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Abstract. We study the convergence of Solomonoff’s universal mixture
on individual Martin-Löf random sequences. A new result is presented
extending the work of Hutter and Muchnik (2004) by showing that there
does not exist a universal mixture that converges on all Martin-Löf ran-
dom sequences.
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1 Introduction

Sequence prediction is the task of predicting symbol αn having seen α1:n−1 =
α1 · · ·αn−1. Solomonoff approached this problem by taking a Bayesian mixture
over all lower semicomputable semimeasures where complex semimeasures were
assigned lower prior probability than simple ones.1 He then showed that, with
probability one, the predictive mixture converges (fast) to the truth for any
computable measure [9]. Solomonoff induction arguably solves the sequence pre-
diction problem and has numerous attractive properties, both technical [9, 2, 5]
and philosophical [8]. There is, however, some hidden unpleasantness, which we
explore in this paper.

Martin-Löf randomness is the usual characterisation of the randomness of
individual sequences [6]. A sequence is Martin-Löf random if it passes all effective
tests, such as the laws of large numbers and the iterated logarithm. Intuitively,
a sequence is Martin-Löf random with respect to measure µ if it satisfies all
the properties one would expect of an infinite sequence sampled from µ. It has
previously been conjectured that the set of Martin-Löf random sequences is
precisely, or contained within, the set on which the Bayesian mixture converges.

This question has seen a number of attempts with a partial negative solution
and a more detailed history of the problem by Hutter and Muchnik [3]. They
showed that there exists a universal lower semicomputable semimeasure M and
Martin-Löf random sequence α (with respect to the Lebesgue measure λ) for
which M(αn|α<n) 6→ λ(αn|α<n). The α used in their proof is computable from

1 Actually, Solomonoff mixed over proper measures. The use of semimeasures was
introduced later by Levin to ensure that the mixture itself was lower semicomputable
[14].



the halting problem, which presumably inspired the work in [7] where it is shown
that if α is 2-random, then every universal lower semicomputable semimeasure
converges on α. It is worth remarking that there are known semimeasures that
do converge on all Martin-Löf random sequences, some of which are even lower
semicomputable. Unfortunately, however, convergence rates for these semimea-
sures are unknown. For a detailed discussion see [3].

While Hutter and Muchnik showed that there exists a universal lower semi-
computable semimeasure and Martin-Löf random sequence on which it fails to
converge, the question of whether or not this failure occurs for all such semimea-
sures has remained open. We prove that for every universal lower semicom-
putable Bayesian mixture there exists a Martin-Löf random sequence on which
it fails to converge. This result is interesting for a few reasons. The choice of
universal mixture is akin to choosing an optimal universal Turing machine when
computing Kolmogorov complexity. In both cases, asymptotic results are rarely
dependent on this choice and so it is useful to confirm this trend here. On the
other hand, if the result had been positive then the existence of a universal
mixture that did converge on all Martin-Löf random strings would be a nice
property that might justify the choice of one universal mixture over another.

2 Notation

Overviews of algorithmic information theory can be found in [5, 1].

General. The natural, rational and real numbers are denoted by N, Q and
R. Logarithms are taken with base 2. A real θ ∈ (0, 1) has entropy H(θ) :=
−θ log θ− (1− θ) log(1− θ). The indicator function is [[expr]], which takes value
1 if expr is true and 0 otherwise. For sets A and B we write A − B for their
difference and |A| for the size of A. The natural density of A ⊆ N is d(A) :=
limn→∞ |{a ∈ A : a ≤ n}| /n. and d̄(A) := lim supn→∞ |{a ∈ A : a ≤ n}| /n. We
use ∨ and ∧ for logical or and and respectively.

