
Analytical Results on the BFS vs. DFS
Algorithm Selection Problem.

Part I: Tree Search

Tom Everitt and Marcus Hutter

Australian National University, Canberra, Australia

Abstract. BFS and DFS are the two most fundamental search algo-
rithms. We derive approximations of their expected runtimes in complete
trees, as a function of tree depth and probabilistic goal distribution. We
also demonstrate that the analytical approximations are close to the
empirical averages for most parameter settings, and that the results can
be used to predict the best algorithm given the relevant problem features.

1 Introduction

A wide range of problems in artificial intelligence can be naturally formulated
as search problems (Russell and Norvig, 2010; Edelkamp and Schrödl, 2012).
Examples include planning, scheduling, and combinatorial optimisation (TSP,
graph colouring, etc.), as well as various toy problems such as Sudoku and the
Towers of Hanoi. Search problems can be solved by exploring the space of possible
solutions in a more or less systematic or clever order. Not all problems are created
equal, however, and substantial gains can be made by choosing the right method
for the right problem. Predicting the best algorithm is sometimes known as the
algorithm selection problem (Rice, 1975).

A number of studies have approached the algorithm selection problem with
machine learning techniques (Kotthoff, 2014; Hutter et al., 2014). While demon-
strably a feasible path, machine learning tend to be used as a black box, offering
little insight into why a certain method works better on a given problem. On the
other hand, most existing analytical results focus on worst-case big-O analysis,
which is often less useful than average-case analysis when selecting algorithm.
An important worst-case result is Knuth’s (1975) simple but useful technique for
estimating the depth-first search tree size. Kilby et al. (2006) used it for algorithm
selection in the SAT problem. See also the extensions by Purdom (1978), Chen
(1992), and Lelis et al. (2013). Analytical IDA* runtime predictions based on
problem features were obtained by Korf et al. (2001) and Zahavi et al. (2010). In
this study we focus on theoretical analysis of average runtime of BFS and DFS.
While the IDA* results can be interpreted to give rough estimates for average
BFS search time, no similar results are available for DFS.

To facilitate the analysis, we use a probabilistic model of goal distribution
and graph structure. Currently no method to automatically estimate the model



parameters is available. However, the analysis still offers important theoretical
insights into BFS and DFS search. The parameters of the model can also be inter-
preted as a Bayesian prior belief about goal distribution. A precise understanding
of BFS and DFS performance is likely to have both practical and theoretical
value: Practical, as BFS and DFS are both widely employed; theoretical, as BFS
and DFS are two most fundamental ways to search, so their properties may be
useful in analytical approaches to more advanced search algorithms as well.

Our main contributions are estimates of average BFS and DFS runtime as a
function of tree depth and goal distribution (goal quality ignored). This paper
focuses on the performance of tree search versions of BFS and DFS that do not
remember visited nodes. Graph search algorithms are generally superior when
there are many ways to get to the same node. In such cases, tree search algorithms
may end up exploring the same nodes multiple times. On the other hand, keeping
track of visited nodes comes with a high prize in memory consumption, so
graph search algorithms are not always a viable choice. BFS tree search may be
implemented in a memory-efficient way as iterative-deepening DFS (ID-DFS).
Our results are derived for standard BFS, but are only marginally affected by
substituting BFS with ID-DFS. The technical report (Everitt and Hutter, 2015a)
gives further details and contains all omitted formal proofs. Part II of this paper
(Everitt and Hutter, 2015b) provides a similar analysis of the graph search case
where visited nodes are marked. Our main analytical results are developed in
Section 3 and 4, and verified experimentally in Section 5. Part II of this paper
offers a longer discussion of conclusions and outlooks.

2 Preliminaries

Breadth-first search (BFS) and depth-first search (DFS) are two standard methods
for uninformed graph search. Both BFS and DFS assume oracle access to a
neighbourhood function and a goal check function defined on a state space. BFS
explores increasingly wider neighbourhoods around the start node. DFS follows
one path as long as possible, and backtracks when stuck. The tree search variants
of BFS and DFS do not remember which nodes they have visited. This has no
impact when searching in trees, where each node can only be reached through
one path. One way to understand tree search behaviour in general graphs is to
say that they still effectively explore a tree; branches in this tree correspond to
paths in the original graph, and copies of the same node v will appear in several
places of the tree whenever v can be reached through several paths. DFS tree
search may search forever if there are cycles in the graph. We always assume
that path lengths are bounded by a constant D. Figure 1 illustrates the BFS and
DFS search strategies, and how they (initially) focus on different parts of the
search space. Please refer to (Russell and Norvig, 2010) for details.

