
Feature Reinforcement Learning in Practice

Phuong Nguyen, Peter Sunehag and Marcus Hutter

Research School of Computer Science, Australian National University
nmphuong@cecs.anu.edu.au

{peter.sunehag, marcus.hutter}@anu.edu.au

23 August 2011

Abstract

Following a recent surge in using history-based methods for resolving per-
ceptual aliasing in reinforcement learning, we introduce an algorithm based on
the feature reinforcement learning framework called ΦMDP [14]. To create a
practical algorithm we devise a stochastic search procedure for a class of con-
text trees based on parallel tempering and a specialized proposal distribution.
We provide the first empirical evaluation for ΦMDP. Our proposed algorithm
achieves superior performance to the classical U-tree algorithm [21] and the
recent active-LZ algorithm [6], and is competitive with MC-AIXI-CTW [28]
that maintains a bayesian mixture over all context trees up to a chosen depth.
We are encouraged by our ability to compete with this sophisticated method
using an algorithm that simply picks one single model, and uses Q-learning
on the corresponding MDP. Our ΦMDP algorithm is much simpler, yet con-
sumes less time and memory. These results show promise for our future work
on attacking more complex and larger problems.

Contents

1 Introduction 3

2 Preliminaries 4

2.1 Markov Decision Processes (MDP) 4

2.2 Feature Reinforcement Learning 5

2.3 Context Trees . 7

2.4 Stochastic search . 9

1

3 The ΦMDP Algorithm 12

3.1 Proposal Distribution for Stochastic Search over the Markov-
AOCT Space . 13

4 Experiments 15

4.1 Experimental Setup . 15

4.2 Environments and results . 16

5 Conclusions 20

Keywords

Reinforcement learning; MDP; MDL; feature selection; perceptual aliasing;
coding.

2

1 Introduction

Reinforcement Learning (RL) [27] aims to learn how to succeed in a task through
trial and error. This active research area is well developed for environments that
are Markov Decision Processes (MDPs); however, real world environments are often
partially observable and non-Markovian. The recently introduced Feature Markov
Decision Process (ΦMDP) framework [14] attempts to reduce actual RL tasks to
MDPs for the purpose of attacking the general RL problem where the environment’s
model as well as the set of states are unknown. In [26], Sunehag and Hutter take a
step further in the theoretical investigation of Feature Reinforcement Learning by
proving consistency results. In this article, we develop an actual Feature Reinforce-
ment Learning algorithm and empirically analyze its performance in a number of
environments.

One of the most useful classes of maps (Φs) that can be used to summarize
histories as states of an MDP, is the class of context trees. Our stochastic search
procedure, the principal component of our ΦMDP algorithm GSΦA, works on a
subset of all context trees, called Markov trees. Markov trees have previously been
studied in [22] but under names like FSMX sources or FSM closed tree sources.
The stochastic search procedure employed for our empirical investigation utilizes a
parallel tempering methodology [7], [12] together with a specialized proposal dis-
tribution. In the experimental section, the performance of the ΦMDP algorithm
where stochastic search is conducted over the space of context-tree maps is shown
and compared with three other related context tree-based methods.

Our ΦMDP algorithm is briefly summarized as follows. First, perform a certain
number of random actions, then use this history to find a high-quality map by
minimizing a cost function that evaluates the quality of each map. The quality here
refers to the ability to predict rewards using the created states. We perform a search
procedure for uncovering high-quality maps followed by executing Q-learning on the
MDP whose states are induced by the detected optimal map. The current history
is then updated with the additional experiences obtained from the interactions with
the environment through Q-Learning. After that, we may repeat the procedure but
without the random actions. The repetition refines the current “optimal” map, as
longer histories provide more useful information for map evaluation. The ultimate
optimal policy of the algorithm is retrieved from the action values Q on the resulting
MDP induced from the final optimal map.