Strings. A finite binary string x is a finite sequence x1x2x3 · · ·xn with xi ∈
B := {0, 1}. Its length is `(x). An infinite binary string ω is an infinite sequence
ω1ω2ω3 · · · . The empty string of length zero is denoted by ε. The sets Bn, B∗ and
B∞ are the sets of all strings of length n, all finite strings and all infinite strings
respectively. Substrings of x ∈ B∗ ∪B∞ are denoted by xs:t := xsxs+1 · · ·xt−1xt
where s, t ∈ N and s ≤ t. If s > t, then xs:t := ε. A useful shorthand is
x<t := x1:t−1. Let x, y ∈ B∗, then #x(y) is the number of (possibly overlapping
and wrapping around) occurrences of x in y and xy is their concatenation. For
example, #010(1010) = 2. If `(y) ≥ `(x) and x1:`(x) = y1:`(x), then we write
x v y and say x is a prefix of y. Otherwise we write x 6v y. A string ω ∈ B∞ is
normal if ∀x ∈ B∗, limn→∞#x(ω1:n)/n = 2−`(x).

Measures and semimeasures. A semimeasure is a function µ : B∗ → [0, 1]
satisfying µ(ε) ≤ 1 and µ(x) ≥ µ(x0) + µ(x1) for all x ∈ B∗. It is a measure
if both inequalities are replaced by equalities. A function µ : B∗ → R is lower
semicomputable if the set {(x, r) : r < µ(x), r ∈ Q, x ∈ B∗} is recursively enu-
merable. In this case there exists a recursively enumerable sequence µ1, µ2, · · ·



of computable functions approximating µ from below. For b ∈ B and x ∈ B∗,
µ(b|x) := µ(xb)/µ(x) is the µ-probability that x is followed by b. The Lebesgue
measure is λ(x) := 2−`(x).

Complexity. A Turing machine T is a recursively enumerable set of pairs of
binary strings T :=

{
(p1, x1), (p2, x2), · · ·

}
where pk is the program for xk. It is

a prefix machine if the set of programs is prefix free, pk 6v pj for all j 6= k. T is
a monotone machine if pk v pj =⇒ xk v xj ∨ xj v xk. For prefix machine T
the prefix complexity with respect to T is a function KT : B∗ → N defined by

KT (x) := min
p
{`(p) : (p, x) ∈ T}

If T is a monotone machine, then the monotone complexity with respect to T is
defined by

KmT (x) := min
p
{`(p) : (p, y) ∈ T ∧ x v y}

There exists an additively optimal prefix machine U such that for all prefix
machines T there exists a constant cT with KU (x) < KT (x) + cT . In identical
fashion there exists an additively optimal monotone machine. As is usual in
algorithmic information theory, we fix a pair of additively optimal prefix and
monotone machines and write K(x) := KU (x) and Km(x) := KmU (x). The
choice of reference machine is irrelevant for this work.

A lower semicomputable semimeasure M is universal if for every lower
semicomputable semimeasure µ there exists a constant cµ > 0 such that
∀x,M(x) > cµµ(x). Zvonkin and Levin [14] showed that the set of all lower
semicomputable semimeasures is recursively enumerable (possibly with repeti-
tion). Let ν1, ν2, · · · be such an enumeration and w : N → [0, 1] be a lower
semicomputable sequence satisfying

∑
i∈N wi ≤ 1, which we view as a prior on

the lower semicomputable semimeasures. Then the universal mixture is defined
by

M(x) :=
∑
i∈N

wiνi(x). (1)

There are, of course, many possible enumerations and priors, and hence there
are many universal mixtures. This paper aims to prove certain inconsistency
results about all universal mixtures, regardless of the choice of prior. Defining
wi(x) := wiνi(x)/M(x) and substituting into Eq. 1 leads to

M(b|x) =
∑
i∈N

wi(x)νi(b|x). (2)

There exist universal lower semicomputable semimeasures that are not repre-
sentable as universal mixtures, but we do not consider these here [13].

Martin-Löf randomness. Let µ be a computable measure and M a universal
lower semicomputable semimeasure. An infinite binary string ω is µ-Martin-Löf
random (µ-random) if and only if there exists a c > 0 such that

µ(ω<n)/M(ω<n) > c, ∀n ∈ N. (3)



Observe that the definition does not depend on the choice of universal lower
semicomputable semimeasure since for any two universal lower semicomputable
semimeasures M and M ′ there exists a constant c > 0 such that cM ′(x) >
M(x) > M ′(x)/c, ∀x [5]. We write Rµ ⊂ B∞ for the set of µ-random strings.

