
Analytical Results on the BFS vs. DFS
Algorithm Selection Problem.

Part II: Graph Search

Tom Everitt and Marcus Hutter

Australian National University, Canberra, Australia

Abstract. The algorithm selection problem asks to select the best algo-
rithm for a given problem. In the companion paper Everitt and Hutter
(2015b), expected BFS and DFS tree search runtime was approximated
as a function of tree depth and probabilistic goal distribution. Here we
provide an analogous analysis of BFS and DFS graph search, deriving
expected runtime as a function of graph structure and goal distribution.
The applicability of the method is demonstrated through analysis of two
different grammar problems. The approximations come surprisingly close
to empirical reality.

1 Introduction

Search is a fundamental problem of artificial intelligence (Russell and Norvig,
2010), and a sizeable list of search algorithms with different pros and cons can
be found in the literature (Edelkamp and Schrödl, 2012). Examples of search
tasks include combinatorial optimisation problems and planning, and core search
algorithms include BFS, DFS, A*, simulated annealing, and genetic algorithms.
Techniques for selecting the best algorithm for a given problem is of obvious
importance (Rice, 1975; Kotthoff, 2014; Hutter et al., 2014).

Tightly related to the algorithm selection problem is the problem of predicting
algorithm runtime; in particular expected runtime. In the companion paper
(Everitt and Hutter, 2015b) we gave a brief survey of related work and derived
(approximations of) expected runtime for BFS and DFS in trees. The results also
applied to search in general graphs for the variants of BFS and DFS that do not
remember visited nodes; so called tree search algorithms. Their name does not
stop them from being used also in other types of graphs, but they then run the
risk of spending most of the time searching the same nodes many times. This
paper analyses expected runtime of graph search variants of BFS and DFS that
do remember which nodes they have visited. Although graph search variants
usually are more efficient in the sense that they search fewer nodes, the extra
memory overhead means that they are not always applicable.

Our main contributions are estimates of expected BFS and DFS graph search
runtime as a function of graph structure and distributions of goals (Section 3).
Note that we focus solely on the time it takes to find a goal, and ignore aspects
such as solution quality. We demonstrate the relevance of the results by applying

them to two different grammar problems (Section 4). Setup and background
are described in Section 2, and experimental verification in Section 5. Finally,
conclusions and outlooks come in Section 6. The technical report (Everitt and
Hutter, 2015a) offers a greatly extended discussion about the setup.

2 Preliminaries

The graph search variants of breadth-first search (BFS) and depth-first search
(DFS) are two standard methods for uninformed graph search. Both BFS and
DFS assume oracle access to a neighbourhood function and a goal check function
defined on a state space. BFS explores increasingly wider neighbourhoods around
the start node. DFS follows one path as long as possible, and backtracks when
stuck. Figure 1 illustrates the different search strategies, and how they (initially)
focus on different parts of the search space. Please refer to (Russell and Norvig,
2010) for details.

1

2

4

8 9

5

10 11

3

6

12 13

7

14 15

1

2

3

4 5

7

6 8

13

9

10 11

14

12 15

Fig. 1: The difference between BFS (left) and DFS (right) in a directed graph
where a goal is placed in the second position on level 2 (the third row). The
numbers indicate traversal order. Circled nodes are explored before the goal is
found. Note how BFS and DFS explore different parts of the tree. In bigger
search spaces, this may lead to substantial differences in search performance.

The runtime or search time of a search method (BFS or DFS) is the number
of nodes explored until a first goal is found (5 and 7 respectively in Figure 1). This
simplifying assumption relies on node expansion being the dominant operation,
requiring similar time throughout the tree. If no goal exists, the search method
will explore all nodes before halting. In this case, we define the runtime as the
number of nodes in the search problem plus 1. Let Γ be the event that a goal
exists, Γk the event that a goal exists on level k, and Γ̄ and Γ̄k their complements.
Let Fk = Γk ∩ (

⋂k−1
i=0 Γ̄i) be the event that level k has the first goal.