Contributions. Our contributions are: extending the original ΦMDP cost func-
tion presented in [14] to allow for more discriminative learning and more efficient
minimization (through stochastic search) of the cost; identifying the Markov action-
observation context trees as an important class of feature maps for ΦMDP; proposing
the GSΦA algorithm where several chosen learning and search procedures are log-
ically combined; providing the first empirical analysis of the ΦMDP model; and
designing a specialized proposal distribution for stochastic search over the space of
Markov trees, which is of critical importance for finding the best possible ΦMDP

3

agent.

Related Work. Our algorithm is a history-based method. This means that we
are utilizing memory that in principle can be long, but in most of this article and
in the related works is near term. Given a history ht of observations, actions and
rewards we define states st = Φ(ht) based on some map Φ. The main class of maps
that we will consider are based on context trees. The classical algorithm of this sort
is U-tree [21], which uses a local criterion based on a statistical test for splitting
nodes in a context tree; while ΦMDP employs a global cost function. Because of
this advantage, ΦMDP can potentially be used in conjunction with any optimization
methods to find the optimal model.

There has been a recent surge of interest in history based methods with the intro-
duction of the active-LZ algorithm [6], which generalizes the widely used Lempel-Ziv
compression scheme to the reinforcement learning setting and assumes n-Markov
models of environments; and MC-AIXI-CTW [28], which uses a Bayesian mixture
of context trees and incorporates both the Context Tree Weighting algorithm [31]
as well as UCT Monte Carlo planning [16]. These can all be viewed as attempts at
resolving perceptual aliasing problems with the help of short-term memory. This
has turned out to be a more tractable approach than Baum-Welch methods for
learning a Partially Observable Markov Decision Process (POMDP) [4] or Predic-
tive State Representations [24]. The history based methods attempt to directly
learn the environment states, thereby avoiding the POMDP-learning problem [15],
[20] which is extremely hard to solve. Model minimization [8] is a line of works
that also seek for a minimal representation of the state space, but focus on solving
Markovian problems while ΦMDP and other aforementioned history-based methods
target non-Markovian ones. It is also worthy to note that there are various other
attempts to find compact representations of MDP state spaces [18]; most of which,
unlike our approach, address the planning problem where the MDP model is given

Paper Organization. The paper is organized as follows. Section 2 introduces
preliminaries on Reinforcement Learning, Markov Decision Processes, Stochastic
Search methods and Context Trees. These are the components from which the
ΦMDP algorithm (GSΦA) is built. In Section 3 we put all of the components into
our ΦMDP algorithm and also describe our specialized search proposal distribution
in detail. Section 4 presents experimental results on four domains. Finally Section
5 summarizes the main results of this paper, and briefly suggests possible research
directions.

2 Preliminaries

2.1 Markov Decision Processes (MDP)

An environment is a process which at any discrete time t, given action at ∈ A
produces an observation ot ∈ O and a corresponding reward rt ∈ R. When the

4

process is a Markov Decision Process [27]; ot represents the environment state, and
hence is denoted by st instead. Formally, a finite MDP is denoted by a quadruple
⟨S,A, T ,R⟩ in which S is a finite set of states; A is a finite set of actions; T = (T a

ss′ :
s, s′ ∈ S, a ∈ A) is a collection of transition probabilities of the next state st+1 = s′

given the current state st = s and action at = a; and R = (Ra
ss′ : s, s

′ ∈ S, a ∈ A)
is a reward function Ra

ss′ = E[rt+1|st = s, at = a, st+1 = s′]. The return at time
step t is the total discounted reward Rt = rt+1 + γrt+2 + γ2rt+3 + . . ., where γ is the
geometric discount factor (0 ≤ γ < 1).

Similarly, the action value in state s following policy π is defined as Qπ(s, a) =
Eπ[Rt|st = s, at = a] = Eπ[

∑∞
k=0 γ

krt+k+1|st = s, at = a]. For a known MDP, a use-
ful way to find an estimate of the optimal action values Q∗ is to employ the Action-
Value Iteration (AVI) algorithm, which is based on the optimal action-value Bellman
equation [27], and iterates the update Q(s, a)←

∑
s′ T

a
ss′ [R

a
ss′ + γmaxa′ Q(s′, a′)].