Lemma 1. The following hold:

1. If ω ∈ B∞ is λ-random, then it is normal.
2. If x ∈ B∗ with `(x) = n and θ := #1(x)/n, then Km(x) < nH(θ)+ 1

2 log n+c
for some c > 0 independent of x and n.

3. Let A,B ⊆ N and φn := [[n ∈ A]]. If d(A) = 0 and d̄(B) > 0, then
(a) d̄(B −A) > 0.
(b) limn→∞Km(φ1:n)/n = 0.

Proof. Part 1 is well known [5, §2.6]. For part 2 we use the KT-estimator, which
is defined by

µ(x) :=

∫ 1

0

1

π
√

(1− θ)θ
θ#1(x)(1− θ)#0(x)dθ.

Because µ is a measure and is finitely computable using a recursive formula [12],
we can apply Theorem 4.5.4 in [5] to show that there exists a constant cµ > 0
such that

Km(x) < − logµ(x) + cµ ≤
1

2
log n+ 1 + log θ#1(x)(1− θ)#0(x) + cµ

=
1

2
log n+ 1 + nH(θ) + cµ,

where we used the redundancy bound for the KT-estimator [12] and the defini-
tion of H(θ). Part 3a is immediate from the definition of the natural density. For
3b, let θn := #1(φ1:n)/n and note that d(A) = 0 implies that limn→∞ θn = 0
and so limn→∞H(θn) = 0. Finally apply part 2 to complete the proof. �

3 Almost Sure Convergence

Before Martin-Löf convergence is considered we present a version of the cele-
brated theorem of Solomonoff with which we will contrast our results [10].

Theorem 2 (Solomonoff, 1978). If M is a universal lower semicomputable
semimeasure and α is sampled from computable measure µ, then

lim
n→∞

∑
b∈B

(M(b|α<n)− µ(b|α<n))
2

= 0, w.µ.p.1.

A subtle point is that convergence in Theorem 2 holds both off-sequence
and on-sequence. A weaker (on-sequence only) statement would be that
limn→∞ (M(αn|α<n)− µ(αn|α<n))

2
= 0, w.µ.p.1. Unfortunately, both results

only hold with probability 1 while we are primarily interested in convergence on
individual sequences.



4 Martin-Löf Convergence

We now ask whether there exists a universal mixture such that M(αn|α<n) →
µ(αn|α<n) for all µ-random α. Two new theorems are presented, the first is
subsumed by the second, but admits an easy proof and serves as a nice warm-
up.

Theorem 3. Let M be a universal mixture. Then there exists a λ-random α
such that limn→∞

∑
b∈B (M(b|α<n)− 1/2)

2 6= 0.

Proof. We use the same λ-random string α as Hutter and Muchnik [3], which
is defined inductively by αn := [[M(α<n0) > 2−n]]. Define ν : B∗ → [0, 1] by

ν(x) := M(x)[[∀n ≤ `(x) : xn = 0 ∨M(x<n0) > 2−n]].

It is straightforward to check that ν is both lower semicomputable and a
semimeasure. Therefore there exists a j ∈ N such that ν = νj in the enumeration
of all lower semicomputable semimeasures used by M . By the definition of ν we
have that ν(α1:n) = M(α1:n) for all n. Furthermore,

αn = 0 =⇒ M(α<n0) ≤ 2−n =⇒ ν(α<n1) = 0 =⇒ ν(1|α<n) = 0,

where we used the definitions of α, ν and the conditional probability respectively.
Therefore if αn = 0, then

M(0|α<n) +M(1|α<n)
(a)
=
∑

i∈N
wi(α<n) (νi(0|α<n) + νi(1|α<n))

(b)

≤
∑

i∈N
wi(α<n)− wj(1−M(0|α<n))

(c)
= 1− wj(1−M(0|α<n)

(d)

≤ 1− wjM(1|α<n), (4)

where (a) follows directly from Eq. 2. (b) follows by extracting wj(α<n) from the
sum and using the facts that νj(0|α<n)+νj(1|α<n) = M(0|α<n) and νi(0|α<n)+
νi(1|α<n) ≤ 1 for all i. (c) follows from the fact that