The runtime or search time of a search method (BFS or DFS) is the number
of nodes explored until a first goal is found (5 and 6 respectively in Figure 1). This
simplifying assumption relies on node expansion being the dominant operation,
consuming similar time throughout the tree. If no goal exists, the search method



1

2

4

8 9

5

10 11

3

6

12 13

7

14 15

1

2

3

4 5

6

7 8

9

10

11 12

13

14 15

Fig. 1: The difference between BFS (left) and DFS (right) in a complete binary
tree where a goal is placed in the second position on level 2 (the third row). The
numbers indicate traversal order. Circled nodes are explored before the goal is
found. Note how BFS and DFS explore different parts of the tree. In bigger trees,
this may lead to substantial differences in search performance.

will explore all nodes before halting. In this case, we define the runtime as the
number of nodes in the search problem plus 1 (i.e., 2D+1 in the case of a binary
tree of depth D). Let Γ be the event that a goal exists, Γk the event that a goal

exists on level k, and Γ̄ and Γ̄k their complements. Let Fk = Γk ∩ (
⋂k−1
i=0 Γ̄i) be

the event that level k has the first goal.
A random variable X is geometrically distributed Geo(p) if P (X = k) =

(1 − p)k−1p for k ∈ {1, 2, . . . }. The interpretation of X is the number of trials
until the first success when each trial succeeds with probability p. Its cumulative
distribution function (CDF) is P (X ≤ k) = 1 − (1 − p)k, and its average or
expected value E[X] = 1/p. A random variable Y is truncated geometrically
distributed X ∼ TruncGeo(p,m) if Y = (X | X ≤ m) for X ∼ Geo(p), which
gives

P (Y = k) =

{
(1−p)kp

1−(1−p)m for k ∈ {1, . . . ,m}
0 otherwise.

tc(p,m) := E[Y ] = E[X | X ≤ m] =
1− (1− p)m(pm+ 1)

p(1− (1− p)m)
.

When p� 1
m , Y is approximately Geo(p), and tc(p,m) ≈ 1

p . When p� 1
m , Y

becomes approximately uniform on {1, . . . ,m} and tc(p,m) ≈ m
2 .

A random variable Z is exponentially distributed Exp(λ) if P (Z ≤ z) =
1 − e−λz for z ≥ 0. The expected value of Z is 1

λ , and the probability density
function of Z is λe−λz. An exponential distribution with parameter λ = − ln(1−p)
might be viewed as the continuous counterpart of a Geo(p) distribution. We will
use this approximation in Section 4.

Lemma 1 (Exponential approximation). Let Z ∼ Exp(− ln(1 − p)) and
X ∼ Geo(p). Then the CDFs for X and Z agree for integers k, P (Z ≤ k) =
P (X ≤ k). The expectations of Z and X are also similar in the sense that
0 ≤ E[X]− E[Z] ≤ 1.

We will occasionally make use of the convention 0 · undefined = 0, and often
expand expectations by conditioning on disjoint events:



Lemma 2. Let X be a random variable and let the sample space Ω =
⋃̇
i∈ICi be

partitioned by mutually disjoint events Ci. Then E[X] =
∑
i∈I P (Ci)E[X | Ci].

3 Complete Binary Tree with a Single Goal Level

Consider a binary tree of depth D, where solutions are distributed on a single
goal level g ∈ {0, . . . , D}. At the goal level, any node is a goal with iid probability
pg ∈ [0, 1]. We will refer to this kind of problems as (single goal level) complete
binary trees with depth D, goal level g and goal probability pg (Section 4 generalises
the setup to multiple goal levels).