If the MDP model is unknown, an effective estimation technique is provided by
Q-learning, which incrementally updates estimates Qt through the equation

Q(st, at)← Q(st, at) + αt(st, at)errt

where the feedback error errt = rt+1 + γmaxa Q(st+1, a) − Q(st, at), and αt(st, at)
is the learning rate at time t. Under the assumption of sufficient visits of all state-
action pairs, Q-Learning converges if and only if some conditions of the learning rates
are met [2], [27]. In practice a small constant value of the learning rates (α(st, at) =
η) is, however, often adequate to get a good estimate of Q∗. Q-Learning is off-
policy; it directly approximates Q∗ regardless of what actions are actually taken.
This approach is particularly beneficial when handling the exploration-exploitation
tradeoff in RL.

It is well known that learning by taking greedy actions retrieved from the current
estimate Q̂ of Q∗ to explore the state-action space generally leads to suboptimal be-
havior. The simplest remedy for this inefficiency is to employ the ϵ-greedy scheme,
where with probability ϵ > 0 we take a random action, and with probability 1−ϵ the
greedy action is selected. This method is simple, but has shown to fail to properly
resolve the exploration-exploitation tradeoff. A more systematic strategy for explor-
ing the unseen scenarios, instead of just taking random actions, is to use optimistic
initial values [27], [3]. To apply this idea to Q-Learning, we simply initialize Q(s, a)
with large values. Suppose Rmax is the maximal reward, Q initializations of at least
Rmax

1−γ
are optimistic as Q(s, a) ≤ Rmax

1−γ
.

2.2 Feature Reinforcement Learning

Problem description. An RL agent aims to find the optimal policy π for tak-
ing action at given the history of past observations, rewards and actions ht =
o1r1a1 . . . ot−1rt−1at−1otrt in order to maximize the long-term reward signal. If the
problem satisfies an MDP; as can be seen above, efficient solutions are available. We

5

aim to attack the most challenging RL problem where the environment’s states and
model are both unknown. In [13], this problem is named the Universal Artificial
Intelligence (AI) problem since almost all AI problems can be reduced to it.

ΦMDP framework. In [14], Hutter proposes a history-based method, a general
statistical and information theoretic framework called ΦMDP. This approach offers
a critical preliminary reduction step to facilitate the agent’s ultimate search for
the optimal policy. The general ΦMDP framework endeavors to extract relevant
features for reward prediction from the past history ht by using a feature map Φ:
H → S, where H is the set of all finite histories. More specifically, we want the
states st = Φ(ht) and the resulting tuple ⟨S, A, R⟩ to satisfy the Markov property
of an MDP. As aforementioned, one of the most useful classes of Φs is the class of
context trees, where each tree maps a history to a single state represented by the
tree itself. A more general class of Φ is Probabilistic-Deterministic Finite Automata
(PDFA) [29], which map histories to the MDP states where the next state can be
determined from the current state and the next observation. The primary purpose
of ΦMDP is to find a map Φ so that rewards of the MDP induced from the map can
be predicted well. This enables us to use MDP solvers, like AVI and Q-learning, on
the induced MDP to find a good policy. The reduction quality of each Φ is dictated
by the capability of predicting rewards of the resulting MDP induced from that Φ.
A suitable cost function that measures the utility of Φs for this purpose is essential,
and the optimal Φ is the one that minimizes this cost function.