∑
i∈N wi(x) = 1. For (d) we

note that M is a semimeasure, which implies that 1 −M(0|α<n) ≥ M(1|α<n).
Because α is λ-random, it must contain infinitely many zeros by part 1 of Lemma
1 and the definition of a normal string. Let ni be the position of the ith 0 in α
and k ∈ N be such that νk = λ. Therefore there exists a c > 0 such that

M(1|α<ni
)
(a)
=
∑
i∈N

wi(α<n)ν(1|α<ni
)
(b)

≥ wk(α<n)λ(1|α<ni
)
(c)
> c,

where (a) is the same as Eq. 2 and (b) follows by extracting the contribution of
the Lebesgue measure λ. (c) follows by recalling that λ(1|α<ni

) = 1/2 and the
fact that α is λ-random combined with Eq. 3. Then by Eq. 4,

lim inf
i→∞

M(0|α<ni
) +M(1|α<ni

) ≤ 1− wjc < 1.



Therefore limn→∞M(0|α<n)+M(1|α<n) 6= 1 and so limn→∞
∑
b∈B(M(b|α<n)−

1/2)2 6= 0, as required. �

Coincidentally, the proof of Theorem 3 demonstrates the existence random
sequences on which M fails to converge to a proper measure. This is interesting
as it is a straightforward corollary of Theorem 2 that M converges to a measure
with µ-probability one with respect to any computable measure µ.

We now present the on-sequence version of Theorem 3, which uses the same
α for a counter-example, but turns out to be significantly harder to prove.

Theorem 4. Let M be a universal mixture. Then there exists a λ-random α
such that limn→∞M(αn|α<n) 6= 1/2.

Initially we follow the proof in [3] by constructing a lower semicomputable
semimeasure ν that dominates M on α infinitely often, but where ν(0|α<n) = 1
if αn = 0.

Definition 5. Let Mt be a sequence of computable functions approximating M
from below and define αt ∈ B∞ similarly to α by αtn := [[Mt(α

t
<n0) > 2−n]]. Now

define νt : B∗ → [0, 1] by

νt(x) :=


2−t if `(x) = t ∧ x < αt1:t
νt(x0) + νt(x1) if `(x) < t

0 otherwise,

where x < αt1:t is decided by lexicographical order.
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It is shown in [3] that limt→∞ αt = α and 2−n ≡ λ(α1:n) > M(α1:n). Addi-
tionally, ν := limt→∞ νt exists and is a lower semicomputable semimeasure with
ν(x) = ν(x0) + ν(x1) and ν(α1:n) < 2−n. Hutter and Muchnik then argued that
if αn:n+1 = 01, then ν(αn|α<n) = 1 and ν(α<n) ≥ M(α<n)/2. They then set
M ′ := γM + (1− γ)ν for suitable γ and so poisoned convergence of either M or
M ′. Here we diverge from their work and consider ν when predicting ones. For
the remainder of this article α and ν refer to those defined above.

Lemma 6. The following hold:

1. If αn:n+1 = 10 then ν(1|α<n) ∈ (0, 1/3).



2. If αn = 1 then ν(1|α<n) ∈ (0, 1/2).

Proof. For part one,

ν(1|α<n)
(a)
=

ν(α<n1)

ν(α<n)

(b)
=

ν(α<n10) + ν(α<n11)

ν(α<n0) + ν(α<n10) + ν(α<n11)

(c)
=

ν(α<n10)

ν(α<n0) + ν(α<n10)

(d)
=

ν(α<n10)

2−n + ν(α<n10)

(e)
<

2−n−1

2−n + 2−n−1
=

1

3
.

