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Abstract

We study the convergence of Solomonoff’s universal mixture on individual
Martin-Löf random sequences. A new result is presented extending the work
of Hutter and Muchnik (2004) by showing that there does not exist a univer-
sal mixture that converges on all Martin-Löf random sequences. We show that
this is not an artifact of the fact that the universal mixture is not a proper
measure and that the normalised universal mixture also fails to converge on all
Martin-Löf random sequences.

Keywords: Solomonoff induction; Kolmogorov complexity; theory of computa-
tion.

1. Introduction

Sequence prediction is the task of predicting symbol αn having seen α1:n−1 =
α1 · · ·αn−1. Solomonoff approached this problem by taking a Bayesian mixture
over all lower semicomputable semimeasures where complex semimeasures were
assigned lower prior probability than simple ones.1 He then showed that, with
probability one, the predictive mixture converges (fast) to the truth for any
computable measure [9]. Solomonoff induction arguably solves the sequence
prediction problem and has numerous attractive properties, both technical [9,
2, 5] and philosophical [8]. There is, however, some hidden unpleasantness,
which we explore in this paper.

Martin-Löf randomness is the usual characterisation of the randomness of in-
dividual sequences [6]. A sequence is Martin-Löf random if it passes all effective
tests, such as the laws of large numbers and the iterated logarithm. Intuitively,
a sequence is Martin-Löf random with respect to measure µ if it satisfies all
the properties one would expect of an infinite sequence sampled from µ. It
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has previously been conjectured that the set of Martin-Löf random sequences is
precisely, or contained within, the set on which the Bayesian mixture converges.

This question has seen a number of attempts with a partial negative solution
and a more detailed history of the problem by Hutter and Muchnik [3]. They
showed that there exists a universal lower semicomputable semimeasure M and
Martin-Löf random sequence α (with respect to the Lebesgue measure λ) for
which M(αn|α<n) 6→ λ(αn|α<n). The α used in their proof is computable from
the halting problem, which presumably inspired the work in [7] where it is shown
that if α is 2-random, then every universal lower semicomputable semimeasure
converges on α. It is worth remarking that there are exist semimeasures that
do converge on all Martin-Löf random sequences, some of which are even lower
semicomputable. Unfortunately, however, they are not universal and may not
enjoy the same fast convergence rates in expectation as universal measures do.
For the construction and a detailed discussion, see [4, §5].

While Hutter and Muchnik showed that there exists a universal lower semi-
computable semimeasure and Martin-Löf random sequence on which it fails to
converge, the question of whether or not this failure occurs for all such semimea-
sures has remained open. We prove that for every universal lower semicom-
putable Bayesian mixture there exists a Martin-Löf random sequence on which
it fails to converge. This result is interesting for a few reasons. The choice
of universal mixture is akin to choosing an optimal universal Turing machine
when computing Kolmogorov complexity. In both cases, asymptotic results are
rarely dependent on this choice and so it is useful to confirm this trend here. On
the other hand, if the result had been positive then the existence of a universal
mixture that did converge on all Martin-Löf random strings would be a nice
property that might justify the choice of one universal mixture over another.

The universal mixture is not a proper measure in the sense that the sum of
conditional probabilities M(0|x) + M(1|x) < 1 for all x. For this reason it is
common to use a normalised version Mnorm where normalisation is chosen to
preserve the ratio Mnorm(x0)/Mnorm(x1) = M(x0)/M(x1). We show that the
situation is not improved by normalisation and that Mnorm also fails to converge
to the Lebesgue measure on some Martin-Löf random sequences.

Our paper is structured as follows. We present the required notation and
some basic results in algorithmic information theory (Section 2). We then
present Solomonoff’s original theorem showing that the universal mixture con-
verges to the truth with probability one (Section 3). The main theorems are
then presented of which Theorem 6 is the most important stating for any uni-
versal mixture M that there exists a Martin-Löf random sequence α such that
the predictive distribution M(αn|α<n) does not converge to 1

2 and actually is
bounded away from 1

2 for a non-zero fraction of the time (Section 4). We then
show that this is also true of the normalised version of the universal mixture
(Section 5) and that there exists an infinite sequence that is not Martin-Löf
random, but on which all universal mixtures converge to 1

2 (Section 6). We
conclude in Section 7.
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2. Notation

Overviews of algorithmic information theory can be found in [5, 1]. A table
of notation may be found in Appendix B.

General. The natural, rational and real numbers are denoted by N, Q and
R. Logarithms are taken with base 2. A real θ ∈ (0, 1) has entropy H(θ) :=
−θ log θ− (1− θ) log(1− θ). The indicator function is [[expr]], which takes value
1 if expr is true and 0 otherwise. For sets A and B we write A − B for their
difference and |A| for the size of A and Ac = N−A for the complement of A. The
empty set is denoted by ∅. If A ⊆ N and n ∈ N, then A[n] := {a ∈ A : a ≤ n}.
We use ∨ and ∧ for logical or/and respectively.

Natural density. Let A ⊆ B ⊆ N. Then the (upper) natural density of A ⊆ B
are

d(A,B) := lim
n→∞

|A[n]|
|B[n]|

d̄(A,B) := lim sup
n→∞

|A[n]|
|B[n]|

where the latter quantity is useful in the case when the former does not exist.
If B = N, then we abbreviate d(A) ≡ d(A,N) and d̄(A) ≡ d̄(A,N).

Strings. A finite binary string x is a finite sequence x1x2x3 · · ·xn with xi ∈
B := {0, 1}. Its length is `(x). An infinite binary string ω is an infinite sequence
ω1ω2ω3 · · · . The empty string of length zero is denoted by ε (distinct from
ε > 0 ∈ R). The sets Bn, B∗ and B∞ are the sets of all strings of length n,
all finite strings and all infinite strings respectively. Substrings of x ∈ B∗ ∪ B∞
are denoted by xs:t := xsxs+1 · · ·xt−1xt where s, t ∈ N and s ≤ t. If s > t,
then xs:t := ε. A useful shorthand is x<t := x1:t−1. Let x, y ∈ B∗, then #x(y)
is the number of (possibly overlapping and wrapping around) occurrences of x
in y and xy is their concatenation. For example, #010(1010) = 2 (because we
count the wrap around match when starting at the last bit). If `(y) ≥ `(x) and
x1:`(x) = y1:`(x), then we write x v y and say x is a prefix of y. Otherwise we
write x 6v y. A string ω ∈ B∞ is normal if ∀x ∈ B∗, limn→∞#x(ω1:n)/n =
2−`(x).