Cost function. The cost used in this paper is an extended version of the original
cost introduced in [14]. We define a cost that measures the reward predictability of
each Φ, or more specifically of the resulting MDP induced from that Φ. Based on
this, our cost includes the description length of rewards; however, rewards depend
on states as well, so the description length of states must be also added to the cost.
In other words, the cost comprises coding of the rewards and resulting states, and
is defined as follows:

Costα(Φ|hn) := αCL(s1:n|a1:n) + (1− α)CL(r1:n|s1:n, a1:n)

where s1:n = s1, ..., sn and a1:n = a1, ..., an and st = Φ(ht) and ht = ora1:t−1rt and
0 ≤ α ≤ 1. For coding we use the two-part code [30], [10], hence the code length
(CL) is CL(x) = CL(x|θ) + CL(θ) where x denotes the data sampled from the
model specified by parameters θ. We employ the optimal codes [5] for describing
data CL(x|θ) = log(1/Prθ(x)), while parameters are uniformly encoded to precision
1/
√
ℓ(x) where ℓ(x) is the sequence length of x [10]: CL(θ) = m−1

2
log ℓ(x), here m

is the number of parameters. The optimal Φ is found via the optimization problem
Φoptimal = argminΦCostα(Φ|hn).

Denote n• := [n1 n2 . . . nl] (l is determined in specific context); n+ :=
∑

j nj (njs

are components of vector n•); |•| cardinality of a set; nar′

ss′ := |{t : (st, at, st+1, rt+1) =

(s, a, s′, r′), 1 ≤ t ≤ n}|; and H(p) = −
∑l

i=1 pi log pi Shannon entropy of a random

6

variable with distribution p = [p1 p2. . . pl] where
∑l

i=1 pi = 1. The state and reward
cost functions can, then, be analytically computed as follows:

CL(s1:n|a1:n) =
∑
s,a

CL(na+
s•) =

∑
s,a

na+
s+H

(
na+
s•

na+
s+

)
+
|S| − 1

2
log na+

s+

CL(r1:n|s1:n, a1:n) =
∑
s,a,s′

CL(na•
ss′) =

∑
s,a,s′

na+
ss′H

(
na•
ss′

na+
ss′

)
+
|R| − 1

2
log na+

ss′

As we primarily want to find a Φ that has the best reward predictability, the
introduction of α is primarily to stress on reward coding, making costs for high-
quality Φs much lower with very small α values. In other words, α amplifies the
differences among high-quality Φs and bad ones; and this accelerates our stochastic
search process described below.

We furthermore replace CL(x) with CLβ(x) = CL(x|θ) + βCL(θ) in Costα to
define Costα,β for the purpose of being able to select the right model given limited
data. The motivation to introduce β is the following. For stationary environments
the cost function is analytically of this form C1× u(α)×O(n) +C2× v(α)× t(β)×
O(log(n)) where C1, C2 are constants, and u, v, t are linear functions. The optimal
Φ should be the one with the smallest value of C1 × u(α), however, the curse here
is that in practice C2 × v(α) is often big, so in order to obtain the optimal Φ with
limited data, a small value of β will help. We assert that with a very large number of
samples n, α and β can be ignored in the above cost function (use α = 0.5, β = 1 as
the cost in [14]). The choice of small α and β helps us more quickly to overcome the
model penalty and find the optimal map. This strategy is a quite common practice
in statistics, and even in the Minimum Description Length (MDL) community [10].
For instance, AIC [1] uses a very small β = 2/ log n.

The interested reader is referred to [14] for more detailed analytical formulas,
and [26] for further motivation and consistency proofs of the ΦMDP model.

2.3 Context Trees

The class of maps that we will base our algorithm on is a class of context trees.

Observation Context Tree (OCT). OCT is a class of maps Φ used to extract
relevant information from histories that include only past observations, not actions
and rewards. The presentation of OCT is mainly to facilitate the definitions of the
below Action-Observation Context Tree.

Definition. Given an |O|-ary alphabet O = {o1, o2, . . . , o|O|}, an OCT constructed
from the alphabet O is defined as a |O|-ary tree in which edges coming from any
internal node are labeled by letters in O from left to right in the order given.