(a) is the definition of the conditional measure. (b) follows because ν(x) =
ν(x0) + ν(x1). (c) and (d) are true, since αn:n+1 = 10 and so α<n11 > α1:n+1

and α<n0 < α1:n, which imply that ν(α<n11) = 0 and ν(α<n0) = 2−n. (e)
follows from algebra and because ν(α1:n) < 2−n for all n. For the second part
we use the same reasoning to obtain

ν(1|α<n) =
ν(α<n1)

ν(α<n0) + ν(α<n1)
=

ν(α<n1)

2−n + ν(α<n1)
<

1

2
,

as required. �

Lemma 7. Let ni be the position of the ith 1 in α and j ∈ N be such that
ν = νj in the enumeration of all lower semicomputable semimeasures used by
M . If limn→∞M(αn|α<n) = 1

2 , then the function M̄(x) := M(x) − wjν(x)/2
satisfies the following properties:

1. M̄ is a universal mixture.
2. lim infi→∞ M̄(1|α<ni

) ≥ 1
2 .

3. There exists γ ∈ (0, 1) such that for all sufficiently large n with αn:n+1 = 10,
M̄(1|α<n) > 1

2γ2 .

Proof. The first part is trivial. For the third part, let wk be the prior weight
that M assigns to itself, n be such that αn:n+1 = 10 and εn := 1

2 −
M(α<n1)
M(α<n)

.
Then

M̄(1|α<n)
(a)
=

M(α<n1)− wjν(α<n1)/2

M(α<n)− wjν(α<n)/2

(b)
>
M(α<n1)− wjν(α<n)/6

M(α<n)− wjν(α<n)/2

(c)
=

1

2
+
wjν(α<n)− 12M(α<n)εn

12M̄(α<n)

(d)
>

1

2
+
wj
24
− wkεn,

(a) is the definition of M̄ and conditional probability. (b) follows from part 1 of
Lemma 6. In (c) we substituted εn. (d) by substituting inequalities ν(α<n) ≥
ν(α<n0) = 2−n > M(α<n)/2 > M̄(α<n)/2 and M̄(α<n) > wkM(α<n). Since
εn → 0 for sufficiently large n with αn:n+1 = 10, we have M̄(1|α<n) > 1/2 +
wj/48 = 1

2γ2 where γ2 := 1
1+wj/24

∈ (0, 1). For the second part

M̄(1|α<ni
) =

M(α<ni
1)− wjν(α<ni

1)/2

M(α<ni)− wjν(α<ni)/2

(a)
>

M(α<ni
1)− wjν(α<ni

)/4

M(α<ni)− wjν(α<ni)/2

=
1

2
− M(α<ni

)εni

M̄(α<ni)
≥ 1

2
− wkεni ,



where (a) follows from part 2 of Lemma 6. Taking the limit as i→∞ completes
the result. �

To prove the main theorem we construct a pair of infinite binary sequences
χ and ψ such that α1:n is computable from χ1:n and ψ1:n. This implies that
Km(α1:n) < Km(χ1:n) + K(ψ1:n) + O(1), which holds because you can con-
struct a program for α1:n using the concatenation of a prefix program for ψ1:n

and a monotone program for χ1:n. Finally we assume that M converges on-
sequence to λ on α and show that this implies lim infn→∞Km(χ1:n)/n < 1 and
limn→∞K(ψ1:n)/n = 0. But α is λ-random, so limn→∞Km(α1:n)/n = 1, which
leads to a contradiction.

Proof of Theorem 4. Let α be as in the proof of Theorem 3. Define {mi} and
{ni} inductively by

m1 := min {m : αm = 1}
ni := min {n ≥ mi : αn+1 = 0}
mi := min {m > ni−1 : αm = 1} ,

which are chosen so that αmi−1:ni+1 = 01ni−mi+10. Since α is λ-random, by
part 1 of Lemma 1, d({ni : i ∈ N}) > 0. Furthermore, M̄ is universal so by Eq.
3 there exists an ε > 0 such that 1 ≥ 2niM̄(α1:ni

) > ε for all i. Let γ be as in
the proof of Lemma 7. Therefore we can choose a c ∈ Q such that:

1. d̄
(
A :=

{
i : c < 2niM̄(α1:ni) ≤ c/γ

})
) > 0.

2. d
(
B :=

{
i : 2niM̄(α1:ni

) > c/γ
})

) = 0.

Define F ⊂ N by

F :=
{
i : ∃j ∈ {mi, · · · , ni − 1} such that 2jM̄(α1:j) > c

}
−B.