As a concrete example, consider the search problem of solving a Rubik’s cube.
There is an upper bound D = 20 to how many moves it can take to reach the
goal, and we may suspect that most goals are located around level 17 (±2 levels)
(Rokicki and Kociemba, 2013). If we consider search algorithms that do not
remember where they have been, the search space becomes a complete tree with
fixed branching factor 36. What would be the expected BFS and DFS search
time for this problem? Which algorithm would be faster?

The probability that a goal exists is P (Γ ) = P (Γg) = 1 − (1 − pg)2
g

. If a
goal exists, let Y be the position of the first goal at level g. Conditioned on a
goal existing, Y is a truncated geometric variable Y ∼ TruncGeo(pg, 2

g). When
pg � 2−g the goal position Y is approximately Geo(pg), which makes most
expressions slightly more elegant. This is often a realistic assumption, since if
p 6� 2−g, then often no goal would exist.

Proposition 1 (BFS runtime Single Goal Level). Let the problem be a
complete binary tree with depth D, goal level g and goal probability pg. When a goal
exists and has position Y on the goal level, the BFS search time is tBFS

SGL(g, pg, Y ) =
2g − 1 + Y , with expectation, tBFS

SGL(g, pg | Γg) = 2g − 1 + tc(pg, 2
g) ≈ 2g − 1 + 1

pg
.

In general, when a goal does not necessarily exist, the expected BFS search time
is tBFS

SGL(g, pg) = P (Γ ) · (2g − 1 + tc(pg, 2
g)) + P (Γ̄ ) · 2D+1 ≈ 2g − 1 + 1

pg
. The

approximations are close when pg � 2−g.

Proposition 2. Consider a complete binary tree with depth D, goal level g and
goal probability pg. When a goal exists and has position Y on the goal level, the
DFS search time is approximately t̃DFS

SGL(D, g, pg, Y ) := (Y − 1)2D−g+1 + 2, with
expectation t̃DFS

SGL(D, g, pg | Γg) := (1/pg − 1) 2D−g+1 + 2. When pg � 2−g, the
expected DFS search time when a goal does not necessarily exist is approximately

t̃DFS
SGL(D, g, pg) := P (Γ )((tc(pg, 2

g)−1)2D−g+1+2)+P (Γ̄ )2D+1≈
(

1

pg
−1

)
2D−g+1.

The proofs only use basic counting arguments and probability theory. A
less precise version of Proposition 1 can be obtained from (Korf et al., 2001,
Thm. 1). Full proofs and further details are provided in (Everitt and Hutter,
2015a). Figure 2 shows the runtime estimates as a function of goal level. The
runtime estimates can be used to predict whether BFS or DFS will be faster,
given the parameters D, g, and pg, as stated in the next Proposition.



Proposition 3. Let γpg = log2 (tc(pg, 2
g)− 1) /2 ≈ log2

(
1−pg
pg

)
/2. Given the

approximation of DFS runtime of Proposition 2, BFS wins in expectation in
a complete binary tree with depth D, goal level g and goal probability pg when
g < D

2 + γpg and DFS wins in expectation when g > D
2 + γpg + 1

2 .

The term γpg is in the range [−1, 1] when pg ∈ [0.2, 0.75], g ≥ 2, in which
case Proposition 3 roughly says that BFS wins (in expectation) when the goal
level g comes before the middle of the tree. BFS benefits from a smaller pg,
with the boundary level being shifted γpg ≈ k/2 levels from the middle when
pg ≈ 2−k � 2−g. Figure 2 illustrates the prediction as a function of goal depth
and tree depth for a fixed probability pg = 0.07. The technical report (Everitt
and Hutter, 2015a) gives the full proof, which follows from the runtime estimates
Proposition 1 and 2.

5 10 15

102

103

104

g

Expected Search Time

DFS

BFS

4 6 8 10 12 14 16

5

10

15

D

g

Decision Boundary

DFS wins

BFS wins

BFS=DFS

tBFS
SGL = t̃DFS

SGL

Fig. 2: Two plots of how expected BFS and DFS search time varies in a complete
binary tree with a single goal level g and goal probability pg = 0.07. The left
depicts search time as a function of goal level in a tree of depth 15. BFS has
the advantage when the goal is in the higher regions of the graph, although at
first the probability that no goal exists heavily influences both BFS and DFS
search time. DFS search time improves as the goal moves downwards since the
goal probability is held constant. The right graph shows the decision boundary
of Proposition 3, together with 100 empirical outcomes of BFS and DFS search
time according to the varied parameters g ∈ [3, D] ∩ N and D ∈ [4, 15] ∩ N. The
decision boundary gets 79% of the winners correct.

It is straightforward to generalise the calculations to arbitrary branching
factor b by substituting the 2 in the base of tBFS

SGL and t̃DFS
SGL for b. In Proposition 3,

the change only affects the base of the logarithm in γpg . See (Everitt and Hutter,
2015a) for further details.

4 Complete Binary Tree with Multiple Goal Levels

We now generalise the model developed in the previous section to problems that
can have goals on any number of levels. For each level k ∈ {0, . . . , D}, let pk be



the associated goal probability. Not every pk should be equal to 0. Nodes on level
k have iid probability pk of being a goal. We will refer to this kind of problems
as (multi goal level) complete binary trees with depth D and goal probabilities p.

DFS Analysis To find an approximation of goal DFS performance in trees
with multiple goal levels, we approximate the geometric distribution used in
Proposition 2 with an exponential distribution (its continuous approximation by
Lemma 1).

Proposition 4 (Expected Multi Goal Level DFS Performance). Con-
sider a complete binary tree of depth D with goal probabilities p = [p0, . . . , pD] ∈
[0, 1)D+1. If for at least one j, pj � 2−j, and for all k, pk � 1, then the
expected number of nodes DFS will search is approximately t̃DFS

MGL(D,p) :=

1/
∑D
k=0 ln(1− pk)−12−(D−k+1)

The proof (available in Everitt and Hutter 2015a) constructs for each level k
an exponential random variable Xk that approximates the search time before
a goal is found on level k (disregarding goals on other levels). The minimum of
all Xk then becomes an approximation of the search time to find a goal on any
level. The approximations use exponential variables for easy minimisation.

In the special case of a single goal level, the approximation of Proposition 4
is similar to the one given by Proposition 2. When p only has a single element
pj 6= 0, the expression t̃DFS

MGL simplifies to t̃DFS
MGL(D,p) = −2D−j+1/ ln(1 − pj).

For pj not close to 1, the factor −1/ ln(1 − pj) is approximately the same as
the corresponding factor 1/pj − 1 in Proposition 2 (the Laurent expansion is
−1/ ln(1− pj) = 1/pj − 1/2 +O(pj)).

BFS Analysis The corresponding expected search time tBFS
MGL(D,p) for BFS

requires less insight and can be calculated exactly by conditioning on which
level the first goal is. The resulting formula is less elegant, however. The same
technique cannot be used for DFS, since DFS does not exhaust levels one by one.

The probability that level k has the first goal is P (Fk) = P (Γk)
∏k−1
j=0 P (Γ̄j),

where P (Γi) = (1 − (1 − pi)
2i). The expected BFS search time gets a more

uniform expression by the introduction of an extra hypothetical level D+ 1 where
all nodes are goals. That is, level D + 1 has goal probability pD+1 = 1 and

P (FD+1) = P (Γ̄ ) = 1−
∑D
k=0 P (Fk).

Proposition 5 (Expected Multi Goal Level BFS Performance). The ex-
pected number of nodes tBFS

MGL(p) that BFS needs to search to find a goal in a
complete binary tree of depth D with goal probabilities p = [p0, . . . , pD], p 6= 0,

is tBFS
MGL(p) =

∑D+1
k=0 P (Fk)tBFS

SGL(k, pk | Γk) ≈
∑D+1
k=0 P (Fk)

(
2k + 1

pk

)
See (Everitt and Hutter, 2015a) for a proof. For pk = 0, the expression

tBFS
CB (k, pk) and 1/pk will be undefined, but this only occurs when P (Fk) is also

0. The approximation tends to be within a factor 2 of the correct expression,
even when pk < 2−k for some or all pk ∈ p. The reason is that the corresponding



P (Fk)’s are small when the geometric approximation is inaccurate. Both Proposi-
tion 4 and 5 naturally generalise to arbitrary branching factor b. Although their
combination does not yield a similarly elegant expression as Proposition 3, they
can still be naively combined to predict the BFS vs. DFS winner (Figure 3).

5 Experimental verification

To verify the analytical results, we have implemented the models in Python 3
using the graph-tool package (Peixoto, 2015). The data reported in Table 1
and 2 is based on an average over 1000 independently generated search problems
with depth D = 14. The first number in each box is the empirical average, the
second number is the analytical estimate, and the third number is the percentage
error of the analytical estimate.

For certain parameter settings, there is only a small chance (< 10−3) that
there are no goals. In such circumstances, all 1000 generated search graphs
typically inhabit a goal, and so the empirical search times will be comparatively
small. However, since a tree of depth 14 has about 215 ≈ 3 · 105 nodes (and a
search algorithm must search through all of them in case there is no goal), the
rarely occurring event of no goal can still influence the expected search time
substantially. To avoid this sampling problem, we have ubiquitously discarded
all instances where no goal is present, and compared the resulting averages to
the analytical expectations conditioned on at least one goal being present.

To develop a concrete instance of the multi goal level model we consider the spe-
cial case of Gaussian goal probability vectors, with two parameters µ and σ2. For a

given depth D, the goal probabilities are given by pi = min
{

1

20
√
σ2
e(i−µ)

2/σ2

, 1
2

}
.

The parameter µ ∈ [0, D] ∩ N is the goal peak, and the parameter σ2 ∈ R+ is
the goal spread. The factor 1/20 is arbitrary, and chosen to give an interesting
dynamics between searching depth-first and breadth-first. No pi should be greater
than 1/2, in order to (roughly) satisfy the assumption of Proposition 5. We call
this model the Gaussian binary tree.

The accuracy of the predictions of Proposition 1 and 2 are shown in Table 1,
and the accuracy of Proposition 4 and 5 in Table 2. The relative error is always
small for BFS (< 10%). For DFS the error is generally within 20%, except when
the search time is small (< 35 probes), in which case the absolute error is always
small. The decision boundary of Proposition 3 is shown in Figure 2, and the
decision boundary of Proposition 4 vs. 5 is shown in Figure 3. These boundary
plots show that the analysis generally predict the correct BFS vs. DFS winner
(79% and 74% correct in the investigated models).

6 Conclusions and Outlook

Part II of this paper (Everitt and Hutter, 2015b) generalises the setup in this
paper, analytically investigating search performance in general graphs. Part II
also provides a more general discussion and outlook on future directions.



10−2 10−1 100 101 102

6

8

10

12

14

σ2

µ
DFS wins

BFS wins

tBFS
MGL=t̃

DFS
MGL

Fig. 3: The decision boundary for the
Gaussian tree given by Proposition 4
and 5, together with empirical out-
comes of BFS vs. DFS winner. The
scattered points are based on 100
independently generated problems
with depth D = 14 and uniformly
sampled parameters µ ∈ [5, 14] ∩ N
and log(σ2) ∈ [−2, 2]. The most de-
ciding feature is the goal peak µ, but
DFS also benefits from a smaller σ2.
The decision boundary gets 74% of
the winners correct.

g\pg 0.001 0.01 0.1

5 46.33 40.01
46 .64 39 .86
0.7% 0.4%

8 369.5 332.8 264.6
378 .0 333 .9 265 .0
2.3% 0.3% 0.2%

11 2748 2143 2057
2744 2147 2057
0.1% 0.2% 0.%

14 17 360 16 480 16 390
17 380 16 480 16 390
0.1% 0.% 0.%

(a) BFS single goal level

g\pg 0.001 0.01 0.1

5 14 680 8206
15 000 8053
2.2% 1.9%

8 14 530 9833 1105
15 620 9967 1154
7.5% 1.4% 4.5%

11 11 200 1535 152.3
11 140 1586 146 .0
0.5% 3.4% 4.1%

14 1971 208.8 30.57
2000 200 .0 20 .00
1.4% 4.2% 35%

(b) DFS single goal level

Table 1: BFS and DFS
performance in the sin-
gle goal level model
with depth D = 14,
where g is the goal
level and pg the goal
probability. Each box
contains empirical aver-
age/analytical expecta-
tion/error percentage.

µ\σ 0.1 1 10 100

5 37.24 43.75 90.87 225.1
37 .04 41 .55 83 .72 210 .8
0.5% 5.0% 7.9% 6.4%

8 261.2 171.9 119.6 212.0
261 .3 173 .4 119 .8 211 .0
0.% 0.9% 0.2% 0.5%

11 2049 953.0 303.9 249.5
2050 953 .0 305 .0 247 .5
0.% 0.% 0.3% 0.8%

14 16 210 5159 968.5 332.9
16 150 5136 960 .6 329 .7
0.4% 0.4% 0.8% 0.9%

(a) BFS multi goal level

µ\σ 0.1 1 10 100

5 5374 8572 3405 385.8
5949 10 070 3477 379 .1
11% 18% 2.1% 1.7%

8 677.3 1234 454.6 252.6
743 .6 1259 473 .6 260 .0
9.8% 2.1% 4.2% 2.9%

11 97.38 168.1 117.4 210.0
92 .95 157 .4 106 .7 211 .7
4.5% 6.4% 9.1% 0.8%

14 24.00 43.38 81.75 213.6
11 .62 32 .89 74 .46 205 .0
52% 24% 8.9% 4.0%

(b) DFS multi goal level

Table 2: BFS and
DFS performance
in Gaussian binary
trees with depth
D = 14. Each box
contains empirical
average/analytical
expectation/error
percentage.



Bibliography

Chen, P. C. (1992). Heuristic Sampling: A Method for Predicting the Performance
of Tree Searching Programs. SIAM Journal on Computing, 21(2):295–315.

Edelkamp, S. and Schrödl, S. (2012). Heuristic Search. Morgan Kaufmann
Publishers Inc.

Everitt, T. and Hutter, M. (2015a). A Topological Approach to Meta-heuristics:
Analytical Results on the BFS vs. DFS Algorithm Selection Problem. Technical
report, Australian National University, arXiv:1509.02709[cs.AI].

Everitt, T. and Hutter, M. (2015b). Analytical Results on the BFS vs. DFS
Algorithm Selection Problem. Part II: Graph Search. In 28th Australian Joint
Conference on Artificial Intelligence.

Hutter, F., Xu, L., Hoos, H. H., and Leyton-Brown, K. (2014). Algorithm runtime
prediction: Methods & evaluation. Artificial Intelligence, 206(1):79–111.

Kilby, P., Slaney, J., Thiébaux, S., and Walsh, T. (2006). Estimating Search
Tree Size. In Proc. of the 21st National Conf. of Artificial Intelligence, AAAI,
Menlo Park.

Knuth, D. E. (1975). Estimating the efficiency of backtrack programs. Mathe-
matics of Computation, 29(129):122–122.

Korf, R. E., Reid, M., and Edelkamp, S. (2001). Time complexity of iterative-
deepening-A*. Artificial Intelligence, 129(1-2):199–218.

Kotthoff, L. (2014). Algorithm Selection for Combinatorial Search Problems: A
Survey. AI Magazine, pages 1–17.

Lelis, L. H. S., Otten, L., and Dechter, R. (2013). Predicting the size of Depth-first
Branch and Bound search trees. IJCAI International Joint Conference on
Artificial Intelligence, pages 594–600.

Peixoto, T. P. (2015). The graph-tool python library. figshare.
Purdom, P. W. (1978). Tree Size by Partial Backtracking. SIAM Journal on

Computing, 7(4):481–491.
Rice, J. R. (1975). The algorithm selection problem. Advances in Computers,

15:65–117.
Rokicki, T. and Kociemba, H. (2013). The diameter of the rubiks cube group is

twenty. SIAM Journal on Discrete Mathematics, 27(2):1082–1105.
Russell, S. J. and Norvig, P. (2010). Artificial intelligence: a modern approach.

Prentice Hall, third edition.
Zahavi, U., Felner, A., Burch, N., and Holte, R. C. (2010). Predicting the

performance of IDA* using conditional distributions. Journal of Artificial
Intelligence Research, 37:41–83.

http://arxiv.org/abs/1509.02709
arXiv:1509.02709 [cs.AI]

	Analytical Results on the BFS vs. DFS Algorithm Selection Problem. Part I: Tree Search