A random variable X is geometrically distributed Geo(p) if P (X = k) =
(1 − p)k−1p for k ∈ {1, 2, . . . }. The interpretation of X is the number of trials
until the first success when each trial succeeds with probability p. Its cumulative
distribution function (CDF) is P (X ≤ k) = 1 − (1 − p)k, and its average or
expected value E[X] = 1/p. A random variable Y is truncated geometrically

distributed X ∼ TruncGeo(p,m) if Y = (X | X ≤ m) for X ∼ Geo(p), which
gives

P (Y = k) =

{
(1−p)kp

1−(1−p)m for k ∈ {1, . . . ,m}
0 otherwise.

tc(p,m) := E[Y] = E[X | X ≤ m] =
1− (1− p)m(pm+ 1)

p(1− (1− p)m)
.

When p� 1
m , Y is approximately Geo(p), and tc(p,m) ≈ 1

p . When p� 1
m , Y

becomes approximately uniform on {1, . . . ,m} and tc(p,m) ≈ m
2 .

We will occasionally make use of the convention 0 · undefined = 0, and often
expand expectations by conditioning on disjoint events:

Lemma 1. Let X be a random variable and let the sample space Ω =
⋃̇

i∈ICi be
partitioned by mutually disjoint events Ci. Then E[X] =

∑
i∈I P (Ci)E[X | Ci].

3 Colliding Branches

The companion paper (Everitt and Hutter, 2015b) explores a model of tree search,
where path redundancies are not recognized by the search algorithms. In this
section we develop a similar model for graph search performance. The abstract
results of this section are applied to two grammar problems in the next section.

Definition 1. For a given search problem: Let the level of a node v, level(v), be
the length of a shortest path from the start node to v. Let D = maxv level(v) be
the (generalised) depth of the search graph. Let δn be the first node on level n
reached by DFS, 0 ≤ n ≤ D. Any node reachable from v is a descendant of v.

The descendant counter L plays a central role in the analysis. For a given
search problem, let

L(n, d) = |{v : level(v) = d, v ∈ descendants(δn)}|

count the number of nodes on level d that are reachable from δn.

As in the companion paper, we assume that goals are distributed by level in
an iid manner according to a goal probability vector p. We will also assume that
the probability of DFS finding a goal before finding δD is negligible. We will refer
to this kind of problems as search problems with depth D, goal probabilities p and
descendant counter L. The rest of this section justifies the following proposition.

Proposition 1. The DFS and BFS runtime of a search problem can be roughly
estimated from the descendant counter L, the depth D and the goal probabilities
p = [p0, . . . , pD] when the probability of DFS finding a goal before δD is negligible.

The assumption of DFS not finding a goal before δD is not always realistic,
but is for example satisfied in the grammar problems considered in Section 4
below.

3.1 DFS Analysis

The nodes δ0, . . . , δD play a central role in the analysis of DFS runtime, since all
the descendants of δn+1 will be explored before the descendants of δn (excluding
the δn+1 descendants). We say that DFS explores from δn after DFS has explored
all descendants of δn+1 and until all descendants of δn have been explored. The
general idea of the DFS analysis will be to count the number of nodes under each
δn, and to compute the probability that any of these nodes is a goal.

Some notation for this:

– Let the δn-subgraph Sn = {v : v ∈ descendants(δn)} be the set of nodes

reachable from δn, with cardinality |Sn| =
∑D

i=0 L(n, i), 0 ≤ n ≤ D. Let

SD+1 = ∅ and let S−1 be a set of cardinality |S−1| = |S0|+1=
∑D

i=0 L(0, i)+1.
– Let the δn-explorables Tn = Sn \ Sn+1 be the nodes explored from δn.
– Let the number of level-d δn-explorables An,d = L(n, d)− L(n+ 1, d) be the

number of level d descendants of δn that are not descendants of δn+1 for
0 ≤ n, d ≤ D. The relation between Tn and An,d is the following: |Tn| =∑D

i=nAn,i.

Let qk = 1− pk for 0 ≤ k ≤ D.

Lemma 2. Consider a search problem with depth D, goal probabilities p, and
descendant counter L. The probability that the δn-explorables Tn contains a goal

is τn := 1 −
∏D

k=0 q
An,k

k , and the probability that Tn contains the first goal is

φn := τn
∏D

i=n+1(1− τi).

Proof. τn is 1 minus the probability of not hitting a goal at any level d, n ≤ d ≤ D,
since at each level d, An,d probes are made when exploring from δn.