Now define indicators χ and ψ by

χn := [[αn = 1 ∨ ∃i : (n = ni + 1 ∧ i ∈ A− F )]]

ψn := [[∃i : n = mi ∧ i ∈ F ∪B]].

Let Mt and M̄t be computable approximations of M and M̄ from below respec-
tively and m(x) := max {m ≤ `(x) : xm−1 = 0 ∨m = 1}. Then

αn =


0 if χn = 0

1 if χn = 1 ∧ ψm(α<n1) = 1

1 if χn = 1 ∧ ∃t : Mt(α<n0) > 2−n

0 if χn = 1 ∧ ∃t : 2n−1M̄t(α<n) > c.

The equation above is computable given χ1:n, ψ1:n and α<n by the following
argument.

1. The first two cases are straightforward since m(α<n1) is computable.



2. If neither the first nor second case match, then by the definitions of χ and ψ
exactly one of the 3rd or 4th cases must hold. Therefore the conditions can
be computed in parallel for increasing t until one completes.

Since α1:n is λ-random and can be computed from ψ1:n and χ1:n using the
equation above, there exist constants c1, c2 > 0 such that Km(χ1:n) +K(ψ1:n) +
c2 > Km(α1:n) > n − c1, where the second inequality follows from [5, Example
4.5.3]. We now work by contradiction and show that if limn→∞M(αn|α<n) = 1

2
then Km(χ1:n) +K(ψ1:n) is smaller than n− c1 − c2 for sufficiently large n.

We start by showing that d(F ) = 0. By Lemma 7, for each k ∈ N there exists
an Nk such that if i > Nk, then M̄(αni

|α<ni
) > 1/(2γ2) and M̄(1|α<n) > γ1/k/2

whenever αn = 1 and n ≥ mi. Suppose Nk < i /∈ B and j ∈ {mi, · · · , ni − 1}
with `i := ni −mi + 1 ≤ k, then

2jM̄(α1:j)
(a)
= 2j

M̄(α1:ni
)

M̄(1|α<ni
)

ni−1∏
n=j+1

1

M̄(1|α<n)

(b)
< γ22niM̄(α1:ni)γ

−(ni−j−1)/k
(c)

≤ cγ1−(ni−j−1)/k
(d)

≤ c,

where (a) follows from the definition of the conditional measure. (b) follows from
the inequalities M̄(1|α<ni

) > 1/(2γ2) and M̄(1|α<n) > γ1/k/2. (c) is true by
the assumption that i /∈ B, which implies that 2niM̄(α1:ni

) ≤ c/γ. Finally (d)
follows because ni − j − 1 ≤ ni −mi + 1 ≤ k. Therefore i /∈ F and

1

I

I∑
i=1

[[i ∈ F ]]
(a)

≤ 1

I

I∑
i=1

(
[[`i ≤ k]][[i ∈ F ]] + [[`i > k]]

)
(b)

≤ Nk
I

+
1

I

I∑
i=1

[[`i > k]]
(c)
=
Nk
I

+ 1−
k∑
κ=1

1

I

I∑
i=1

[[`i = κ]].

(a) and (c) follow by algebra. (b) because if i > Nk and `i ≤ k, then i /∈ F .
Now `i is the length of a contiguous block of 1’s surrounded by zeros. Since α is
λ-random, by Lemma 1 the asymptotic proportion of such contiguous blocks of
length κ is 2−κ by the following argument.

lim
I→∞

1

I

I∑
i=1

[[`i = κ]]
(a)
= lim
I→∞

1

I
#01κ0(α1:nI+1)

(b)
= lim
I→∞

(nI + 1)

#10(α1:nI+1)
· #01κ0(α1:nI+1)

(nI + 1)

(c)
= 2−κ,

where (a) and (b) follow from the definitions of the intervals and (c) fol-
lows the definition of normal numbers and from part 1 of Lemma 1. There-
fore 1