Measures and semimeasures. A semimeasure is a function µ : B∗ → [0, 1]
satisfying µ(ε) ≤ 1 and µ(x) ≥ µ(x0) + µ(x1) for all x ∈ B∗. It is a mea-
sure if both inequalities are replaced by equalities. A function µ : B∗ → R
is lower semicomputable if the set {(x, r) : r < µ(x), r ∈ Q, x ∈ B∗} is recur-
sively enumerable. In this case there exists a recursive sequence µ1, µ2, · · · of
computable functions approximating µ from below. For b ∈ B and x ∈ B∗,
µ(b|x) := µ(xb)/µ(x) is the µ-probability that x is followed by b. The Lebesgue
measure is λ(x) := 2−`(x).

Complexity. A Turing machine T is a recursively enumerable set of pairs of
binary strings T :=

{
(p1, x1), (p2, x2), · · ·

}
where the program pk outputs xk.

It is a prefix machine if the set of programs is prefix free, pk 6v pj for all j 6= k.
T is a monotone machine if pk v pj =⇒ xk v xj ∨xj v xk. For prefix machine
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T the prefix complexity with respect to T is a function KT : B∗ → N defined by

KT (x) := min
p
{`(p) : (p, x) ∈ T}

If T is a monotone machine, then the monotone complexity with respect to T
is defined by

KmT (x) := min
p
{`(p) : (p, y) ∈ T ∧ x v y}

There exists an additively optimal prefix machine U such that for all prefix
machines T there exists a constant cT with KU (x) < KT (x) + cT . In identical
fashion there exists an additively optimal monotone machine. As is usual in
algorithmic information theory, we fix a pair of additively optimal prefix and
monotone machines and write K(x) := KU (x) and Km(x) := KmU (x). The
choice of reference machine is irrelevant for this work.

A lower semicomputable semimeasure M is universal if for every lower
semicomputable semimeasure µ there exists a constant cµ > 0 such that
∀x,M(x) > cµµ(x). Zvonkin and Levin [14] showed that the set of all lower
semicomputable semimeasures is recursively enumerable (possibly with repeti-
tion). Let ν1, ν2, · · · be such an enumeration and w : N → [0, 1] be a lower
semicomputable sequence satisfying

∑
i∈N wi ≤ 1, which we view as a prior on

the lower semicomputable semimeasures. Then the universal mixture is defined
by

M(x) :=
∑
i∈N

wiνi(x). (1)

There are, of course, many possible enumerations and priors, and hence there
are many universal mixtures. This paper aims to prove certain non-convergence
results about all universal mixtures, regardless of the choice of prior. Defining
wi(x) := wiνi(x)/M(x) and substituting into Eq. 1 leads to

M(b|x) =
∑
i∈N

wi(x)νi(b|x). (2)

There exist universal lower semicomputable semimeasures that are not repre-
sentable as universal mixtures, but we do not consider these here [13].

Normalised mixture. It is well known that no universal mixture is a proper
measure. In fact

(∀x ∈ B∗) M(0|x) +M(1|x) < 1 [5, Ex. 4.5.1].

For this reason the universal mixture is often normalised by defining

(∀b ∈ B, x ∈ B∗) Mnorm(b|x) :=
M(b|x)

M(0|x) +M(1|x)
.
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Then the normalised measure can be defined Mnorm : B∗ → [0, 1] by

Mnorm(ε) := 1 Mnorm(x) := M(x)

`(x)∏
n=1

1

M(0|x<n) +M(1|x<n)
,

which satisfies Mnorm(0|x) + Mnorm(1|x) = 1 and Mnorm(ε) = 1. This is not
the only possible normalisation, but is standard in the literature [5]. Of par-
ticular importance for this paper are the facts that Mnorm(x) > M(x) and
Mnorm(b|x) > M(b|x), which follow immediately from the definition of Mnorm.

Martin-Löf randomness. Let µ be a computable measure and M a universal
lower semicomputable semimeasure. An infinite binary string ω is µ-Martin-Löf
random (µ-random) if and only if there exists a c > 0 such that

(∀n ∈ N) µ(ω<n)/M(ω<n) > c. (3)

Observe that the definition does not depend on the choice of universal lower
semicomputable semimeasure since for any two universal lower semicomputable
semimeasures M and M ′ there exists a constant c > 0 such that cM ′(x) >
M(x) > M ′(x)/c, ∀x [5]. We write Rµ ⊂ B∞ for the set of µ-random strings.

Lemma 1. The following hold:

(i) If ω ∈ B∞ is λ-random, then it is normal.

(ii) If x ∈ B∗ with `(x) = n and θ := #1(x)/n, then Km(x) < nH(θ) +
1
2 log n+ c for some c > 0 independent of x and n.

(iii) Let A,B ⊆ N and φn := [[n ∈ A]]. If d(A) = 0 and d̄(B) > 0, then

(a) d̄(B −A) > 0.
(b) limn→∞Km(φ1:n)/n = 0.

Proof. Part (i) is well known [5, §2.6]. For part (ii) we use the KT-estimator,
which is defined by

µ(x) :=

∫ 1

0

1

π
√

(1− θ)θ
θ#1(x)(1− θ)#0(x)dθ.

