a randomly sampled
target task having been trained on varying numbers of source tasks, averaging over 500 seeds. It is
evident in Figure [3that performance improves monotonically in the number of source tasks, even
though conflicting tasks are permitted and more likely to exist with larger number of source tasks.

Performance versus Task-Specific Oracles. We now investigate the overall learning behaviour
of NCTL on continual stream of Free Split MNIST tasks. Figure ] shows the performance of NCTL
compared to two oracle baselines averaged across 1000 Free Split MNIST task sequences. Oracle 1
has the benefit of being aware of task boundaries (but not task identities) and instantiates a new GLN
upon each task change in order to prevent negative transfer. Oracle 2 has full knowledge of both task
boundaries and task identities, and is therefore able to restore and continue training a GLN associated
with previous instances of this task. Both oracles used GLNs with exactly the same architecture and
hyper-parameters as NCTL. Unlike Oracles 1 and 2, NCTL is at a disadvantage as it is not informed
of the task identities or task boundaries. Despite this, NCTL significantly outperforms Oracle 1. It
further succeeds in outperforming Oracle 2, which has a dedicated model per task. This phenomenon
can only be explained by NCTL exhibiting positive forward transfer across different tasks.

Transfer Interpretability. NCTL has the desirable property that task-specific solutions can be
visualized directly. This property follows from the multi-linear structure of the underlying GLN
model, i.e. the inference function collapses to a data-dependent multi-linear polynomial of degree
equal to the number of GLN layers [VLB™19]]. This same technique can be directly applied to the
network of maximum a posteriori (MAP) GGM solutions under each local FMN process. This natural
formulation of a saliency map can be further applied to visualize learning and knowledge transfer, as
demonstrated in Figure 5]

As an additional validation that pseudo-tasks formed by NCTL from local neuron ensembling lead to
meaningful transfer, we inspect saliency maps of a small network with a single layer of 5 neurons
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Figure 6: (Top) saliency maps for a tiny 6-node
NCTL trained on 3 Free Split MNIST tasks: 4-vs-
5, 3-vs-9 and 0-vs-5. (Bottom) saliency maps
resulting from local ensembling of these nodes,
which form useful initializations for the unseen
tasks 0-vs-9, 3-vs-7 and 3-vs-5.

M
60 Model
—— MLP

50 GLN
NCTL

predictive accuracy (%)

40

10000 20000 30000 40000
number of examples

Figure 7: NCTL performance on real-world Elec-
tricity pricing online prediction problem, com-
pared to GLN [VLB™19]] and MLP. NCTL and
GLN are trained online, MLP is trained with
batch size 20. Error bars denote 95% confidence
levels over 10 random model initializations.

aggregated by a single output neuron. Figure[6]shows that, after training on 3 tasks (4-vs-5, 3-vs-9
and 0-vs-5), randomly sampled pseudo-tasks not only preserve solutions for source tasks but also
include qualitatively useful instantiations for unseen target tasks.

5.2 Performance Benchmarking

In this Section we evaluate NCTL compared to previous state-of-the-art algorithms on three standard
benchmarks: (1) Disjoint Split MNIST, discussed in the previous subsection; (2) Disjoint Split
Fashion MNIST, which shares the same splitting protocol as Disjoint Split MNIST but with Fashion
MNIST as the underlying dataset; and (3) Permuted MNIST [GMX™ 13, KPRT17]], where tasks
are defined by a choice of pixel permutation which is consistently applied to each image in a given
task. NCTL was implemented using JAX [BFH™ 18] and the DeepMind JAX ecosystem [BHK™20),
HCNB20, HBV 20, BHQ™"20]. Code at: github.com/deepmind/deepmind-research/.

We consider a domain-incremental [vdVT18|] continual learning scenario assuming known task
boundaries. Task identities are available during training but not testing so that “multi-headed"
solutions (each task maintains its own output units) are not applicable. We put NCTL at disadvantage
compared to the previous methods by providing it with neither task boundaries or identities. We
first evaluate on Disjoint Split Fashion MNIST where forward transfer and resilience to catastrophic
forgetting can be compared throughout the training process. We then compare the final accuracies of
NCTL to a broad set of continual learning methods for Permuted and Split MNIST variants.

Split Fashion MNIST. We compare performance of NCTL to two popular continual learning
algorithms: Elastic Weight Consolidation (EWC) [KPR™17] and Online EWC [HusT8], ISLCT18]].
We also present the performance of GLN [VLB™19] which shares the same network structure as
NCTL and has been shown to be robust to catastrophic forgetting. The main difference between
EWC and Online EWC is that Online EWC is more time and space efficient as it uses a running sum
of task-specific Fisher information matrices instead of one matrix for each task. Both algorithms
were trained in the same batch (not online) regime described by the original authors [KPR™17],
with additional access to information regarding task boundaries and identities. We used MLP with
layers consisting 1000-250-1 neurons, ReLU nonlinearities between the first two layers and sigmoid
applied to the final layer. Hyper-parameters are optimized by grid search for both EWC and online
EWC: the regularization constant ) is set to 10 and the learning rate is set to 10~ for EWC; and we
have \ = 107, a learning rate of 10~°, and the Fisher information matrix leak term -y (based on the
formalism of [SLCT18]]) set to 0.8 for online EWC. Our NCTL consisted of 50-25-1 neurons where
the base model for each neuron is a GGM with context space C' = 2* trained with learning rate 0.001.
We adopted the same hyperparameters for the GLN baseline.

Figure[§]shows the test accuracy on Split Fashion MNIST while being trained in a single pass and
evaluated every 500 examples. As described above, NCTL does not use one set of parameters but
rather leverages local solutions to quickly adapt and instantiate different solutions for different tasks.
When evaluating accuracy for NCTL on any task we therefore provide it with a small amount of data
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Figure 8: NCTL forward and backward transfer performance for Split Fashion MNIST, com-
pared to Elastic Weight Consolidation (EWC) [KPR™17], Online EWC [Hus18, [SLC™ 18] and
GLN [VLB™19]. Models are trained sequentially on up to 5 tasks (rows) and evaluated on each of
these tasks (columns), e.g. the top-right plot indicates performance on Task 1 after being trained
sequentially on Tasks 1 to 5 inclusive. Each model only trains for one epoch per task. Error bars
denote 95% confidence levels over 10 random seeds.

(50 examples) for adaptation before evaluation. We emphasize that this amount of data is insignificant
to contemporary batch i.i.d methods. Therefore, we also included a GLN baseline, which is well
suited to fast, online learning and is known to be resilient to catastrophic forgetting [VLB™19]. The
rows of Figure[§]represent train tasks and the columns represent test tasks, e.g. the top-right panel
compares performance on task 1 for models pre-trained on tasks 1 through 4 and being trained
on task 5. It is evident that NCTL matches or exceeds performance of both EWC variants on all
combinations. This is particularly evident in the lower half of the plot, i.e. NCTL is able to rapidly
adapt to all tasks 2 through 5 having only been pre-trained on task 1, and the performance remains
constant at worst, whereas other baseline performances often degrade. This demonstrates positive or
at least non-negative forward transfer for NCTL which is a rare feat, especially without accessing task
boundaries/identities. The upper half of the plot shows that the resilience of NCTL to catastrophic
forgetting is comparable to EWC and Online EWC, if not sometimes better.

Split and Permuted MNIST. Here we use the same NCTL configuration of Split Fashion MNIST
for Split MNIST. For permuted MNIST we construct a one-vs-all classifier with the same un-
optimized setting as Split Fashion MNIST, but with smaller networks consisting 10-5-1 neurons
only and context space C' = 26. Tablecompares NCTL to the suite of continual learning methods
benchmarked in [HLRK18]. It is clear that NCTL significantly outperforms all previous methods that
do not make use of an explicit replay mechanism: GEM [LPR17] stores fixed amount of examples
per prior task to provide constraint when learning new examples; DGR [SLKK17] and RtF [vdVT18]
are state-of-the-art rehearsal-based methods with generative model. The performance advantage is
particularly significant for Split MNIST, where the gap to the next best method is 24%.

5.3 On Sources with Unknown Drift

The Electricity (Elec2-3) dataset [HW99] contains 45,312 instances collected from the Australian
NSW Electricity Market between May 1997 and December 1999. Each instance consists of five
attributes and one binary class label indicating direction of price movement relative to the past 24
hours. There are two attributes for time: day of week and period of day. The remaining three numeric
attributes measure current demand: the demand in New South Wales, the demand in Victoria, and
the scheduled transfer between the two states. As the data is derived from real-world phenomenon,
instances are subject to continuous drift of underlying data distribution, and we cannot know definitely



Table 1: Average domain incremental Split/Permuted MNIST accuracies of NCTL versus a benchmark
suite of continual learning methods, using the setup described in [HLRKI18]. NCTL significantly
outperforms all other replay-free algorithms, and is able to achieve comparable performance with the
replay-augmented GEM, DGR and RtF algorithms. Note that NCTL alone is solving a strictly more
difficult variant of the problem where task boundaries and identities are not provided.