Proposition 2 (Colliding branches expected DFS search time). The ex-
pected DFS search time tDFS

CB (D,p, L) in a search problem with depth D, goal
probabilities p, and descendant counter L is bounded by

tDFS
CBL(D,p, L) :=

D∑
n=−1

|Sn+1|φn ≤ tDFS
CB (D,p, L) ≤

D∑
n=−1

|Sn|φn := tDFS
CBU(D,p, l)

where φ−1 = Γ̄ = 1−
∑D

n=0 φn is the probability that no goal exists.

The arithmetic mean t̃DFS
CB (D,p, L) := (tDFS

CBL(D,p, L) + tDFS
CBU(D,p, L))/2 of

the bounds can be used for a single runtime estimate.

Proof. Let X be the DFS search time in a search problem with the features
described above. The expectation of X may be decomposed as

E[X] = P (Γ̄)E[X | Γ̄] +

D∑
n=0

P (first goal in Tn) · E[X | first goal in Tn]. (1)

The conditional search time (X | first goal in Tn) is bounded by |Sn+1| ≤ (X |
first goal in Tn) ≤ |Sn| for 0 ≤ n ≤ D, since to find a goal DFS will search the
entire δn+1-subgraph Sn+1 before finding it when searching the δn-explorables
Tn, but will not need to search more than the δn-subgraph Sn = Sn+1 ∪ Tn
(disregarding the few probes made ‘on the way down to’ δn (i.e. to Tn); these
probes were assumed negligible). The same bounds also hold with S0 and S−1
when no goal exists (recall that |S−1| := |S0| + 1). Therefore the conditional
expectation satisfies

|Sn+1| ≤ E[X | first goal in Tn] ≤ |Sn| (2)

for −1 ≤ n ≤ D. By Lemma 2, the probability that the first goal is among the
δn-explorables Tn is φn, and the probability P (Γ̄) that no goal exists is φ−1 by
definition.

Substituting φn and (2) into (1) gives the desired bounds for expected DFS
search time t̃DFS

CB (D,p, L) = E[X].

The informativeness of the bounds of Proposition 2 depends on the dispersion
of nodes between the different Tn’s. If most nodes belong to one or a few sets Tn,
the bounds may be almost completely uninformative. This happens in the special
case of complete trees with branching factor b, where a fraction (b− 1)/b of the
nodes will be in T0. The companion paper (Everitt and Hutter, 2015b) derives
techniques for these cases. The grammar problems investigated in Section 4 below
show that the bounds may be relevant in more connected graphs, however.

3.2 BFS Analysis

The analysis of BFS only requires the descendant counter L(0, ·) with the first
argument set to 0, and follows the same structure as the BFS analysis in (Everitt
and Hutter, 2015b). In contrast to the DFS bounds above, this analysis gives a
precise expression for the expected runtime. The idea is to count the number of
nodes in the upper k levels of the tree (derived from L(0, 0), . . . , L(0, k)), and
to compute the probability that they contain a goal. Let the upper subgraph
Uk =

∑k−1
i=0 L(0, i) be the number of nodes above level k. When there is only a

single goal level, the following expression for BFS runtime may be readily derived.

Lemma 3 (BFS runtime Single Goal Level). For a search problem with
depth D and descendant counter L, assume that the problem has a single goal
level g with goal probability pg, and that pj = 0 for j 6= g. When a goal exists and
has position Y on the goal level, the BFS search time is:

tBFS
CB (g, pg, L, Y) = Ug + Y , with expected value

tBFS
CB (g, pg, L | Γg) = Ug + tc(pg, L(0, g))

Proof. When a goal exists, BFS will explore all of the top of the tree until depth
g− 1 (that is, Ug nodes) and Y nodes on level g before finding the first goal. The
expected value of Y is tc(pg, L(0, g)).

The probability that level k has a goal is P (Γk) = 1 − q
L(0,k)
k , and the

probability that level k has the first goal is P (Fk) = P (Γk)
∏k−1

i=0 P (Γ̄i). To BFS,
only the first goal level matter. This allows BFS runtime to be expanded over the
Fk events as in Lemma 1. For greater uniformity, a hypothetical level D + 1 only
containing goals is introduced to handle the event of no goal in the first D levels.

Proposition 3 (Branch Colliding Expected BFS Performance). The ex-
pected number of nodes that BFS needs to search to find a goal in a search problem
with depth D, goal probabilities p = [p0, . . . , pD], p 6= 0, and descendant counter
L is

tBFS
CB (p, L) =

D+1∑
k=0

P (Fk)tBFS
CB (k, pk, L | Γk)

where the goal probabilities have been extended with an extra element pD+1 = 1,
and FD+1 = Γ̄ is the event that no goal exists.

For pk = 0, tBFS
CB will be undefined, but this only occurs when P (Fk) is also 0.

Proposition 2 and 3 give (rough) estimates of average BFS and DFS graph search
time given the goal distribution p and the structure parameter L. The results
can be combined to make a decision whether to use BFS or DFS (Figure 3).

4 Grammar Problems

We now show how to apply the general theory of Section 3 to two concrete
grammar problems. A grammar problem is a search problem where nodes are
strings over some finite alphabet B, and the neighbourhood relation is given by a
set of production rules. Production rules are mappings x→ y, x, y ∈ B∗, defining
how strings may be transformed. For example, the production rule S → Sa
permits the string aSa to be transformed into aSaa. A grammar problem is
defined by a set of production rules, together with a starting string and a set
of goal strings. A solution is a sequence of production rule applications that
transforms the starting string into a goal string. Many search problems can be
formulated as grammar problems, with string representations of states modified
by production rules. Their generality makes it computably undecidable whether
a given grammar problem has a solution or not. We here consider a simplified
version where the search depth is artificially limited, and goals are distributed
according to a goal probability vector p.

4.1 Binary Grammar

Let ε be the empty string. The binary grammar consists of two production rules,
ε→ a and ε→ b over the alphabet B = {a, b}. The starting string is the empty
string ε. A maximum depth D of the search graph is imposed, and strings on
level k are goals with iid probability pk, 0 ≤ k ≤ D. Since the left hand substring
of both production rules is the empty string, both can always be applied at any
place to a given string. The resulting graph is shown in Figure 2.

ε

a

aa

aaa aab aba baa

ab

abb bab

ba

bba

b

bb

bbb

Fig. 2: Graph of binary grammar problem with max depth D = 3. Contiguous
lines indicate first discovery by DFS, and dashed lines indicate rediscoveries.

The first node on level n that DFS reaches in the binary grammar problem
is δn = an for 0 ≤ n ≤ D, assuming that the production rule ε → a is always
used first by DFS. The following lemma derives an expression for the descendant
counter LBG required by Proposition 2. Incidentally, the number of level-d δn
explorables An,d (Section 3.1) gets an elegant form in the binary grammar
problem.

Lemma 4. For n < d, let LBG(n, d) = |{v : level(v) = d, v ∈ descendants(an)}|
be the number of nodes reachable from an, and let An,d = LBG(n, d)−LBG(n+1, d)
be the number of descendants of an that are not descendants of an+1. Then
LBG(n, d) =

∑d−n
i=0

(
d
i

)
, and An,d =

(
d

d−n
)
.

Proof. The reachable nodes on level d that we wish to count are d−n levels below
an. To reach this level we must add i ≤ d−n number of b’s and d−n− i number
of a’s to an. The number of length d strings containing exactly i number of b’s is(
d
i

)
(we are choosing positions for the b’s non-uniquely with repetition among

d− i+ 1 possible positions). Summing over i, we obtain LBG(n, d) =
∑d−n

i=0

(
d
i

)
,

and An,d = LBG(n, d)− LBG(n+ 1, d) =
(

d
d−n
)
.

Corollary 1 (Expected Binary Grammar BFS Search Time). The ex-
pected BFS search time t̃DFS

BG (p) in a Binary Grammar Problem of depth D with
goal probabilities p = [p0, . . . , pD] is

tBFS
BG (p) = tBFS

CB (p, LBG).

Corollary 2 (Expected Binary Grammar DFS Search Time). The ex-
pected DFS search time t̃DFS

BG (D,p) in a binary grammar problem of depth
D with goal probabilities p = [p0, . . . , pD] is bounded between tDFS

BGL(D,p) :=
tDFS
CBL(D,p, LBG) and tDFS

BGU(D,p) := tDFS
CBU(D,p, LBG), and is approximately

t̃DFS
BG (D,p) := t̃DFS

CB (D,p, LBG).

Proof (Proof of Corollary 1 and 2). Direct application of Lemma 4, and Proposi-
tion 3 and 2 respectively.

The bounds are plotted for a single goal level in Figure 3 and 4.

10−4 10−3 10−2 10−1 100
8

10

12

14

pg

g

Decision Boundary

BFS wins

DFS wins

DFS=BFS

tBFS
BG = t̃DFS

BG

Fig. 3: The decision boundary predicted by Corollary 1 and 2, together with
empirical outcomes of BFS and DFS search time. The scattered points are based
on 100 independently generated binary grammar problems of depth D = 14 with
uniformly sampled (single) goal level g ∈ [8, 14] ∩ N and log(pg) ∈ [−4, 0]. DFS
benefits from a deeper goal level and higher goal probability compared to BFS.
The decision boundary gets 87% of the instances correct.

5 10 15 20

102

104

106

g

Complete Binary Tree

tBFS
SGL

t̃DFS
SGL

5 10 15 20

102

104

106

g

Binary Grammar

tBFS
BG

t̃DFS
BG

tDFS
BGL

tDFS
BGU

Fig. 4: The expected search time of BFS and DFS as a function of a single goal
level g with goal probability pg = 0.05 in a tree of depth D = 20. BFS has the
advantage when the goal is in the higher regions of the graph, although at first the
probability that no goal exists heavily influences both BFS and DFS search time.
The greater connectivity of the graph in the binary grammar problem permits
DFS to spend more time in the lower regions before backtracking, compared to
the complete binary tree analysed in the companion paper (Everitt and Hutter,
2015b). This penalises DFS runtime when the goal is not in the very lowest
regions of the tree. BFS behaviour is identical in both models.

4.2 Full Grammar

The full grammar problem has alphabet B = {S, a, b} and start string S. The
production rules are S → ε (with ε the empty string) plus the adding rules
S → Sa, S → aS, S → Sb, S → bS, and the moving rules Sa→ aS, aS → Sa,
Sb → bS, and bS → Sb. Only S-less strings can be goal nodes. As usual, a
maximum depth D and a goal probability vector p = [p0, . . . , pD] are given.

For simplified analysis, we will abuse notation the following way. We will
consider S-less nodes to be one level higher than they actually are. For example,
a would normally be on level 2 (e.g. reached by the path S → Sa, S → ε), but
we will consider it to be on level 1. A slight modification of BFS and DFS makes
them always check the S-less child first (which is always child-less in turn), which
means the change will only slightly affect search time. We will still consider
δn = San whenever S → Sa is among the production rules, however.

The search graph of the full grammar problem is shown in Figure 5.

Sε

Sa a

Saa

aa

aSa Sba

ba

aS

bSa aaS abS

ab

Sb b

aSb Sab Sbb

bb

bSb

bS

baS bbS

Fig. 5: Search graph for the Grammar problem until level 2. Connections induced
by moving rules are not displayed. Contiguous lines indicate the first discovery
of a child by DFS and dashed lines indicate rediscoveries.

The problem can be analysed by a reduction to a binary grammar problem
with the same parameters D and p. Assign to each string v of the binary grammar
problem the set of strings that only differ from v by (at most) an extra S. We
call such sets node clusters. For example, {a, Sa, aS} constitutes the node cluster
corresponding to a. Due to the abusing of levels for the S-less strings, all members
of a cluster appear on the same level (the level is equal to the number of a’s and
b’s). The level is also the same as the corresponding string in the binary grammar
problem.

Lemma 5 (Binary Grammar Reduction). For every n, d, n ≤ d, the descen-
dant counter LFG of the full grammar problem is LFG(n, d) = (d+ 2)LBG(n, d).

Proof. LBG(n, d) counts the level d descendants of an in the binary grammar
problem (BGP), and LFG(n, d) counts the level d descendants of San in the full
grammar problem (FGP). The node u is a child of v in BGP iff the members of
the u node cluster are descendants of Su. Therefore the node clusters on level d
descending from San in FGP correspond to the BGP nodes descending from an.
At level d, each node cluster contains d+ 2 nodes.

Corollary 3 (Expected Full Grammar BFS Search Time). The expected
BFS search time t̃DFS

FG (p) in a full grammar problem of depth D with goal proba-
bilities p = [p0, . . . , pD] is

tBFS
FG (p) := tBFS

CB (p, LFG).