I
∑I
i=1[[`i > k]] < 21−k for sufficiently large I. Sending k → ∞ gives

d(F ) := limI→∞
∑I
i=1[[i ∈ F ]]/I = 0. It follows from d(B) = d(F ) = 0

and Lemma 1 that d(B ∪ F ) = 0 and limn→∞Km(ψ1:n)/n = 0. Since
|Km(x) − K(x)| < O(log `(x)) for all x [5, §4.5.5], limn→∞K(ψ1:n)/n = 0 as



well. Let θn := #1(χ1:n)/n. By Lemma 1 we have that d̄(A−F ) > 0. Therefore
there exists a 0 < c3 ∈ Q such that lim supn→∞ θn >

1
2 + c3, where we also used

the fact that αn = 1 =⇒ χn = 1 and d̄({ni : i ∈ N}) > 0. If θn >
1
2 +c3 then by

Lemma 1 there exists a c4 > 0 such that Km(χ1:n) < nH
(
1
2 + c3

)
+ 1

2 log n+ c4.
Therefore for all ε > 0 there exists an arbitrarily large n such that

n− c1 < Km(α1:n) < Km(χ1:n) +K(ψ1:n) + c2

< εn+ nH

(
1

2
+ c3

)
+

1

2
log n+ c2 + c4.

This is a contradiction since H
(
1
2 + c3

)
< 1. Therefore limn→∞M(αn|α<n) 6= 1

2
as required. �

5 Summary

We have shown that for every universal mixture there exists an infinite λ-random
sequence on which it fails to converge.

Open Problems. There are a number of natural questions remaining. Suppose
M is a universal lower semi-computable semimeasure and define CM and C by

CM :=

{
ω : lim

t→∞
M(ωn|ω<n) =

1

2

}
and C :=

⋂
M

CM

where the intersection is taken over all universal lower semi-computable semimea-
sures. What is the nature of CM and C? It follows from [3] that there exists an
M such that Rλ 6⊆ CM , which implies that Rλ 6⊆ C. In [7] it is shown that the
2-random reals are a subset of C. In this work we showed that for all universal
mixtures Rλ 6⊆ CM . Obvious open questions are:

1. Does there exists a universal lower semi-computable semimeasure (not a mix-
ture) such that Rλ ⊆ CM? An example of a non-trivial universal enumerable
semimeasure that is not (essentially) a mixture may also be of interest.

2. As above, but where Rλ is replaced with a different class of random reals
somewhere on the hierachy between Martin-Löf random and 2-random reals,
such as the weak 2-random reals.

Unfortunately, an elegant characterisation of CM and C seems unlikely because
there exists an α ∈ C that is not λ-random. See Proposition 8 in the appendix,
which is adapted from Theorem 7 in [3]. Note that it is known that there exists a
lower semicomputable semimeasureW that converges on all λ-random sequences,
but W is not universal [4].
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A Convergence on non-random sequences

Proposition 8. There exists an α ∈ B∞ such that

1. α is not λ-random.
2. For all universal lower semi-computable semimeasures M

lim
t→∞

∑
b∈B

(
M(b|α<t)−

1

2

)2

= 0.

Proof. Define computable measure ν inductively by

µ(1|x) :=
1

2
+

1

2
√

1 + `(x)

For universal lower semi-computable semimeasure M define the set of µ-random
sequences on which M converges to µ by

AM :=

{
ω : lim

t→∞

∑
b∈B

(M(b|ω<t)− µ(1|ω<t))2 = 0 ∧ ω is µ-random

}
.

Now µ(AM ) = 1 by Theorem 2 and the well-known fact that µ(Rµ) = 1 for all
computable measures µ. Therefore since there are only countably many universal
lower semi-computable semimeasures, we have µ (A :=

⋂
M AM ) = 1. Let α ∈ A,

which is µ-random. Then

∞∑
t=1

∑
b∈B

(√
µ(b|α<t)−

√
λ(b|α<t)

)2
≥
∞∑
t=1

(√
1

2
+

1

2
√
t
−
√

1

2

)2

=∞.

Therefore α is not λ-random by Theorem 3 of [11]. Finally by the definition of
α ∈ A and µ we have that for all universal lower semi-computable semimeasures
M

lim
t→∞

∑
b∈B

(
M(b|α<t)−

1

2

)2

= lim
t→∞

∑
b∈B

(M(b|α<t)− µ(b|α<t))2 = 0

as required. �


