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Abstract. We define an optimal Bayesian knowledge-seeking agent, KL-
KSA, designed for countable hypothesis classes of stochastic environ-
ments and whose goal is to gather as much information about the un-
known world as possible. Although this agent works for arbitrary count-
able classes and priors, we focus on the especially interesting case where
all stochastic computable environments are considered and the prior is
based on Solomonoff’s universal prior. Among other properties, we show
that KL-KSA learns the true environment in the sense that it learns
to predict the consequences of actions it does not take. We show that
it does not consider noise to be information and avoids taking actions
leading to inescapable traps. We also present a variety of toy experiments
demonstrating that KL-KSA behaves according to expectation.

Keywords: Universal artificial intelligence; exploration; reinforcement learning;
algorithmic information theory; Solomonoff induction.

1 Introduction

The goal of scientists is to acquire knowledge about the universe in which we
reside. To this end, they must explore the world while designing experiments to
test, discard and refine hypotheses. At the core of science lies the problem of
induction that is arguably solved by Solomonoff induction, which uses algorith-
mic information theory to obtain a universal3 semi-computable prior and Bayes
theorem to perform induction. This approach learns to predict (fast) in any
stochastically computable environment and has numerous attractive properties
both theoretical [Hut05] and philosophical [RH11]. Its (in)famous incomputabil-
ity is an unavoidable consequence of its generality.

The main difficulty with applying Solomonoff induction to construct an op-
timal scientist – which we call a knowledge-seeking agent – is that, although it
defines how to predict, it gives no guidance on how to choose actions so as to
maximise the acquisition of knowledge to make better predictions. The exten-
sion of Solomonoff induction to the reinforcement learning framework [SB98] has

3 Universal in the sense that it dominates all lower-semi-computable priors [LV08].
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been done by Hutter [Hut05]. An optimal reinforcement learner is different from
an optimal scientist because it is rewarded extrinsically by the environment,
rather than intrinsically by information gain.

Defining strategies to explore the environment optimally is not a new idea
with a number of researchers having previously tackled this problem, especially
Schmidhuber; see [Sch06] and references therein. Storck et al. [SHS95] use various
information gain criteria in a frequentist setting to explore non-deterministic
Markov environments, bending the reinforcement learning framework to turn
information gain into rewards. The beauty of this approach is that exploration
is not a means to the ends of getting more rewards, but is the goal per se [BO13,
Sch06]. In this context, exploration is exploitation, thus making the old [SB98]
and persisting [Ors13, LH11a] exploration/exploitation problem collapse into a
unified objective.

Generalising the previous approach and placing it in a Bayesian setting, Sun
et al. [SGS11] construct a policy that explores by maximising the discounted
expected information gain in the class of finite-state Markov decision processes.
The choice of a continuous parametric class introduces some challenging prob-
lems because the expected information gain when observing statistics depending
on a continuous parameter is typically infinite. The authors side-step these prob-
lems by introducing a geometric discount factor, but this is unattractive for a
universal algorithm, especially when environments are non-Markovian and may
have unbounded diameter. In this work we prove most results for both the dis-
counted and undiscounted settings, resorting to discounting only when necessary.

In 2011, Orseau presented two universal knowledge-seeking agents, Square-
KSA and Shannon-KSA, designed for the class of all deterministic computable
environments [Ors11]. Both agents maximise a version of the Bayes-expected
entropy of their future observations, which is equivalent to maximising expected
information gain with respect to the prior. Unfortunately, neither Square-KSA
nor Shannon-KSA perform well when environments are permitted to be stochas-
tic with both agents preferring to observe coin flips rather than explore a more
informative part of their environment. The reason for this is that these agents
mistake stochastic outcomes for complex information. In the present paper, we
define a new universal knowledge-seeking agent designed for arbitrary count-
able classes of stochastic environments. An especially interesting case is when
the class of environments is chosen to be the set of all stochastic computable
environments. The new agent has a natural definition, is resistant to noise and
behaves as expected in a variety of toy examples. The main idea is to choose a
policy maximising the (un)discounted Bayes-expected information gain.

First we give some basic notation (Section 2). We then present the definitions
of the knowledge-seeking agent and prove that it learns to predict all possible fu-
tures (Section 3). The special case where the hypothesis class is chosen to be the
class of all stochastic computable in environments is then considered (Section 4).
Finally, we demonstrate the agent in action on a number of toy examples to fur-
ther motivate the definitions and show that the new agent performs as expected
(Section 5) and conclude (Section 6).
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2 Notation

Sequences. Let A be the finite set of all possible actions, and O the finite set
of all possible observations. Let H := A × O be the finite set of interaction
tuples containing action/observation pairs. The sets Ht, H∗ and H∞ are defined
to contain all histories of length t, finite length and infinite length respectively.
The empty history of length 0 is denoted by ε. We write an:m ∈ Am−n+1 to
denote the (ordered) sequence of actions anan+1 . . . am and a<n := a1:n−1 and
similarly for observations o and histories h, and length `(an:m) := m− n+ 1.

Environments and policies. A policy is a stochastic function π : H∗  A
while an environment is a stochastic function µ : H∗ ×A O. We write π(a|h)
for the π-probability that policy π takes action a ∈ A in history h ∈ H∗ and
similarly ν(o|ha) is the ν-probability that ν outputs observation o ∈ O having
observed history h ∈ H∗ and action a ∈ A. A policy π and environment ν inter-
act sequentially to induce a measure Pπν on the space of infinite histories with
Pπν (ε) := 1 and Pπν (hao) defined inductively by Pπν (hao) := ν(o|ha)π(a|h)Pπν (h)
where o ∈ O and a ∈ A. From now on, unless otherwise mentioned, all policies
are assumed to be deterministic with Π being the set of all such policies. For
finite history h we define Π(h) ⊆ Π to be the set of policies consistent with h,
so π ∈ Π(h) if π(at|h<t) = 1 for all t ≤ `(h), where at is the tth action in history
h.

Bayesian mixture. Let M be a countable set of environments and w :M→
(0, 1] satisfy

∑
ν∈M wν ≤ 1. Given a policy π, the Bayesian mixture measure

is defined by Pπξ (h) :=
∑
ν∈M wνP

π
ν (h), for all histories h ∈ H∗. The posterior

of an environment ν having observed h is wν(h) := wνP
π
ν (h)/Pπξ (h) where π is

some policy consistent with h. We also take 0 log 0 := 0. All logarithms are in
base 2. The entropy of prior w is defined by Ent(w) :=

∑
ν∈M wν log 1

wν
. Note

that Pπξ may only be a semimeasure in the case when
∑
ν∈M wν < 1. This detail

is inconsequential throughout and may be ignored by the reader unfamiliar with
semimeasures.

Discounting. A discount vector is a function γ : N → [0, 1]. It is summable
if
∑∞
t=1 γt < ∞ and asymptotically non-trivial if for all t ∈ N there exists a

τ > t such that γτ > 0. For summable γ we define Γt :=
∑∞
k=t γk and otherwise

Γt := 1. The undiscounted case fits in the framework by letting ∞ be the
discount vector with ∞k = 1 for all k. The finite horizon discount vector is n
with nk = Jk ≤ nK.

3 Knowledge-Seeking Agent

Distances between measures. The goal of the knowledge-seeking agent is to
gain as much information about its environment as possible. An important quan-
tity in information theory is the Kullback-Leibler divergence or relative entropy,
which measures the expected difference in code lengths between two measures.
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Let ν be an environment and π a policy. The 1-step generalized distance between
measures Pπν and Pπξ having observed history h of length t− 1 is defined as

D
h,1

(
Pπν ‖Pπξ

)
:=

∑
h′∈H

d(Pπν (h′|h), Pπξ (h′|h)) =
∑
h′∈H

Pπν (h′|h) f

(
Pπξ (h′|h)

Pπν (h′|h)

)
.

D KL Absolute Square Hellinger

d(a, b) a log a
b |a− b| (a− b)2 (

√
a−
√
b)2

f(x) − log x |x− 1| no f (
√
x− 1)2

Classical choices are given in
the table on the right and are
discussed in [Hut05, Sec.3.2.5].
The most interesting distance
for us is the KL-divergence, but various sub-results hold for more general D.
A distance D is called an f -divergence if it can be expressed via a convex f
with f(1) = 0. All distances in the table are f -divergences with the exception
of Square. Also, all but Absolute are upper bounded by KL. Therefore, besides
KL itself, only Hellinger possesses both important properties simultaneously. A
natural generalisation of Dh,1 is the ∞-step discounted version. If h ∈ Ht−1,

D
h,γ

(
Pπν ‖Pπξ

)
:=

∞∑
k=t

γk
∑

h′∈Hk−t
Pπν (h′|h) D

hh′,1

(
Pπν ‖Pπξ

)
. (1)

If γ = n, it is known that (only) the KL divergence telescopes [Hut05, Sol78]:

KL
h,n

(
Pπν ‖Pπξ

)
≡

∑
h′∈Hn−`(h)

Pπν (h′|h) log
Pπν (h′|h)

Pπξ (h′|h)
. (2)

Information gain value. Let h be a history and h′ ∈ H one further interaction,
then the instantaneous information gain of observing h′ after having observed h
can be quantified in terms of how much the posterior wν(h) changes:

IG
h,1

(h′) :=
∑
ν∈M

d(wν(hh′), wν(h)) , IG
h<n,γ

(h1:∞) :=

∞∑
t=n

γt IG
h<t,1

(ht) . (3)

The right expression is the natural ∞-step generalisation where instantaneous
information gains are discounted by discount vector γ. Again, the default dis-
tance for information gain is KL. Ideally, the knowledge-seeking agent should
maximise some version of the µ-expected information gain where µ is the true
environment, but since the latter is unknown the natural choice is to maximise
the Bayes expected information gain. If d is an f -divergence, this can be written

Eπξ
[
IG
h,1

(h′)

]
(a)
=

∑
hh′∈Ht

Pπξ (hh′)
∑
ν∈M

wν(hh′) f

(
wν(h)

wν(hh′)

)
(4)

(b)
=

∑
hh′∈Ht

∑
ν∈M

wνP
π
ν (hh′) f

(
wνP

π
ν (h)

Pπξ (h)

Pπξ (hh′)

wνPπν (hh′)

)
(c)
=

∑
h∈Ht−1

∑
ν∈M

wνP
π
ν (h)

∑
h′∈H

Pπν (h′|h) f

(
Pπξ (h′|h)

Pπν (h′|h)

)
(d)
=
∑
ν∈M

wν
∑

h∈Ht−1

Pπν (h) D
h,1

(
Pπν ‖Pπξ

)
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where (a) is the definition of the information gain and expectation, (b) by sub-
stituting the definition of the posterior, (c) by expanding the probabilities via
the chain rule, and (d) by rearranging and substituting the definition of D. If we
sum both sides of (4) over

∑∞
t=1 γt and use definitions (1) and (3) we get

Eπξ
[
IG
ε,γ

(h1:∞)

]
=
∑
ν∈M

wν D
ε,γ

(
Pπν ‖Pπξ

)
.

Essentially the same derivation but with all quantities conditioned on h gives

Eπξ
[
IG
h,γ

(h1:∞)
∣∣∣h] =

∑
ν∈M

wν(h) D
h,γ

(
Pπν ‖Pπξ

)
.

This leads to a natural definition of the value of a policy π:

Definition 1. The value of policy π having observed history h with respect to
discount function γ is defined to be the ξ-expected discounted information gain.
We also define the optimal policy π∗ to be the policy maximising the value func-
tion and V ∗γ to be the value of the optimal policy.

V πγ (h) :=
∑
ν∈M

wν(h) D
h,γ

(
Pπν ‖Pπξ

)
V πγ := V πγ (ε)

π∗ := arg max
π

V πγ V ∗γ := sup
π
V πγ

(5)

Existence of values and policies. There are a variety of conditions required
for the existence of the optimal value and policy respectively.

Theorem 2. If γ is summable and D ≤ KL, then V ∗γ <∞ and π∗ exists.

Proof. Let h be an arbitrary history of length n, then the value function can
be written

V πγ (h)
(a)

≤
∑
ν∈M

wν(h) KL
h,γ

(
Pπν ‖Pπξ

) (b)
=

∞∑
t=n

γt
∑
ν∈M

wν(h)
∑
h′∈Ht

Pπν (h′|h) KL
hh′,1

(
Pπν ‖Pπξ

)
(c)
=

∞∑
t=n

γt
∑
h′∈Ht

Pπξ (h′|h)
∑
ν∈M

wν(hh′) KL
hh′,1

(
Pπν ‖Pπξ

)
(d)

≤
∞∑
t=n

γt
∑
h′∈Ht

Pπξ (h′|h) log |H|
(e)

≤ log |H|
∞∑
t=n

γt

where (a) by definition of the value function and D ≤ KL assumption, (b)
is the definition of the discounted KL divergence, (c) from wν(h)Pπν (h′|h) =
wνP

π
ν (hh′)/Pπξ (h) = wν(hh′)Pπξ (h′|h) by inserting the definition of wν(·), (d)

by Lemma 14 in the Appendix, and (e) since ξ is a measure. Therefore

lim
n→∞

sup
π∈Π

∑
h∈Hn

Pπξ (h)V πγ (h) ≤ lim
n→∞

log |H|
∞∑
t=n

γt = 0 ,

which is sufficient to guarantee the existence of the optimal policy [LH11b]. �
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Theorem 3. For all policies π and discount vectors γ and D ≤ KL, we obtain
V πγ ≤ Ent(w).

Proof. The result follows from dominance Pπξ (h) ≥ wνPπν (h) for all h and ν:

V πγ
(a)

≤ V π∞
(b)
= lim

n→∞
V πn

(c)

≤ lim
n→∞

∑
ν∈M

wν KL
ε,n

(
Pπν ‖Pπξ

)
(d)
= lim

n→∞

∑
ν∈M

wν
∑
h∈Hn

Pπν (h) log
Pπν (h)

Pπξ (h)

(e)

≤ lim
n→∞

∑
ν∈M

wν
∑
h∈Hn

Pπν (h) log
1

wν

(f)
= lim

n→∞

∑
ν∈M

wν log
1

wν

(g)
= Ent(w)

where (a) is by the positivity of the KL divergence and because γk ≤ 1 for all
k, (b) is by the definitions of ∞, n and the monotone convergence theorem, (c)
by the definition of the value and assumption D ≤ KL, (d) by the definition
of the value function and the telescoping property (2), (e) by the dominance
Pπξ (h) ≥ wνP

π
ν (h) for all h and ν ∈ M, and (f) and (g) by the definitions of

expectation and entropy respectively. �

We have seen that a summable discount vector ensures the existence of both
V ∗γ and π∗. This solution may not be entirely satisfying as it encourages the agent
to sacrifice long-term information for short-term (but maybe less) information.
If the entropy of the prior is finite, then the optimal value is guaranteed to be
finite, but the optimal policy may still not exist as demonstrated in Section 5.
In this case it is possible to construct a δ-optimal policy.

Definition 4. The δ-optimal policy is given by

π∗,δ ∈
{
π : V πγ ≥ V ∗γ − δ

}
. (6)

where the choice within the set on the right-hand-side is made arbitrarily.

Note that if at some history h it holds that V ∗γ (h) < δ, then the δ-optimal policy
may cease exploring. Table 1 summarises the consequences on the existence of
optimal values/policies based on the discount vector and entropy of the prior.
For D = KL we name KL-KSA the agent defined by the optimal policy π∗ and
KL-KSAδ the agent defined by policy π∗,δ.

Table 1. Parameter choices for D = KL.

Discount γ Entropy V ∗γ <∞ π∗ exists π∗,δexists Myopic Stops
Exploring∑∞

t=1 γt <∞
Ent(w) <∞ yes yes yes yes no

Ent(w) = ∞ yes yes yes yes no∑∞
t=1 γt = ∞

Ent(w) <∞ yes no? yes no yes?

Ent(w) = ∞ no no no no ?

Learning. Before presenting the new theorem showing that π∗ learns to predict
off-policy, we present an easier on-policy result that holds for all policies.
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Theorem 5 (On-policy prediction). Let µ ∈ M and π be a policy and γ a
discount vector (possibly non-summable), then

lim
n→∞

Γ−1n Eπµ KL
h1:n,γ

(
Pπµ ‖Pπξ

)
= 0 .

The proof requires a small lemma. Note the normalising factor Γ−1n is used to
prove a non-vacuous result for summable discount vectors.

Lemma 6. The KL divergence satisfies a chain rule:

KL
ε,∞

(
Pπν ‖Pπξ

)
= KL

ε,n

(
Pπν ‖Pπξ

)
+
∑
h∈Hn

Pπν (h) KL
h,∞

(
Pπν ‖Pπξ

)
.

The proof is well-known and follows from definitions of expectation and proper-
ties of the logarithm.

Proof of Theorem 5.

lim
n→∞

Γ−1n Eπµ KL
h1:n,γ

(
Pπµ ‖Pπξ

) (a)

≤ lim
n→∞

1

Γnwµ

∑
ν∈M

wνEπν KL
h1:n,γ

(
Pπν ‖Pπξ

)
(b)

≤ 1

wµ
lim
n→∞

∑
ν∈M

wνEπν KL
h1:n,∞

(
Pπν ‖Pπξ

)
(?)

(c)
=

1

wµ
lim
n→∞

∑
ν∈M

wν

(
KL
ε,∞

(
Pπν ‖Pπξ

)
−KL

ε,n

(
Pπν ‖Pπξ

)) (d)−→
n→∞

0

where (a) follows by the positivity of the KL divergence and by introducing the
sum, (b) since γk/Γn ≤ 1 for all k ≥ n, (c) by rearranging terms in Lemma 6,

and (d) from well known KLε,∞

(
Pπν ‖Pπξ

)
≤ log 1

wν
<∞. �

Theorem 5 shows that Pπξ (·|h<t) converges in expectation to Pπµ (·|h<t) where
the difference between the two measures is taken with respect to the expected
cumulative discounted KL-divergence. This implies that Pπξ (·|h<t) is in expec-
tation a good estimate for the unknown Pπµ (·|h<t).

The following result is perhaps the most important theoretical justification
for the definition of π∗. We show that if h1:∞ is generated by following π∗, then
Pπξ (·|h<n) converges in expectation to Pπµ (·|h<n) for all π. More informally, this
means that as a longer history is observed the agent learns to predict the counter-
factuals “what would happen if I follow another policy π instead”. For example,
if the observation also included a reward signal, then the agent would asymp-
totically be able to learn (but not follow) the policy maximising the expected
discounted reward. In fact, the policy maximising the Bayes-expected reward
would converge to optimal. This kind of off-policy prediction is not usually sat-
isfied by arbitrary policies where the agent can typically only learn what will
happen on-policy in the sense of Theorem 5, not what would happen if it chose
to follow another policy.

Theorem 7 (On-policy learning, off-policy prediction). Let µ ∈ M and
γ be a discount vector (possibly non-summable). If π∗ based on D ≤ KL exists,
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then

lim
n→∞

Γ−1n Eπ
∗

µ sup
π∈Π(h1:n)

D
h1:n,γ

(
Pπµ ‖Pπξ

)
= 0

where the expectation is taken over h1:n.

Proof. We use the properties of π∗ and the proof of Theorem 5:

∆n := Γ−1n Eπ
∗

µ sup
π∈Π(h1:n)

D
h1:n,γ

(
Pπν ‖Pπξ

)
(a)

≤ Γ−1n Eπ
∗

µ

1

wµ(h1:n)
sup

π∈Π(h1:n)

∑
ν∈M

wν(h1:n) D
h1:n,γ

(
Pπν ‖Pπξ

)
(b)
= Γ−1n Eπ

∗

µ

1

wµ(h1:n)

∑
ν∈M

wν(h1:n) D
h1:n,γ

(
Pπ
∗

ν ‖Pπ
∗

ξ

)
(c)

≤ 1

Γnwµ
Eπ
∗

ξ

∑
ν∈M

wν(h1:n) D
h1:n,γ

(
Pπ
∗

ν ‖Pπ
∗

ξ

)
(d)
=

1

Γnwµ

∑
ν∈M

wνEπ
∗

ν D
h1:n,γ

(
Pπ
∗

ν ‖Pπ
∗

ξ

)
(e)

≤ 1

Γnwµ

∑
ν∈M

wνEπ
∗

ν KL
h1:n,γ

(
Pπ
∗

ν ‖Pπ
∗

ξ

)
where (a) follows from the positivity of the KL divergence, (b) because π∗ is
chosen to maximise the quantity inside the supremum for n = 0 and due to
time consistency [LH11b] also for n > 0, (c) by the definition of wµ(h1:n) and
the definition of expectation, (d) by exchanging the sum and expectation and
then using the definition of wν(h1:n) and the definition of expectation, and (e)
by assumption D ≤ KL. Combining the above with (?) for π = π∗ leads to

0 ≤ lim
n→∞

∆n ≤ lim
n→∞

1

Γnwµ

∑
ν∈M

wνEπ
∗

ν KL
h1:n,γ

(
Pπ
∗

µ ‖Pπ
∗

ξ

)
(?)
= 0

as required. �

Deterministic case. Although KL-KSA is a new algorithm, it shares some sim-
ilarities with Shannon-KSA [Ors11]. In particular, ifM contains only determinis-
tic environments, then up to technical details KL-KSA reduces to Shannon-KSA
when the horizon mt in [Ors11] is set to infinity in that paper:

Proposition 8. WhenM contains only deterministic environments and D=KL,
then

V ∗∞ = sup
π∈Π

lim
n→∞

∑
h∈Hn

Pπξ (h) log
1

Pπξ (h)
. (7)

The proof, omitted due to lack of space, follows from definitions and the fact that
for fixed policy a deterministic environment concentrates on a single history.

Noise insensitivity. Let h be some finite history. A policy π is said to be
uninformative if the conditional measure Pπν1(·|h) = Pπν2(·|h) for all ν1, ν2 ∈
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M(h), which implies that KLh,∞
(
Pπν1‖P

π
ν2

)
= 0; that is, if the measure induced

by π and ν ∈ M(h) is independent of the choice of ν. A policy is informative
if it is not uninformative. The following result is immediate from the definitions
and shows that unlike Shannon-KSA and Square-KSA, KL-KSA always prefers
informative policies over uninformative ones as demonstrated in the experiments
in Section 5.

Proposition 9. Suppose γk > 0 for all k. Then V πγ (h) > 0 if and only if π is
informative.

Avoiding traps. Theorem 7 implies that the agent tends to learn everything it
can learn about its environment. Although this is a strong result, it cannot alone
define scientific behaviour. In particular, the agent could jump knowingly into
an inescapable trap (provided there is one) where the observations of the agent
are no longer informative. Since it would have no possibility to acquire any more
information about its environment, it would have converged to optimal behaviour
in the sense of Theorem 7. After some history h, the agent is said to be in a
trap if all policies after h are uninformative: It cannot gain any information,
and cannot escape this situation. The following proposition is immediate from
the definitions, and shows that π∗ will not take actions leading surely to a trap
unless there is no alternative:

Proposition 10. V ∗γ (h) = 0 if the agent is in a trap after h.

A deterministic trap is a trap where observations are deterministic depending
on the history. Since for deterministic environments Shannon-KSA and KL-KSA
are identical, Shannon-KSA avoids jumping into deterministic traps (see exper-
iments in Section 5) but, unlike KL-KSA, it may not avoid stochastic ones, i.e.
traps with noise. Note that KL-KSA may still end up in a trap, e.g. if it has low
probability or if it is unavoidable.

4 Choosing M and w

Until now we have ignored the question of choosing the environment classM and
prior w. Since our aim is to construct an agent that is as explorative as possible
we should choose M as large as possible. By the (strong) Church-Turing thesis
we assume that the universe is computable and so the most natural choice forM
is the set of all (semi-)computable environmentsMU exactly as used by [Hut05],
but with rewards ignored. To choose the prior we follow [Hut05] and combine
Epicurus principle of multiple explanations and Occam’s razor, to define wν :=
2−K(ν) where K(ν) is the prefix Kolmogorov complexity of ν. This prior has
several important properties. First, except for a constant multiplicative factor it
assigns more weight to every environment than any other semi-computable prior
[LV08]. Secondly, it satisfies the maximum entropy principle as demonstrated by
the following theorem.

Proposition 11. If M =MU , then
∑
ν∈M 2−K(ν)K(ν) =∞.
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The proof follows from a straight-forward adaptation of [LV08, Ex. 4.3.4].
Unfortunately, this result can also be used to show that V ∗∞ =∞.

Proposition 12. If D = KL,M contains all computable deterministic environ-
ments and wν = 2−K(ν), then V ∗∞ =∞.

Proof. Assume without loss of generality that |A| = 1, O = {0, 1} and π = π∗

is the only possible policy. Then we drop the dependence on actions and view
history sequences as sequences of observations. Let k ∈ N and define environ-
ment νk to deterministically generate observation 0 until time-step k followed by
observation 1 for all subsequent time-steps. It is straightforward to check that
there exists a c1 ∈ R such that K(νk) < K(k)+c1 for all k ∈ N. By simple prop-
erties of the Kolmogorov complexity and [LV08, Ex.4.5.2] we have that there
exist constants ci ∈ R such that

− logPπξ (0k1∞) ≥ − logPπξ (0k1) > K(0k1)− 2 logK(0k1) + c2

> K(k)− 2 logK(k) + c3 >
1
2K(k)− c4 .

Then

V ∗∞
(a)
=
∑
ν∈M

wν KL
ε,∞

(
Pπν ‖Pπξ

) (b)

≥
∑
k∈N

wνk KL
ε,∞

(
Pπνk‖P

π
ξ

) (c)
=
∑
k∈N

2−K(νk) log
1

Pπξ (0k1∞)

(d)

≥ 2−c1−1
∑
k∈N

2−K(k)K(k)− 2−c1c4
∑
k∈N

2−K(k) (e)
= ∞−O (1)

where (a) is the definition of the value function, (b) follows by dropping all
environments except νk for k ∈ N, (c) by substituting the definitions of the KL
divergence and the prior and noting that νk is deterministic, (d) by the bounds in
the previous display, and (e) by the well known fact that

∑
k∈N 2−K(k)K(k) =∞

analogous to Proposition 11. �

To avoid this problem the prior may be biased further towards simplicity by
defining wν := 2−(1+ε)K(ν) where ε� 1 is chosen very small.

Proposition 13. For all ε > 0,
∑
ν∈M 2−(1+ε)K(ν)(1 + ε)K(ν) <∞.

Proof. For each k ∈ N, define Mk := {ν ∈ M : K(ν) = k}. The number of
programs is bounded by |Mk| ≤ 2k, thus we have∑
ν∈M

2−(1+ε)K(ν)(1 + ε)K(ν) =

∞∑
k=1

∑
ν∈Mk

2−(1+ε)K(ν)(1 + ε)K(ν)

≤
∞∑
k=1

2k2−(1+ε)k(1 + ε)k =

∞∑
k=1

2−εk(1 + ε)k <∞

as required. �

Therefore, if we choose wν := 2−(1+ε)K(ν), then Ent(w) <∞ and so V ∗∞(h) <∞
by Theorem 3. Unfortunately, this approach introduces an arbitrary parameter ε
for which there seems to be no well-motivated single choice. Worse, the finiteness
of V ∗∞ is by itself insufficient to ensure the existence of π∗ for γ = ∞. The issue
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is circumvented by using a δ-optimal policy for some arbitrarily small δ, which
introduces another parameter.

5 Experiments and Examples

To give the intuition that the agent KL-KSA behaves according to expectation,
we present a variety of toy experiments in particular situations. For each ex-
periment we choose M to be a finite set of (possibly stochastic) environments,
which will typically be representable as partially observable MDPs, but may oc-
casionally be non-Markovian. Although the definitions of the environments are
(mostly) finite state automata, they are not MDPs, as the agent receives only
the observations and not the current state. The action and observation sets are
A = O = {0, 1}. Unless otherwise stated, for each environment ν we set w′ν := 1,
before normalisation to give the prior wν := w′ν/

∑
ν w
′
ν .

The horizon of the agents is the length n of the action sequences under
consideration, i.e. the agents must maximise information gain in n steps. For
KL-KSA, we thus use V π

∗

n (ε), the agent Shannon-KSA is defined similarly by
Equation (7), and the agent Square-KSA is defined by the policy [Ors11]

πSquare-KSA := arg max
π

∑
h∈Hn

−Pπξ (h)2 .

Noise insensitivity. The first experiment shows that unlike Square-KSA and
Shannon-KSA, KL-KSA is resistant to noise. Consider the two environments
in Figure 1. The only difference between the two of them is that when the
agent takes action 1 in state q0, it receives observation either 0 or 1. The values
of different actions sequences for Square-KSA, Shannon-KSA and KL-KSA are
summarised in the table.
Fig. 1. Noisy environments µ1 and µ2: Edge labels are written ac-
tion/observation/probability. The probability is omitted if it is 1. Here, only
action 1 in q0 is actually informative. The table contains values of various action
sequences for various agents in M = {µ1, µ2}.

q0

q1

q2

0/0

1/0

0/0/0.5
0/1/0.5
1/0/0.5
1/1/0.5

0/0
1/0

(a) µ1

q0

q1

q2

0/0

1/1

0/0/0.5
0/1/0.5
1/0/0.5
1/1/0.5

0/0
1/0

(b) µ2

Value V πγ of agent

Ac- Square Sh.- KL-
tions -KSA KSA KSA

00 - 0.5 1 0
000 - 0.25 2 0
0000 - 0.125 3 0
11 - 0.5 1 1
111 - 0.5 1 1
1111 - 0.5 1 1

We see that for Square-KSA and Shannon-KSA, each time a stochastic ob-
servation is received, the value of the action sequence increases. In particular,
Shannon-KSA (wrongly) estimates a gain of 1 bit of information each time it ob-
serves a coin toss. Thus they both tend to follow actions that lead to stochastic
observations.
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On the other hand, KL-KSA always prefers to go to q2, in order to gain
information about which environment is the true one, and considers that it can
only gain one bit of information, whatever the length of the action sequence of
1s. This shows its noise insensitivity, which makes it not interested in observing
coin tosses. Note that KL-KSA’s value does not depend here on the length of
the horizon, and thus behaves likewise with an infinite horizon.

Trap avoidance. We now show a situation where KL-KSA avoids jumping into
a trap if it can gain more information before doing so. Note that Square-KSA
and Shannon-KSA behave similarly in these experiments, which rely only on
deterministic environments. The environments are described in Figure 2 and the
results are summarised in the left half of Table 2. We consider actions sequences
of length 5. Increasing this number, even to infinity, does not change the results.

Fig. 2. Environments µ3, µ4, µ5. The trap is in q1, where the agent eventually cannot
separate µ3 and µ4.

q0

q1

q2

0/0
1/0

0/0
1/0

0/0
1/0

(a) µ3

q0

q1

q2

0/0
1/0

0/0
1/0

0/1
1/0

(b) µ4

q0

q1

q2

0/0
1/0

0/1
1/0

0/0
1/0

(c) µ5

Table 2. Values of various action sequences for various KSA agents in the trap envi-
ronments.

M = {µ3, µ4, µ5}
Actions Square Shannon KL

11111 - 1 0 0
01111 - 1 0 0
10000 - 0.556 0.918 0.918
00000 - 0.556 0.918 0.918
10100 - 0.333 1.585 1.585

M = {µ3..µ7}
Square Shannon KL

- 1 0 0
- 0.987 0.057 0.057
- 0.557 0.916 0.916
- 0.548 0.976 0.976
- 0.333 1.585 1.585

Remarks:

– We see that Shannon-KSA and KL-KSA have the same values in classes of
deterministic environments, as per Theorem 8.

– All agents prefer action 10100, which has the highest value among all the 25

possible action sequences of length 5, and allows the agents to identify the
true environment with certainty.

– The trap in q1 is initially avoided, in order to first gain information about
the rest of the environment.

– All agents still go into q1 in the end, because this allows them to separate µ3

and µ4 from µ5, which is why action 00000 still has a relatively high value.
– Action sequence 11111 brings no information at all, since all environments

would output the same observations, and would thus not be separated.



Knowledge Seeking in Stochastic Worlds 13

Getting caught in a trap. In addition to the environments of the last subsec-
tion, let us consider two environments µ6 and µ7 shown in Figure 3 of low weight
w′ν := 0.01 (before normalisation). These two environments are thus very im-
probable compared to the other 3 environments. This low weight reflects either
some preference (low prior, e.g. based on the complexity of the environments),
or the fact that these environments have been made less probable (low posterior)
after some hypothetical interaction history. The results are summarised in the
right half of Table 2.

Fig. 3. Environments µ6 and µ7 with trap in q2, and only differ in q1.

q0

q1

q2

0/1

1/0

0/0

1/0

0/0
1/0

(a) µ6

q0

q1

q2

0/1

1/0

0/1

1/0

0/0
1/0

(b) µ7

Among the 5 environments, if µ6 is actually the true environment, by doing
action 1 as is suggested by the action sequence of optimal value, the agent
immediately gets caught in a trap, and will never be able to separate the three
environment µ6, µ7 and µ3. Since if the agent chose to start with action 0 instead
to not be caught in µ6 and µ7’s trap it would get caught in the trap of the 3
other environments, it has to make a choice, based on the current weights of
the environments. In contrast, if we take M = {µ3, µ6, µ7}, one of the optimal
action sequences of length 2 is 00 (of value 0.352), which first action first discards
either µ3 or both µ6 and µ7, and in case of the latter, the second action discards
one of the two remaining environments.

Non-existence of π∗ for γ = ∞. Consider the environments in Figure 4.
When M = {µ∞1 , µ∞2 }, the longer the agent stays in q0 by taking action 0, the
higher the probability that taking action 1 will lead to a gain of information.
Taking the limit of this policy makes the agent stay in q0 for ever, and actually
never gain information. This means that the optimal policy π∗ for γ = ∞ does

Fig. 4. Environments µ∞1 , µ∞2 and µ∞3 . The transition probability may depend on
the time step number t. If M = {µ∞1 , µ∞2 }, the optimal non-discounted policy is to
remain in q0 for ever, in order to increase the probability of gaining information when
eventually choosing action 1.

q0

0/0
1/0

(a) µ∞1

q0 q1

0/0
1/0/ 1

t

1/1/1- 1
t

0/0
1/0

(b) µ∞2

q0 q1

0/0
1/0/1- 1

t

1/1/ 1
t

0/0
1/0

(c) µ∞3

not exist forM = {µ∞1 , µ∞2 }, and here we must either use a summable discount
vector or KL-KSAδ with a prior of finite entropy. Note that this example alone
is however not sufficient to prove the non-existence of the optimal policy for the
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case where M = MU contains all computable (semi-)measures, since M must
then also necessarily contain µ∞3 , of complexity roughly equal to that of µ∞2 . For
these three environments, the optimal policy is now actually to start with action
1 instead of postponing it, because at least 2 environments cannot be separated,
but action 1 separates µ∞1 and µ∞3 with certainty.

6 Conclusion

We extended previous work on knowledge-seeking agents [Ors11] by generalising
from deterministic classes to the full stochastic case. As far as we are aware this
is the first definition of a universal knowledge-seeking agent for this very general
setting.

We gave a convergence result by showing that KL-KSA learns the true en-
vironment in the sense that it learns to predict the consequences of any future
actions, even the counterfactual actions it ultimately chooses not to take. Fur-
thermore, this new agent has been shown to be resistant to non-informative noise
and, where reasonable, avoid traps from which it cannot escape.

One important concern lies in the choice of parameters/discount vector. If
discounting is not used and the prior has infinite entropy, then the value function
may be infinite and even approximately optimal policies do not exist. If the prior
has finite entropy, then the value function is uniformly bounded and approxi-
mately optimal policies exist. For universal environment classes this precludes
the use of the universal prior as it has infinite entropy.

An alternative is to use a summable discount vector. In this case optimal poli-
cies exist, but the knowledge seeking agent may be somewhat myopic. We are
not currently convinced which option is best: the approximately optimal undis-
counted agent that may eventually cease exploring, or the optimal discounted
agent that is myopic.
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A Technical Results

Lemma 14. Let M be a countable set of distributions on finite space X and
w :M→ [0, 1] be a distribution on M. If ξ(x) :=

∑
ρ∈M wρρ(x), then∑

ρ∈M
wρ
∑
x∈X

ρ(x) log (ρ(x)/ξ(x)) ≤ log |X| .

Proof. We use properties of the KL divergence. Define distribution R(x) :=
1/|X|. Then∑
ρ∈M

wρ
∑
x∈X

ρ(x) log
ρ(x)

ξ(x)

(a)

≤
∑
x∈X

∑
ρ∈M

wρρ(x) log
1

ξ(x)

(b)
=
∑
x∈X

ξ(x) log
1

ξ(x)

(c)

≤ log |X|

where (a) follows from monotonicity of log and ρ(x) ≤ 1. (b) by definition of ξ
and (c) by Gibb’s inequality. �
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