Task Split Permuted

Method  Replay g oundaries MNIST MNIST Reference
NCTL 95.07 4 0.02 | 95.27 £ 0.00 | [ours]
EWC v 58.85 £2.59 | 91.04 + 0.48 |[KPR™17]
Online EWC v 5733 £1.44 9251 £0.39 | [Husl8|
SI v 64.76 £3.09 | 93.94 £ 0.45 | [ZPG17]
MAS v 68.57+ 6.85 | 94.08 + 0.43 |[ABE™ 18]
LwF v 71.02 £ 1.26 | 72.64 + 0.52 [LH17]
GEM v v 96.16 = 0.35 | 96.19 £ 0.11 | [LPRI17]
DGR v v 95.74 £0.23 | 95.09 £ 0.04 |[SLKK17]
RtF v v 97.31 £ 0.11 | 97.06 = 0.02 | [vdVTI18]
Offline (upper bound) 98.59 £ 0.15 | 97.90 + 0.09 |[HLRKIS]

if or when such drift occurs. This presents challenges to existing methods relying on knowledge of
task boundaries and/or task identities.

We evaluate NCTL compared to GLN [VLB™19] and MLP on this task by processing examples in
temporal order, with each model first making a probabilistic prediction and then updating its weights.
Here we use the same configurations as detailed in [Split Fashion MNIST| with learning rate of 0.1 for
NCTL and GLN, and 10~ for the MLP. Figure shows superior performance of NCTL with an overall
accuracy of 86.37%. For reference, an online version of C4.5 [Quil4] called SPLICE-2 [HW99|
reports accuracy between 66% and 67.7% using decision tree built from examples in sliding window
of varying sizes. Later work [KMO7] reports accuracy of 62.32% for naive Bayes and 80.75% for
DWM-NB which is an ensemble method that dynamically creates and removes experts in response to
changes in performance, using an incremental version of naive Bayes for the ensemble components.

6 Future work

In this work we have focused on small scale binary classification tasks that are well-established in
the continual learning community. The NCTL algorithm can be naturally generalized to other online
settings such as multiclass classification and regression by using more general forms of geometric
mixing [Mat13] BMS™20], and it would be interesting to apply the algorithm to these settings.
Perhaps the most promising future application area for this work is reinforcement learning, however
it is as yet unclear how to best combine the local learning mechanism in NCTL with bootstrapped
targets in a principled fashion.

7 Conclusion

In this paper we described a framework for combinatorial transfer, whereby a network with m nodes
trained on h tasks generalizes to h' possible task instantiations (pseudo-tasks). This framework
relies on the ability to meaningfully ensemble networks at the level of individual nodes, which is
not a property of contemporary neural networks trained via back-propagation. Instead, we provide a
concrete instantiation of our framework using the recent and complementary Forget-Me-Not Process
and Gated Linear Network models. We provide a variety of experimental evidence that our NCTL
algorithm does indeed exhibit combinatorial transfer, and that leads to both positive forward and
backward transfer (no catastrophic forgetting) in a difficult online setting with no access to task
boundaries or identities. Moreover, we demonstrate empirically that the distribution of pseudo-tasks
is semantically meaningful by comparing NCTL to a number of contemporary continual learning
algorithms on standard Split/Permuted MNIST benchmarks and real-world Electricity dataset. This
new perspective on continual learning opens up exciting new opportunities for data-efficient learning
from a single temporal stream of experience in the absence of clearly defined tasks.



Broader Impact

This paper introduces a novel combinatorial perspective on transfer learning: past experiences can
generalize to an exponentially growing number of unseen tasks. Taken to its limits, an obvious
widespread benefit is improved data efficiency in solving unseen tasks, which could dramatically
reduce compute and energy consumption.

Privacy and algorithmic bias should be considered for real world applications to ensure that they
are ethical and of positive benefit to society. Our proposed algorithm is online and therefore
does not necessarily require storing data, which is potentially beneficial in terms of privacy. The
algorithm inherits many interpretability properties from GLNs [VLB™ 19], which might be helpful
for understanding and addressing any potential bias issues in deployment.

Funding Disclosure

All authors are employees of DeepMind.

References

[ABE"18] Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne
Tuytelaars. Memory aware synapses: Learning what (not) to forget. In Proceedings of
the European Conference on Computer Vision (ECCV), pages 139—154, 2018.

[ABT"19] Rahaf Aljundi, Eugene Belilovsky, Tinne Tuytelaars, Laurent Charlin, Massimo Caccia,
Min Lin, and Lucas Page-Caccia. Online continual learning with maximal interfered
retrieval. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett, editors, Advances in Neural Information Processing Systems 32, pages
11849-11860. Curran Associates, Inc., 2019.

[BDR*19] Yoshua Bengio, Tristan Deleu, Nasim Rahaman, Rosemary Ke, Sébastien Lachapelle,
Olexa Bilaniuk, Anirudh Goyal, and Christopher Pal. A meta-transfer objective for
learning to disentangle causal mechanisms. arXiv preprint arXiv:1901.10912, 2019.

[BFH*18] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary,
Dougal Maclaurin, and Skye Wanderman-Milne. JAX: composable transformations of
Python+NumPy programs, 2018.

[BHK'20] David Budden, Matteo Hessel, Iurii Kemaev, Stephen Spencer, and Fabio Viola. Chex:
Testing made fun, in JAX!, 2020.

[BHQT20] David Budden, Matteo Hessel, John Quan, Steven Kapturowski, Kate Baumli, Surya
Bhupatiraju, Aurelia Guy, and Michael King. RLax: Reinforcement Learning in JAX,
2020.

[BMS'20] David Budden, Adam Marblestone, Eren Sezener, Tor Lattimore, Greg Wayne, and Joel
Veness. Gaussian gated linear networks, 2020.

[CFB*19] Yutian Chen, Abram L Friesen, Feryal Behbahani, David Budden, Matthew W Hoffman,
Arnaud Doucet, and Nando de Freitas. Modular meta-learning with shrinkage. arXiv
preprint arXiv:1909.05557, 2019.

[CG88] G. A. Carpenter and S. Grossberg. The art of adaptive pattern recognition by a self-
organizing neural network. Computer, 21(3):77-88, March 1988.

[CL18] Zhiyuan Chen and Bing Liu. Lifelong machine learning. Synthesis Lectures on Artificial
Intelligence and Machine Learning, 12(3):1-207, 2018.

[CRET19] Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny, Thalaiyasingam Ajanthan,
Puneet Kumar Dokania, Philip H. S. Torr, and Marc’ Aurelio Ranzato. Continual
learning with tiny episodic memories. CoRR, abs/1902.10486, 2019.

[DJVT13] Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric Tzeng,
and Trevor Darrell. Decaf: A deep convolutional activation feature for generic visual
recognition. CoRR, abs/1310.1531, 2013.

10


http://arxiv.org/abs/1901.10912
http://arxiv.org/abs/1909.05557

[GDDM14]

[GMX+13]

[HBV+20]

[HCNB20]

[HLRK18]

[Hus18]
[HW99]
[KMO7]

[KPR*17]

[LH17]

[LPR17]

[Mat12]

[Mat13]

[MCR89]

[MVK™16]

[PKP*19]

[PKRCS17]

[Quil4]
[RKSL17]

[Rob95]

Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierar-
chies for accurate object detection and semantic segmentation. 2014 IEEE Conference
on Computer Vision and Pattern Recognition, Jun 2014.

Ian J. Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville, and Yoshua Bengio. An
empirical investigation of catastrophic forgetting in gradient-based neural networks,
2013.

Matteo Hessel, David Budden, Fabio Viola, Mihaela Rosca, Eren Sezener, and Tom
Hennigan. Optax: Composable gradient transformation and optimisation, in JAX!,
2020.

Tom Hennigan, Trevor Cai, Tamara Norman, and Igor Babuschkin. Haiku: Sonnet for
JAX, 2020.

Yen-Chang Hsu, Yen-Cheng Liu, Anita Ramasamy, and Zsolt Kira. Re-evaluating
continual learning scenarios: A categorization and case for strong baselines. arXiv
preprint arXiv:1810.12488, 2018.

Ferenc Huszar. Note on the quadratic penalties in elastic weight consolidation. Pro-
ceedings of the National Academy of Sciences, 115(11):E2496-E2497, 2018.

Michael Harries and New South Wales. Splice-2 comparative evaluation: Electricity
pricing. 1999.

J Zico Kolter and Marcus A Maloof. Dynamic weighted majority: An ensemble method
for drifting concepts. Journal of Machine Learning Research, 8(Dec):2755-2790, 2007.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Des-
jardins, Andrei A. Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-
Barwinska, Demis Hassabis, Claudia Clopath, Dharshan Kumaran, and Raia Hadsell.
Overcoming catastrophic forgetting in neural networks. Proceedings of the National
Academy of Sciences, 114(13):3521-3526, 2017.

Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE transactions on
pattern analysis and machine intelligence, 40(12):2935-2947, 2017.

David Lopez-Paz and Marc’ Aurelio Ranzato. Gradient episodic memory for continual
learning. In Advances in Neural Information Processing Systems, pages 6467-6476,
2017.

Christopher Mattern. Mixing strategies in data compression. In 2012 Data Compression
Conference, Snowbird, UT, USA, April 10-12, pages 337-346, 2012.

Christopher Mattern. Linear and geometric mixtures - analysis. In 2013 Data Compres-
sion Conference, DCC 2013, Snowbird, UT, USA, March 20-22, 2013, pages 301-310,
2013.

Michael McCloskey and Neal J. Cohen. Catastrophic interference in connectionist
networks: The sequential learning problem. volume 24 of Psychology of Learning and
Motivation, pages 109 — 165. Academic Press, 1989.

Kieran Milan, Joel Veness, James Kirkpatrick, Michael Bowling, Anna Koop, and
Demis Hassabis. The forget-me-not process. In D. D. Lee, M. Sugiyama, U. V. Luxburg,
I. Guyon, and R. Garnett, editors, Advances in Neural Information Processing Systems
29, pages 3702-3710. Curran Associates, Inc., 2016.

German I Parisi, Ronald Kemker, Jose L Part, Christopher Kanan, and Stefan Wermter.
Continual lifelong learning with neural networks: A review. Neural Networks, 2019.

Giambattista Parascandolo, Niki Kilbertus, Mateo Rojas-Carulla, and Bernhard
Scholkopf. Learning independent causal mechanisms. arXiv preprint arXiv:1712.00961|
2017.

John Quinlan. C4. 5: programs for machine learning. Elsevier, 2014.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H. Lam-
pert. icarl: Incremental classifier and representation learning. 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), Jul 2017.

Anthony V. Robins. Catastrophic forgetting, rehearsal and pseudorehearsal. Connect.
Sci., 7:123-146, 1995.

11


http://arxiv.org/abs/1810.12488
http://arxiv.org/abs/1712.00961

[SHB*20]

[SLCT18]

[SLKK17]

[TS09]
[vdVT18]

[VLBT17]

[VLB*19]

[VWBG13]

[Zin03]

[ZPG17]

Eren Sezener, Marcus Hutter, David Budden, Jianan Wang, and Joel Veness. Online
Learning in Contextual Bandits using Gated Linear Networks. arXiv e-prints, page
arXiv:2002.11611} February 2020.

Jonathan Schwarz, Jelena Luketina, Wojciech M Czarnecki, Agnieszka Grabska-
Barwinska, Yee Whye Teh, Razvan Pascanu, and Raia Hadsell. Progress & compress:
A scalable framework for continual learning. arXiv preprint arXiv:1805.06370, 2018.

Hanul Shin, Jung Kwon Lee, Jachong Kim, and Jiwon Kim. Continual learning with
deep generative replay. In Advances in Neural Information Processing Systems, pages
2990-2999, 2017.

Lisa Torrey and Jude W. Shavlik. Handbook of research on machine learning applica-
tions, Chapter 11: Transfer Learning. pages 242-264, 2009.

Gido M van de Ven and Andreas S Tolias. Generative replay with feedback connections
as a general strategy for continual learning. arXiv preprintlarXiv:1809.10635, 2018.

Joel Veness, Tor Lattimore, Avishkar Bhoopchand, Agnieszka Grabska-Barwinska,
Christopher Mattern, and Peter Toth. Online learning with gated linear networks. CoRR,
abs/1712.01897, 2017.

Joel Veness, Tor Lattimore, Avishkar Bhoopchand, David Budden, Christopher Mattern,
Agnieszka Grabska-Barwinska, Peter Toth, Simon Schmitt, and Marcus Hutter. Gated
linear networks. arXiv preprint arXiv:1910.01526, 2019.

Joel Veness, Martha White, Michael Bowling, and Andrids Gyorgy. Partition tree
weighting. In 2013 Data Compression Conference, pages 321-330. IEEE, 2013.

Martin Zinkevich. Online convex programming and generalized infinitesimal gradient
ascent. In Machine Learning, Proceedings of the Twentieth International Conference
(ICML 2003), August 21-24, 2003, Washington, DC, USA, pages 928-936, 2003.

Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic
intelligence. In Proceedings of the 34th International Conference on Machine Learning-
Volume 70, ICML’ 17, pages 3987-3995. IMLR. org, 2017.

12


http://arxiv.org/abs/2002.11611
http://arxiv.org/abs/1805.06370
http://arxiv.org/abs/1809.10635
http://arxiv.org/abs/1910.01526

	1 Introduction
	2 Background
	3 Combinatorial Transfer Learning
	4 Algorithm
	5 Experimental Results
	5.1 Evaluating Online Combinatorial Transfer
	5.2 Performance Benchmarking
	5.3 On Sources with Unknown Drift

	6 Future work
	7 Conclusion