Because µ is a measure and is finitely computable using a recursive formula [12],
we can apply Theorem 4.5.4 in [5] to show that there exists a constant cµ > 0
such that

Km(x) < − logµ(x) + cµ ≤
1

2
log n+ 1 + log θ#1(x)(1− θ)#0(x) + cµ

=
1

2
log n+ 1 + nH(θ) + cµ,

where we used the redundancy bound for the KT-estimator [12] and the def-
inition of H(θ). Part (iii)(a) is immediate from the definition of the natural
density. For (b), let θn := #1(φ1:n)/n and note that d(A) = 0 implies that
limn→∞ θn = 0 and so limn→∞H(θn) = 0. Finally apply part (ii) to complete
the proof.
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3. Almost Sure Convergence

Before Martin-Löf convergence is considered we present a version of the
celebrated theorem of Solomonoff with which we will contrast our results [10].

Theorem 2 (Solomonoff, 1978). If M is a universal lower semicomputable
semimeasure and α is sampled from computable measure µ, then with µ-
probability 1 (w.µ.p.1.)

lim
n→∞

∑
b∈B

(M(b|α<n)− µ(b|α<n))
2

= 0.

We say that M converges on-sequence to λ on α if

lim
n→∞

M(αn|α<n) =
1

2
. (4)

It converges off-sequence if

lim
n→∞

∑
b∈B

M(b|α<n) =
1

2
. (5)

It is trivial that (5) implies (4). Unfortunately, Theorem 2 only ensures conver-
gence to α with λ-probability 1 while we are primarily interested in convergence
on individual sequences. An easy consequence of Theorem 2 is that all universal
lower semicomputable semimeasures converge to a proper measure with µ.p.1.
for all computable measures µ.

Corollary 3. If M is a universal lower semicomputable semimeasure and α is
sampled from computable measure µ, then

lim
n→∞

M(1|α<n) +M(0|α<n) = 1 with µ-probability 1.

4. Martin-Löf Convergence

Recall that λ is the Lebesgue measure defined by λ(x) := 2−`(x). We now
ask whether there exists a universal mixture such that limn→∞M(αn|α<n) = 1

2
for all λ-random α. Two new theorems are presented, the first is subsumed by
the second, but admits an easy proof and serves as a nice warm-up.

Theorem 4. Let M be a universal mixture. Then there exists a λ-random α
such that

lim
n→∞

∑
b∈B

(
M(b|α<n)− 1

2

)2

6= 0.

Proof. We use the same λ-random string α as Hutter and Muchnik [3], which
is defined inductively by αn := [[M(α<n0) > 2−n]]. Define ν : B∗ → [0, 1] by

ν(x) := M(x)[[∀n ≤ `(x) : xn = 0 ∨M(x<n0) > 2−n]].
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It is straightforward to check that ν is both lower semicomputable and a
semimeasure. Therefore there exists a j ∈ N such that ν = νj in the enumera-
tion of all lower semicomputable semimeasures used by M . Now if αn = 1, then
M(α<n0) > 2−n by the definition of α. Therefore αn = 0 ∨M(α<n0) > 2−n is
true for all n and so by the definition of ν we have that ν(α1:n) = M(α1:n) for
all n. Therefore wj(α<n) := wjν(α<n)/M(α<n) = wj . Furthermore,

αn = 0 =⇒ M(α<n0) ≤ 2−n =⇒ ν(α<n1) = 0 =⇒ ν(1|α<n) = 0,

where we used the definitions of α, ν and the conditional probability respectively.
Therefore if αn = 0, then

M(0|α<n) +M(1|α<n)
(a)
=
∑

i∈N
wi(α<n) (νi(0|α<n) + νi(1|α<n))

(b)

≤
∑

i∈N
wi(α<n)− wj(α<n)(1−M(0|α<n))

(c)
= 1− wj(1−M(0|α<n))

(d)

≤ 1− wjM(1|α<n) (6)

where (a) follows directly from Eq. 2. (b) follows by extracting wj(α<n) from the
sum and using the facts that νj(0|α<n)+νj(1|α<n) = M(0|α<n) and νi(0|α<n)+
νi(1|α<n) ≤ 1 for all i. (c) follows from the facts that

∑
i∈N wi(x) = 1 and

wj(α<n) = wj . For (d) we note that M is a semimeasure, which implies that
1 −M(0|α<n) ≥ M(1|α<n). Because α is λ-random, it must contain infinitely
many zeros by Lemma 1(i) and the definition of a normal string. Let ni be the
position of the ith 0 in α and k ∈ N be such that νk = λ. Therefore there exists
a c > 0 such that

M(1|α<ni)
(a)
=
∑
i∈N

wi(α<n)ν(1|α<ni)
(b)

≥ wk(α<n)λ(1|α<ni)
(c)
> c,

where (a) is the same as Eq. 2 and (b) follows by extracting the contribution of
the Lebesgue measure λ. (c) follows by recalling that λ(1|α<ni) = 1/2 and the
fact that α is λ-random combined with Eq. 3. Then by Eq. 6,

lim inf
i→∞

M(0|α<ni) +M(1|α<ni) ≤ 1− wjc < 1.

Therefore limn→∞M(0|α<n) +M(1|α<n) 6= 1 and so

lim
n→∞

∑
b∈B

(M(b|α<n)− 1/2)2 6= 0

as required.

The proof of Theorem 4 demonstrates the existence of random sequences
on which M fails to converge to a proper measure. This is interesting when
compared to Corollary 3, which shows that M converges to a measure with
µ-probability one with respect to any computable measure µ.
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Proposition 5. There exists an α that is λ-random where

lim
n→∞

M(0|α<n) +M(1|α<n) 6= 1.

We now present the on-sequence version of Theorem 4, which uses the same
α for a counter-example, but turns out to be significantly harder to prove.

Theorem 6. Let M be a universal mixture. Then there exists a λ-random α
and ε > 0 such that

d̄

({
n :

∣∣∣∣M(αn|α<n)− 1

2

∣∣∣∣ > ε

})
> 0.

Corollary 7. Let M be a universal mixture. Then there exists a λ-random α
such that limn→∞M(αn|α<n) 6= 1

2 .

Initially we follow the proof in [3] by constructing a lower semicomputable
semimeasure ν that dominates M on α infinitely often, but where ν(0|α<n) = 1
if αn = 0. The semimeasure defined below is identical to that given in [3].