Corollary 4 (Expected Full Grammar DFS Search Time). The expected
DFS search time t̃DFS

FG (D, p) in a full grammar problem of depth D with goal
probabilities p = [p0, . . . , pD] is bounded between tDFS

FGL(D,p) := tDFS
CBL(D,p, LFG)

and tDFS
FGU(D,p) := tDFS

CBU(D,p, LFG), and is approximately

t̃DFS
FG (D,p) := t̃DFS

CB (D,p, LFG).

Proof (Proof of Corollary 3 and 4). Direct application of Lemma 5, and Proposi-
tion 3 and 2 respectively.

5 Experimental verification

To verify the analytical results, we have implemented the binary grammar in
Python 3 using the graph-tool package (Peixoto, 2015). The data reported in
Table 1 is based on an average over 1000 independently generated search problems
with depth D = 14. The first number in each box is the empirical average, the
second number is the analytical estimate, and the third number is the percentage
error of the analytical estimate.

For certain parameter settings, there is only a small chance (< 10−3) that
there are no goals. In such circumstances, all 1000 generated search graphs
typically inhabit a goal, and so the empirical search times will be comparatively
small. However, since a binary grammar of depth 14 has about 215 ≈ 3 ·105 nodes
(and a search algorithm must search through all of them in case there is no goal),
the rarely occurring event of no goal may still influence the expected search time
substantially. To avoid this sampling problem, we have ubiquitously discarded
all instances where no goal is present, and compared the resulting averages to
the analytical expectations conditioned on at least one goal being present.

The binary grammar model of Section 4.1 serves to verify the general estimates
of Proposition 2 and 3. The results are shown in Table 1. The estimates for BFS
are accurate (< 3% error). With few exceptions, the lower and the upper bounds
tDFS
BGL and tDFS

BGU of Corollary 2 for DFS differ by at most 50% on the respective
sides from the true (empirical) average. The arithmetic mean t̃DFS

BG often gives
surprisingly accurate predictions (< 4%) except when tDFS

BGL and tDFS
BGU leave wide

margins as to the expected search time (when g = 14, the margin is up to 84%
downwards and 125% upwards). Even then, the t̃DFS

BG error remains within 30%.

6 Discussion

Search and optimisation problems appear in different flavors throughout the
field of artificial intelligence; in planning, problem solving, games, and learning.

g\pg 0.001 0.01 0.1

5 46.74 40.53
46 .64 39 .86
0.2 % 1.7 %

8 375.7 332.5 265.7
378 .0 333 .9 265 .0
0.6 % 0.4 % 0.3 %

11 2751 2145 2058
2744 2147 2057
0.3 % 0.1 % 0.%

14 17 370 16 480 16 390
17 380 16 480 16 390

0.1 % 0.% 0.%

(a) BFS tBFS
BG

g\pg 0.001 0.01 0.1

5 30 910 27 840
31 370 30 190

1.5 % 8.4 %

8 28 000 25 160 15 490
27 410 24 420 15 200

2.1 % 2.9 % 1.9 %

11 17 280 5932 1815
16 790 5806 1788

2.9 % 2.1 % 1.5 %

14 1304 122.1 25.60
1522 164 .6 20 .06
17 % 35 % 22 %

(b) Average DFS t̃DFS
BG

g\pg 0.001 0.01 0.1

5 30 910 27 840
30 710 29 080

0.7 % 4.5 %

8 28 000 25 160 15 490
25 740 22 150 12 070

8.1 % 12 % 22 %

11 17 280 5932 1815
14 160 3822 918 .6

18 % 36 % 49 %

14 1304 122.1 25.60
808 .8 54 .12 3 .990

38 % 56 % 84 %

(c) Lower DFS tDFS
BGL

g\pg 0.001 0.01 0.1

5 30 910 27 840
32 020 31 290

3.6 % 12 %

8 28 000 25 160 15 490
29 080 26 690 18 340

3.8 % 6.1 % 18 %

11 17 280 5932 1815
19 410 7790 2657

12 % 31 % 46 %

14 1304 122.1 25.60
2236 275 .1 36 .12
72 % 125 % 41 %

(d) Upper DFS tDFS
BGU

Table 1: Comparison of analytical estimates with empirical averages for BFS and
DFS in binary grammars of depth D = 14. Goals are distributed on a single goal
level g with goal probability pg. The BFS estimates tBFS

BG are highly accurate,
and the averaged DFS estimates t̃DFS

BG are mostly accurate. Each box contains
empirical average/analytical expectation/error percentage.

Therefore even minor improvements to search performance can potentially lead
to gains in many aspects of intelligent systems. It is even possible to equate
intelligence with (Bayesian expectimax) optimisation performance (Legg and
Hutter, 2007).

Summary. In this paper and Part I (Everitt and Hutter, 2015b) we have derived
analytical results for expected runtime performance. Part I focused on BFS
and DFS tree search where explored nodes were not remembered. A vector
p = (p1, . . . , pD) described a priori goal probabilities for the different levels
of the tree. This concrete but general model of goal distribution allowed us to
calculate approximate closed-form expression of both BFS and DFS average
runtime. Earlier studies have only addressed worst-case runtimes: Knuth (1975)
and followers for DFS; Korf et al. (2001) and followers for IDA*, effectively a
generalised version of BFS.

This paper generalised the model of Part I to non-tree graphs. In addition
to the goal probability vector p, the graph search analysis required additional
structural information in the form of a descendant counter L. The graph search
estimates for DFS also took the form of less precise bounds. Even so, the
arithmetic mean of the lower and the upper bound often came close the empirical
average. The analysis of this paper does not supersede the results of Part I,
as the bounds become uninformative when the graph is a tree. Overall, the
analytical approximations derived in both papers were generally consistent with
experimental outcomes.

Conclusions and Outlook. The value of the results are at least twofold. They offer
a concrete means of deciding between BFS and DFS given some rough idea of the
location of the goal (and the graph structure). To make the results more generally
usable, automatic inference of model parameters would be necessary; primarily of
goal distribution p and graph structure L. (The depth D will often be set by the
searcher itself, and perhaps be iteratively increased.) There is good hope that the
descendant counter L can be estimated online from the local sample obtained
during search, similar to (Knuth, 1975). The goal distribution is likely to prove
more challenging, but resembles the automatic creation of heuristic functions,
so techniques such as relaxed problems could well prove useful (Pearl, 1984).
Estimates of goal distribution could possibly also be inferred from a heuristic
function.

The results also offer theoretical insight into BFS and DFS performance. As
BFS and DFS are in a sense the most fundamental search operations, we have
high hopes that our results and techniques will prove useful as building blocks
for analysis of more advanced search algorithms. For example, A* and IDA* may
be viewed as a generalisations of BFS, and Beam Search and Greedy Best-First
as generalisations of DFS.

Acknowledgements

Thanks to David Johnston for proof reading final drafts of both papers.

Bibliography

Edelkamp, S. and Schrödl, S. (2012). Heuristic Search. Morgan Kaufmann
Publishers Inc.

Everitt, T. and Hutter, M. (2015a). A Topological Approach to Meta-heuristics:
Analytical Results on the BFS vs. DFS Algorithm Selection Problem. Technical
report, Australian National University, arXiv:1509.02709[cs.AI].

Everitt, T. and Hutter, M. (2015b). Analytical Results on the BFS vs. DFS
Algorithm Selection Problem. Part I: Tree Search. In 28th Australian Joint
Conference on Artificial Intelligence.

Hutter, F., Xu, L., Hoos, H. H., and Leyton-Brown, K. (2014). Algorithm runtime
prediction: Methods & evaluation. Artificial Intelligence, 206(1):79–111.

Knuth, D. E. (1975). Estimating the efficiency of backtrack programs. Mathe-
matics of Computation, 29(129):122–122.

Korf, R. E., Reid, M., and Edelkamp, S. (2001). Time complexity of iterative-
deepening-A*. Artificial Intelligence, 129(1-2):199–218.

Kotthoff, L. (2014). Algorithm Selection for Combinatorial Search Problems: A
Survey. AI Magazine, pages 1–17.

Legg, S. and Hutter, M. (2007). Universal Intelligence. Minds & Machines,
17(4):391–444.

Pearl, J. (1984). Heuristics: Intelligent Search Strategies for Computer Problem
Solving. Addison-Wesley.

Peixoto, T. P. (2015). The graph-tool python library. figshare.
Rice, J. R. (1975). The algorithm selection problem. Advances in Computers,

15:65–117.
Russell, S. J. and Norvig, P. (2010). Artificial intelligence: a modern approach.

Prentice Hall, third edition.

http://arxiv.org/abs/1509.02709
arXiv:1509.02709 [cs.AI]

	Analytical Results on the BFS vs. DFS Algorithm Selection Problem. Part II: Graph Search