Definition 8. Let Mt : B∗ → Q be a sequence of computable functions approxi-
mating M from below and define αt ∈ B∞ similarly to α by αtn := [[Mt(α

t
<n0) >

2−n]]. Now define νt : B∗ → [0, 1] by

νt(x) :=


2−t if `(x) = t ∧ x < αt1:t
νt(x0) + νt(x1) if `(x) < t

0 otherwise,

where x < αt1:t is decided by lexicographical order.

5
8

1
2

1
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1
8

1
8

1
4

1
8

1
8

1
8

1
8

1
8 0

0

0 0

000 001 010 011 100 101 110 111

Figure 1: ν3 if α3
1:3 = 101

The following lemma is due to Hutter and Muchnik [3] and we make extensive
use of it here also.
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Lemma 9 (Hutter & Muchnik).

(i) limt→∞ αt = α.
(ii) ν := limt→∞ νt exists and is a lower semicomputable semimeasure.
(iii) ν(x) = ν(x0) + ν(x1) for all x.
(iv) ν(α<n) < 2−n+1 for all n ∈ N.
(v) If αn = 1, then ν(α<n0) = 2−n.

(vi) If αn = 0, then ν(α<n1) = 0.

The proof of all results are found in [3, Proof of Thm.6]. Before proving the
main result we discuss some useful properties of ν and briefly summarise the
proof in [3]. First, if αn = 0, then by part (vi) we have ν(α<n1) = 0 and so by
part (iii) we obtain ν(α<n) = ν(α<n0) and so ν(0|α<n) = 1. Already something
is feeling fishy. We have constructed a lower semicomputable semimeasure that
correctly predicts all zeros of a random sequence. Additionally, if αn+1 = 1,
then ν(α<n) ≥ ν(α1:n0) = 2−n−1. Now define a new universal mixture by
M ′ = (1− γ)M + γν with γ chosen sufficiently close to 1. If αn:n+1 = 01, then
convergence of M ′ is poisoned by the non-converging ν. Since α is normal there
are infinitely many n for which αn:n+1 = 01, which completes the result that M ′

does not converge to λ on α. But M ′ is a very specific universal mixture while
Theorem 6 demands that we prove non-convergence for all universal mixtures.
We start by partitioning α and proving additional properties of ν.

Define a sequences of sets {Nk}∞k=0 by Nk :=
{
n : αn:n+k = 1k0

}
as illus-

trated in Figure 2. Observe that {Nk} are disjoint and cover N, N =
⋃∞
k=0Nk.

Later it will be important to know the density of Nk, which is easily computed
by exploiting the fact that α is λ-random and therefore (by Lemma 1) normal.
Since each n ∈ Nk is the start of a sub-sequence 1k0 and by normality the total
proportion of the sequence 1k0 in α must be 2−k−1 as is demonstrated formally
in the following lemma.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

α 1 0 0 1 1 0 1 0 1 1 1 0 1 1 0

N0 = 2 3 6 8 12 15

N1 = 1 5 7 11 14

N2 = 4 10 13

N3 = 9

N0 = {2, 3, 6, 8, 12, 15}, N1 = {1, 5, 7, 11, 14}
N2 = {4, 10, 13} and N3 = {9}.

Figure 2: The sets Nk

Lemma 10. If k ∈ N, then d(Nk) = 2−k−1 and d(
⋃∞
k=κ+1Nk) = 2−κ−1

Proof. α is λ-random, and therefore normal. Then

2−k−1 = lim
n→∞

#1k0(α1:n)

n
= lim
n→∞

Nk[n− k]

n
= lim
n→∞

Nk[n]

n
= d(Nk).
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For the second part we make use of Lemma 17 in the Appendix.

d

( ∞⋃
k=κ+1

Nk

)
=

Lemma 17(ii)

1− d

(
κ⋃
k=1

Nk

)
=

Lemma 17(ii)

1−
κ∑
k=0

d(Nk) =

d(Nk) = 2−k−1

2−κ−1

as required.

Lemma 11. The following hold:

i If αn = 1, then ν(1|α<n) < 1
2 .

ii If k ≥ 1 and n ∈ Nk, then

ν(1|α<n) <
2k − 1

2k+1 − 1
.

Proof. We use the properties of ν and the fact that f(x) = x/(a+x) is monotone
increasing for positive constants a (Lemma 15).

ν(1|α<n)

Definition of cond. prob.

=
ν(α<n1)

ν(α<n)
=

Lemma 9(iii)

ν(α<n1)

ν(α<n0) + ν(α<n1)
=

Lemma 9(v)

ν(α<n1)

2−n + ν(α<n1)
. (?)

Part (i) now follows from Lemma 15 and Lemma 9(iv). For part (ii) we start
by bounding ν(α<n1).

ν(α<n1)

Iterate ν(x1) = ν(x10) + ν(x11)

=

k∑
i=1

ν(α<n1i0) + ν(α<n1k+1)
(a)
<

k∑
i=1

2−n−i

Geometric series

= (1− 2−k)2−n.

(a) follows from the facts that ν(α<n1k+1) = 0 and ν(α<n1i0) ≤ 2−n−i for
i < k (n ∈ Nk and Lemma 9(v)) and strict inequality for i = k (Lemma 9(iv)).
Substituting into (?) and applying Lemma 15 in the Appendix leads to

ν(1|α<n) <
(1− 2−k)2−n

2−n + (1− 2−k)2−n
=

2k − 1

2k+1 − 1

as required.

Auxiliary mixture. We now exploit the fact that M is a universal mixture.
Since ν is a lower semicomputable semimeasure, there exists an i such that
νi = ν where νi is the ith element in the enumeration of lower semicomputable
semimeasures used to define M in Eq. 1. Then define w̃ : N → [0, 1] and
auxiliary mixture M̃ : B∗ → [0, 1] by

w̃j := wj − [[j = i]]wj/2 M̃(x) :=
∑
i∈N

w̃iνi(x) = M(x)− wi
2
ν(x).
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Now M̃ is lower semicomputable To see this we only need to check that w̃ is lower
semicomputable, which is clear since i is a natural number and so computable.

We now show that ifM converges on α, then M̃ overestimates the probability
of sequences of 1’s.

Lemma 12. Let D ⊆ N. If d(D) = 1 and limn∈DM(αn|α<n) = 1
2 , then there

exists a γ ∈ (0, 1) and sequence of sets Ck ⊆ Nk such that d(Nk − Ck) = 0 and

(∀n ∈ Ck) M̃(1k|α<n) ≥ 1

γ

(
1

2

)k
.

Proof. Let Da := {n : n+ a ∈ D} and D≤k :=
⋂k
a=0Da. Now d(D) = 1 and Dk

is a translation of D. Therefore d(Dk) = 1 and by Lemma 17(iii,vi) d(D≤k) = 1
and d(D≤k ∩Nk, Nk) = 1. Define εn := 2M(1|α<n), which by the assumption
that M converges to λ on α satisfies limn∈D εn = 1. Suppose αn = 1, then

M̃(1|α<n)
(a)
=

M(α<n1)− wjν(α<n1)/2

M̃(α<n)

(b)
=
εnM(α<n)/2− wjν(α<n1)/2

M̃(α<n)

(c)
=
εnM(α<n)/2− wjν(α<n)/4

M̃(α<n)
+ wj

ν(α<n)/4− ν(α<n1)/2

M̃(α<n)

(d)
=

1

2
+

(εn − 1)M(α<n)

2M̃(α<n)
+ wj

ν(α<n)/4− ν(α<n1)/2

M̃(α<n)
(e)

≥ 1

2
+

(εn − 1)

2
+
wj
8
− wjν(1|α<n)

4

where (a) follows by substituting the definition of M̃ . (b) is the definition of
εn. (c) by expanding. (d) by the definition of M̃ . (e) by bounding M ≥ M̃ and
ν(α<n) ≥ ν(α<n0) = 2−n and M̃(α<n) ≤M(α<n) ≤ 21−n. Therefore

(∀1 ≤ a ≤ k) lim inf
n∈D≤k∩Nk

(
M̃(1|α<n1k−a) +

wjν(1|α<n1k−a)

4

)
≥ 1

2
+
wj
8
.

By Lemma 11(ii), if n ∈ Nk we have that ν(1|α<n1k−1) < 1
3 and by Lemma

11(i), ν(1|α<n1k−a) < 1
2 for 2 ≤ a ≤ k. Therefore for any 2 ≤ k ≤ a and

γ := 12
12+wj

∈ (0, 1)

lim inf
n∈D≤k∩Nk

M̃(1|α<n1k−1) ≥ 1

2
+ wj

(
1

8
− 1

12

)
=

1

γ
· 1

2
(?)

lim inf
n∈D≤k∩Nk

M̃(1|α<n1k−a) >
1

2
. (??)

Combining (?) and (??) and using the fact that for positive sequences ai and bi

11



it holds that lim inf aibi ≥ (lim inf ai)(lim inf bi) we obtain

lim inf
n∈D≤k∩Nk

M̃(1k|α<n) = lim inf
n∈D≤k∩Nk

k∏
a=1

M̃(1|α<n1k−a)

≥
(

lim inf
n∈D≤k∩Nk

M̃(1|α<n1k−1)

)( k∏
a=2

lim inf
n∈D≤k∩Nk

M̃(1|α<n1k−a)

)

>
1

γ

(
1

2

)k
.

Therefore there exists a ck such that for all n > ck and n ∈ D≤k ∩Nk

M̃(1k|α<n) >
1

γ

(
1

2

)k
.

Let Ck := {n : n > ck ∧ n ∈ D≤k ∩Nk}. Therefore d(Ck, D≤k ∩Nk) = 1 and so
by Lemma 17(i,v) and the previously shown fact that d(D≤k ∩Nk, Nk) = 1 we
obtain d(Nk − Ck) = 0 as required.

To prove the main theorem we construct a pair of infinite binary sequences
χ and ψ such that α1:n is computable from χ1:n and ψ1:n. This implies that
Km(α1:n) < Km(χ1:n) + K(ψ1:n) + O(1), which holds because you can con-
struct a program for α1:n using the concatenation of a prefix program for ψ1:n

and a monotone program for χ1:n. Finally we assume that M converges on-
sequence to λ on α and show that this implies lim infn→∞Km(χ1:n)/n < 1 and
limn→∞K(ψ1:n)/n = 0. But α is λ-random, so limn→∞Km(α1:n)/n = 1, which
leads to a contradiction.

Proof of Theorem 6. Let α be as in the proof of Theorem 4 and γ be as in the
proof of Lemma 12. Define

A :=
{
n ∈ N1 : c < 2nM̃(α1:n) ≤ c/γ

}
B :=

{
n ∈ N1 : 2nM̃(α1:n) > c/γ

}
where c ∈ Q is chosen such that d̄(A) > 0 and d(B) = 0. This is necessarily
possible since by the universality of M̃ and the fact that α is λ-random there
exists constants Q 3 c′, c′′ > 0 such that 2nM̃(α1:n) ∈ [c′, c′′]. Define F ⊂ N by

F :=
{
n : αn = 1 ∧ 2n−1M̃(α<n) > c

}
Now define sequences χ and ψ by

χn := [[αn = 1 ∨ 2n−1M̃(α<n) > c]]

ψn := [[n ∈ F ]]

12



Let Mt and M̃t be computable approximations of M and M̃ from below respec-
tively. Define β ∈ B∞ by

βn :=


0 if χn = 0

1 if χn = 1 ∧ ψn = 1

1 if χn = 1 ∧ ψn = 0 ∧ ∃t : Mt(α<n0) > 2−n

0 if χn = 1 ∧ ψn = 0 ∧ ∃t : 2n−1M̃t(α<n) > c.

We claim that α = β and prove this using four cases.

Case 1 (χn = 0). By the definition χ and the fact that χn = 0 we have αn = 0
and by the definition of β we have βn = 0 = αn.

Case 2 (χn = 1 ∧ ψn = 1). By the definition of ψ and the fact that ψn = 1
we have that βn = 1 and n ∈ F , which implies that αn = 1 = βn.

Case 3 (χn = 0∧ψn = 0∧∃t : Mt(α<n) > 2−n). If ∃t : Mt(α<n) > 2−n,
then αn = 1 by the definition of α and the fact that Mt is a monotone increasing
approximation of M .

Case 4 (χn = 0 ∧ ψn = 0 ∧ ∃t : 2n−1M̃t(α<n) > c). Since ψn = 0 we
have that n /∈ F . Therefore either αn = 0 or 2n−1M̃t(α<n) ≤ c, but the latter
is not true. Therefore αn = 0 = βn, which completes the proof that α = β.

Since α1:n is λ-random and can be computed from ψ1:n and χ1:n using the
equation above, there exist constants c1, c2 > 0 such that

Km(χ1:n) +K(ψ1:n) + c2 > Km(α1:n) > n− c1

where the second inequality follows from [5, Example 4.5.3]. We now work by
contradiction Assume contrary to the theorem statement that there does not
exist an ε such that

d

({
n :

∣∣∣∣M(αn|α<n)− 1

2

∣∣∣∣ > ε

})
> 0.

Therefore by Lemma 16 there exists a set D ⊆ N such that d(D) = 1 and
limn∈DM(αn|α<n) = 1

2 . Then by Lemma 12 there exists a sequence of sets Ck
such that d(Nk − Ck) = 0 and for all n ∈ Ck

M̃(1k|α<n) >
1

γ

(
1

2

)k
.

We start by showing that d(F ) = 0. Let

Ak := {n ∈ Nk : n+ k /∈ B} Bk := {n ∈ Nk : n+ k ∈ B} ,

which are translated subsets of A and B respectively and so d(Bk) = 0 for all

13



k. Now fix κ ∈ N and decompose F as a subset of four sets as follows

F
(a)

⊆

(
κ⋃
k=1

F ∩Nk

)
∪

( ∞⋃
k=κ+1

Nk

)

⊆

(
κ⋃
k=1

F ∩Nk ∩ Ck

)
∪

(
κ⋃
k=1

Nk − Ck

)
∪

( ∞⋃
k=κ+1

Nk

)

⊆

(
κ⋃
k=1

F ∩Nk ∩ Ck ∩Ak

)
∪

(
κ⋃
k=1

Bk

)
∪

(
κ⋃
k=1

Nk − Ck

)
∪

( ∞⋃
k=κ+1

Nk

)

where in (a) we used the facts that N =
⋃∞
κ=0Nk and αn = 1 for all n ∈ F .

We now bound the natural density of each of the four sets in order. Suppose
n ∈ Ak ∩ Ck. Then n ∈ Ak and so 2n+k−1M̃(α<n+k) ≤ c/γ. Additionally,
n ∈ Ck so

2n−1M̃(α<n) =

Def. of cond. prob

2n−1
M̃(α<n+k)

M̃(1k|α<n)
≤

n ∈ Ck

2n−1
21−n−kc/γ

1
γ

(
1
2

)k = c,

which implies n /∈ F . Therefore F ∩Nk ∩Ak ∩ Ck = ∅ and

d

(
κ⋃
k=1

F ∩Nk ∩ Ck ∩Ak

)
= 0.

Also

d

(
κ⋃
k=1

Bk

)
= d

(
κ⋃
k=1

Nk − Ck

)
= 0

Finally apply Lemma 10 to bound

d

( ∞⋃
k=κ+1

Nk

)
= 2−κ−1.

Therefore d̄(F ) < 2−κ−1 for all κ ∈ N. Therefore d(F ) = 0. Therefore by
Lemma 1(iii) we obtain limn→∞Km(ψ1:n)/n = 0. Since |Km(x) − K(x)| <
O(log `(x)) for all x [5, §4.5.5], limn→∞K(ψ1:n)/n = 0 as well.

Let θn := #1(χ1:n)/n. By Lemma 1(iii) we have that d̄(A− F ) > 0 and by
Lemma 10 we have that d(N0) = 1

2 . Since A ⊆ N1 and N1 ∩N0 = ∅, by Lemma
17 we have d̄(N0 ∪ A− F ) > 1

2 . Since χn = 1 if n ∈ N0 ∪ A− F there exists a
0 < c3 ∈ Q such that lim supn→∞ θn >

1
2 + c3. If θn >

1
2 + c3 then by Lemma

1(ii) there exists a c4 > 0 such that Km(χ1:n) < nH
(
1
2 + c3

)
+ 1

2 log n + c4.
Therefore for all ε > 0 there exists an arbitrarily large n such that

n− c1 < Km(α1:n) < Km(χ1:n) +K(ψ1:n) + c2

< εn+ nH

(
1

2
+ c3

)
+

1

2
log n+ c2 + c4.
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This is a contradiction since H
(
1
2 + c3

)
< 1. Therefore there exists an ε > 0

such that

d

({
n :

∣∣∣∣M(αn|α<n)− 1

2

∣∣∣∣}) > 0

as required.

5. Normalised non-convergence

We now show that the non-convergence is not only an artifact of the fact
that M is not a proper measure and that convergence still fails if M is replaced
by the normalised mixture Mnorm.

Theorem 13. Let M be a universal mixture and Mnorm be its normalisation.
Then there exists a λ-random α and ε > 0 such that

d̄

({
n :

∣∣∣∣Mnorm(αn|α<n)− 1

2

∣∣∣∣ > ε

})
> 0.

The proof uses the same α as in Theorem 6 and runs roughly as follows. It is
known that Mnorm(αn|α<n) > M(αn|α<n). Therefore if M(αn|α<n) > 1

2 +ε on
some non-zero density set, then Mnorm(αn|α<n) does not converge to 1

2 on that
set. But by Theorem 6 we know that there exists a set of non-zero density set
on which M(αn|α<n) is bounded away from 1

2 . Therefore if Mnorm(αn|α<n) is
to converge on some dense set to λ, then M(αn|α<n) must fail by being smaller
than 1

2 for a non-zero proportion of the time. But this implies that the ratio
λ(α1:n)/M(α1:n) is increasing with n, which is a contradiction by the dominance
M(α1:n) > cλ(α1:n) for all n and some constant c > 0.

Proof. Let α be as in the proof of Theorem 6, For 0 < γ < 1 < ζ < 2 define

L<γ := {n : M(αn|α<n) < γ/2}
Lγ,ζ := {n : γ/2 ≤M(αn|α<n) ≤ ζ/2}
L>ζ := {n : M(αn|α<n) > ζ/2} ,

which are chosen to be disjoint and satisfy L<γ ∪ Lγ,ζ ∪ L>ζ = N. We proceed
by contradiction. Assume that d(L>ζ) = 0 for all ζ > 1, which implies that the
set for which M(αn|α<n) > ζ/2 has zero density. By Theorem 6 there exists an
ε such that

d

(
F :=

{
n :

∣∣∣∣M(αn|α<n)− 1

2

∣∣∣∣ > ε

})
> 0.

By definition, F = L<1−2ε ∪L>1+2ε. By assumption d(L>1+2ε) = 0. Therefore
setting γ = 1− 2ε leads by Lemma 17(ii) to d̄(L<1−2ε) = d̄(F ) > 0.

Since M is universal there exists a constant cλ > 0 such that M(x) > cλλ(x)
for all x ∈ B∗ and so

(∀n ∈ N)
1

n
log

λ(α1:n)

M(α1:n)
<

1

n
log

1

cλ

n→∞−→ 0. (?)
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Now choose ζ so that 1 < ζ < 2−d(L<γ) log γ . Then we obtain a contradiction by

0
(a)
= lim sup

n→∞

1

n
log

λ(α1:n)

M(α1:n)

(b)
= lim sup

n→∞

1

n

(
n∑
t=1

log
1

M(αt|α<t)
− n

)
(c)

≥ lim sup
n→∞

1

n

 ∑
t∈L<γ [n]

log
1

γ
+
∑
t∈Lγ,ζ

log
1

ζ
+

∑
t∈L>ζ [n]

log
1

2


(d)
= d̄(L<γ) log

1

γ
+ d̄(Lγ,ζ) log

1

ζ
+ d̄(L>ζ)

(e)

≥ d(L<γ) log
1

γ
+ log

1

ζ

(f)
> 0

where (a) follows from (?) (b) by the definition of the Lebesgue measure λ. (c)
by bounding M(αn|αn) for n ∈ L<γ , Lγ,ζ and L>ζ . (d) by the definition of
the natural density. (e) since d̄(A) ≤ 1 for all A. (f) by choosing 1 < ζ <
2−d(L<γ) log γ . Therefore there exists a ζ > 1 such that d̄(L>ζ) > 0. Finally, for
n ∈ L>ζ we have Mnorm(αn|α<n) > M(αn|α<n) > ζ

2 , which implies that

(∀n ∈ L>ζ)
∣∣∣∣Mnorm(αn|α<n)− 1

2

∣∣∣∣ > ζ − 1

2
> 0.

as required.

6. Convergence on non-random sequences

Here we give something of a converse to Theorem 6 via a small extension to
Theorem 7 in [3]. Not only can the predictive distribution of M fail to converge
to λ on some λ-random sequences, but it can also succeed in converging to λ
on sequences that are not λ-random. The proof relies on defining a measure µ
for which the predictive distribution µ(·|ω<n) converges to λ(·|ω<n) = 1

2 at just
the right rate to ensure that if ω is µ-random, then it is not λ-random.

Proposition 14. There exists an ω ∈ B∞ such that

1. ω is not λ-random.

2. For all universal lower semi-computable semimeasures M

lim
t→∞

∑
b∈B

(
M(b|ω<t)−

1

2

)2

= 0.

Proof. Define computable measure ν inductively by

µ(1|x) :=
1

2
+

1

2
√

1 + `(x)
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For universal lower semi-computable semimeasure M define the set of µ-random
sequences on which M converges to µ by

AM :=

{
ω : lim

t→∞

∑
b∈B

(M(b|ω<t)− µ(1|ω<t))2 = 0 ∧ ω is µ-random

}
.

Now µ(AM ) = 1 by Theorem 2 and the well-known fact that µ(Rµ) = 1 for
all computable measures µ. Therefore since there are only countably many
universal lower semi-computable semimeasures, we have µ (A :=

⋂
M AM ) = 1.

Let ω ∈ A, which is µ-random. Then

∞∑
t=1

∑
b∈B

(√
µ(b|ω<t)−

√
λ(b|ω<t)

)2
≥
∞∑
t=1

(√
1

2
+

1

2
√
t
−
√

1

2

)2

=∞.

Therefore ω is not λ-random by Theorem 3 of [11]. Finally by the definition of
ω ∈ A and µ we have that for all universal lower semi-computable semimeasures
M

lim
t→∞

∑
b∈B

(
M(b|ω<t)−

1

2

)2

= lim
t→∞

∑
b∈B

(M(b|ω<t)− µ(b|ω<t))2 = 0

as required.

7. Summary

We have shown that for every universal mixture M there exists an infinite
λ-random sequence α and ε > 0 such that

d̄

({
n :

∣∣∣∣M(αn|α<n)− 1

2

∣∣∣∣ > ε

})
> 0, (?)

which means that the predictive distribution of M is wrong by at least ε for a
non-zero fraction of the time. This extends the previously known results that
there existed a universal mixture for which this kind of failure occurred [3]. We
also showed that (?) holds even if M is replaced by the normalised version of
the universal mixture Mnorm. It is known that the totally incomputable mixture
over all computable measures does converges on all Martin-Löf sequences [4],
so the failure of Mnorm is somewhat surprising and shows that the distortions
caused by normalisation are substantial.

We also showed that there exists a single infinite sequence α that is not λ-
random, but on which the predictive distributions of all M converge to λ. This
result is unsurprising, since α was constructed to be Martin-Löf random with
respect to some measure for which the predictive distribution converges to the
that of the Lebesgue measure, but does so sufficiently slowly that α is not itself
λ-random.
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Open Problems. There are a number of natural questions remaining. Suppose
M is a universal lower semi-computable semimeasure and define CM and C by

CM :=

{
ω : lim

t→∞
M(ωn|ω<n) =

1

2

}
and C :=

⋂
M

CM

where the intersection is taken over all universal lower semi-computable
semimeasures. What is the nature of CM and C? It follows from [3] that there
exists an M such that Rλ 6⊆ CM , which implies that Rλ 6⊆ C. In [7] it is shown
that the 2-random reals are a subset of C. In this work we showed that for all
universal mixtures Rλ 6⊆ CM . Obvious open questions are:

1. Does there exists a universal lower semi-computable semimeasure (not a
mixture) such that Rλ ⊆ CM? An example of a non-trivial universal
enumerable semimeasure that is not (essentially) a mixture may also be
of interest.

2. As above, but where Rλ is replaced with a different class of random reals
somewhere on the hierachy between Martin-Löf random and 2-random
reals, such as the weak 2-random reals.

Unfortunately, an elegant characterisation of CM and C seems unlikely because
there exists an ω ∈ C that is not λ-random (Proposition 14). Note that it is
known that there exists a lower semicomputable semimeasure W that converges
on all λ-random sequences, but W is not universal. A mixture over all com-
putable measures also converges on all λ-random sequences, but is not lower
semicomputable [4].
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Appendix A. Technical Results

Lemma 15. If a > 0, then the function f(x) = x/(a+x) is monotone increas-
ing.

Proof. ∂
∂xf(x) = 1

a+x −
x

(a+x)2 = a
(a+x)2 > 0.

Lemma 16. Let {δk}∞k=1 be a sequence of non-negative reals. For ε > 0 define
Dε := {n : δn > ε}. If d(Dε) = 0 for all k, then there exists a C ⊆ N such that
d(C) = 1 and limn∈C δn = 0.

Proof. Define εk := 2−k and Ck := N − Dεk . Then d(Cεk) = 1 for all
k. Furthermore, let {nk}∞k=1 be a monotone increasing sequence such that
Ck[n]/n > 1 − 2−k for all n > nk, which must exist since d(Ck) = 1. Then
let C :=

⋃∞
k=0 Ck(nk+1). If nk ≤ n ≤ nk+1, then C[n]/n ≥ Ck[n]/n ≥ 1− 2−k.

Since nk is finite for all k it follows that d(C) = limn→∞ C[n]/n = 1.
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Lemma 17. Let A,B,C ⊆ N such that A,B ⊆ C. Then (provided all quantities
exist)

(i) A ⊆ B =⇒ d(A,C) = d(A,B)d(B,C)

(ii) A ∩B = ∅ =⇒ d(A ∪B) = d(A) + d(B)

(iii) d(A) + d(B)− d(A ∩B) = d(A ∪B)

(iv) A ⊆ B =⇒ d(A) ≤ d(A,B)

(v) d(B,C) = 1 =⇒ d(C −B) = 0

(vi) d(A) = 1 ∧ d(B) > 0 =⇒ d(A ∩B,B) = 1

(vii) A ⊆ B =⇒ d̄(A) ≤ d̄(B)

Proof.

(i) lim
n→∞

|A[n]|
|C[n]|

given limits exist

=

(
lim
n→∞

|A[n]|
|B[n]|

)(
lim
n→∞

|B[n]|
|C[n]|

)definition of density

= d(A,B)d(B,C)

(ii) d(A ∪B)

def. of density

= lim
n→∞

|(A ∪B)[n]|
n

since A ∩ B = ∅

= lim
n→∞

|A[n]|
n

+ lim
n→∞

|B[n]|
n

def. of density

= d(A) + d(B)

(iii) d(A ∪B)

part (ii)

= d(A) + d(B −A ∩B)

part (ii)

= d(A) + d(B)− d(A ∩B)

(iv) d(A) = lim
n

A[n]

n

|B[n]| ≤ n

≤ lim
n

|A[n]|
|B[n]|

= d(A,B)

(v) d(B −A)

part (iv)

≤ d(B −A,B) = d(B,B)− d(A,B)

d(A,B) = 1

= 0

(vi) d(A ∩B,B)

part (i)

= d(A ∩B)/d(B)

part (vii)

= 1

(vii) d̄(A) = lim sup
n

|A[n]|
n

|A[n]| ≤ |B[n]|

≤ lim sup
n

|B[n]|
n

= d̄(B)

Appendix B. Table of Notation

∧, ∨ logical and/or respectively

log logarithm with base 2

ε, δ small things
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[[expr]] indicator function

N natural numbers

R real numbers

Q rational numbers

B binary alphabet B = {0, 1}
B∗ set of finite binary strings

B∞ set of infinite binary strings

x, y finite binary strings

x v y x is a prefix of y

#x(y) number of (possibly overlapping) occurrences of x in y

`(x) length of string x

ε empty string of length zero

A,B,C, · · · subsets of the integers

A[n] set of elements in A smaller or equal to n

Ac complement of A

d(A) natural density of A

d̄(A) upper natural density of A

µ, ν lower semicomputable semimeasures

λ Lebesgue measure

ν1, ν2, ν3, · · · enumeration of lower semicomputable semimeasures

M universal mixture

Mnorm normalised universal mixture

wk prior belief in environment νk

wk(x) posterior belief in environment νk having observed x

K(x) prefix Kolmogorov complexity of x

Km(x) monotone Kolmogorov complexity of x

ω, χ, ψ infinite binary strings

α infinite binary Martin-Löf random string

γ, ζ numbers in (0, 2)

θ number in (0, 1)

H(θ) entropy of θ
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