Given an OCT T constructed from the alphabet O, the state suffix set, or
briefly state set S = {s1, s2, . . . , sm} ⊆ O∗ induced from T is defined as the set of
all possible strings of edge labels forming along a path from a leaf node to the root

7

node of T . T is called a Markov tree if it has the so-called Markov property for its
associated state set, that is, for every si ∈ S and ok ∈ O, siok has a unique suffix
sj ∈ S. The state set of a Markov OCT is called Markov state set. OCTs that
do not have the Markov property are identified as non-Markov OCTs. Non-Markov
state sets are similarly defined.

Example. Figure 1(a)(A) and 1(a)(B) respectively represent two binary OCTs of
depths two and three; also Figures 1(b)(A) and 1(b)(B) illustrate two ternary OCTs
of depths two and three.

(a) Binary context trees (b) Trinary context trees

Figure 1: Context Trees

As can be seen from Figure 1, trees 1(a)(A) and 1(b)(A) are Markov; on the other
hand, trees 1(a)(B) and 1(b)(B) are non-Markov. The state set of tree 1(a)(A) is
S(a)(A) = {00, 01, 01, 11}; and furthermore with any further observation o ∈ O and
s ∈ S(a)(A), there exists a unique s′ ∈ S which is a suffix of so. Hence, tree 1(a)(A)
is Markov. Table 1(a) represents the deterministic relation between s, o and s′.

(a) Markov property of S(a)(A)

s 00 01 10 11 00 01 10 11
o 0 1
s′ 00 10 00 10 01 11 01 11

(b) Non-markov property of S(a)(B)

s 0 001 101 11 0 001 101 11
o 0 1
s′ 0 0 0 0 101 or 001 11 11 11

Table 1: Markov and Non-Markov properties

However, there is no such relation in tree 1(a)(B), or state set S(a)(B) = {0, 001, 101, 11};
for s = 0 and o = 1, it is ambiguous whether s′ =101 or 001. Table 1(b) clarifies
the non-Markov property of tree 1(a)(B).

Similar arguments can be applied for trees 1(b)(A) and 1(b)(B) to identify their
Markov property.

It is also worthy to illustrate how an OCT can be used as a map. We illustrate
the mapping using again the OCTs in Figure 1. Given two histories including only

8

past observations h5 = 11101 and h′
6 = 211210, then Φ(a)(A)(h5) = 01,Φ(a)(B)(h5) =

101,Φ(b)(A)(h′
6) = 10, and Φ(b)(B)(h′

6) = 210.

Action-Observation Context Tree (AOCT). AOCTs are extended from the
OCTs presented above for the generic RL problem where relevant histories contain
both actions and observations.

Definition. Given two alphabets, O = {o1, o2, . . . , o|O|} named observation set,
and A = {a1, a2, . . . , a|A|} named action set, an AOCT constructed from the two
alphabets is defined as a tree where any internal node at even depths has branching
factor |O|, and edges coming from such nodes are labeled by letters in O from left to
right in the order given; and similarly any internal node at odd depths has branching
factor |A|, and edges coming from these nodes are labeled by letters in A also from
left to right in the specified order.

The definitions of Markov and non-Markov AOCTs are similar to those of OCTs
except that a next observation is now replaced by the next action and observation.
Formally, suppose T is an AOCT constructed from the above two alphabets; and
S = {s1, s2, . . . , sm} ⊆ (A×O)∗ ∪ A × (A×O)∗ is the state suffix set of the tree,
then T is defined as a Markov AOCT if it has the Markov property, that is, for every
1 ≤ i ≤ m, 1 ≤ j ≤ |A|, and 1 ≤ k ≤ |O| there exist a unique 1 ≤ l ≤ m such that
sl is a suffix of siajok. AOCTs that do not have Markov property are categorized
as non-Markov AOCTs.

The total number of AOCTs up to a certain depth d, K(d), can be recursively
computed via the formulaK(d+2) = {[K(d)]|A|+1}|O|+1 whereK(0) = 1, K(1) = 2.
As can be easily seen from the recursive formula, the total number of AOCTs is
doubly exponential in the tree depth.

An important point to note here is that in our four experiments presented in
Section 4, the Φ space is limited to Markov AOCTs, since as explained above, the
state suffix set induced from a non-Markov AOCT does not represent an MDP
state set; to put it more clearly, in non-Markov AOCTs, from the next action and
observation, we cannot derive the next state from the current one. The Markov
constraint on AOCTs significantly reduces the search space for our stochastic search
algorithm. In the U-tree algorithm [21], no distinction of Marov and non-Markov
trees is identified; the algorithm attempts to search for the optimal tree over the
whole space of AOCTs.

2.4 Stochastic search

While we have defined the cost criterion for evaluating maps, the problem of finding
the optimal map remains. When the Φ space is huge, e.g. context-tree map space
where the number of Φs grows doubly exponentially with the tree depth, exhaustive
search is unable to deal with domains where the optimal Φ is non-trivial. Stochastic
search is a powerful tool for solving optimization problems where the landscape
of the objective function is complex, and it appears impossible to analytically or

9

numerically find the exact or even approximate global optimal solution. A typical
stochastic search algorithm starts with a predefined or arbitrary configuration (initial
argument of the objective function or state of a system), and from this generates
a sequence of configurations based on some predefined probabilistic criterion; the
configuration with the best objective value will be retained. There are a wide range
of stochastic search methods proposed in the literature [23]; the most popular among
these are simulated-annealing-type algorithms [19], [25]. An essential element of
a simulated-annealing (SA) algorithm is a Markov Chain Monte Carlo (MCMC)
sampling scheme where a proposed new configuration ỹ is drawn from a proposal
distribution q(ỹ|y), and we then change from configuration y to ỹ with probability

min{1, πT (y)q(y|ỹ)
πT (ỹ)q(ỹ|y)} where πT is a target distribution. In a simulated-annealing (SA)

algorithm where the traditional Metropolis-Hasting sampling scheme is utilized, πT

is proportional to e−f(x)/T if f is an objective function that we want to minimize,
and T is some positive constant temperature. q(y|ỹ)

q(ỹ|y) is called the correction factor;
it is there to compensate for bias in q.

The traditional SA uses an MCMC scheme with some temperature-decreasing
strategy. Although shown to be able to find the global optimum asymptotically
[9], it generally works badly in practice as we do not know which temperature
cooling scheme is appropriate for the problem under consideration. Fortunately in
the ΦMDP cost function we know typical cost differences between two Φs (Cβ ×
log(n)), so the range of appropriate temperatures can be significantly reduced. The
search process may be improved if we run a number of SA procedures with various
different temperatures. Parallel Tempering (PT) [7], [12], an interesting variant of
the traditional SA, significantly improves this stochastic search process by smartly
offering a swapping step, letting the search procedure use small temperatures for
exploitation and big ones for exploration.

Parallel tempering. PT performs stochastic search over the product space X1 ×
. . . × XI(Xi = X ∀1 ≤ i ≤ I), where X is the objective function’s domain, and
I is the parallel factor. Fixed temperatures Ti (i = 1, . . . , I, and 1 < T1 < T2 <
. . . < TI) are chosen for spaces Xi (i = 1, . . . , I). Temperatures Ti (i = 1, . . . , I)
are selected based on the following formula (1

Ti
− 1

Ti+1
)|∆H| ≈ − log pa where ∆H

is the “typical” difference between function values of two successive configurations;
and pa is the lower bound for the swapping acceptance rate. The main steps of each
PT loop are as follows:

• (x
(t)
1 , . . . , x

(t)
I) is the current sampling; draw u ∼ Uniform[0,1]

• If u ≤ α0, update every x
(t)
i to x

(t+1)
i via some Markov Chain Monte Carlo

(MCMC) scheme like Metropolis-Hasting (Parallel step)

• If u > α0, randomly choose a neighbor pair, say i and i+1, and accept the swap

of x
(t)
i and x

(t)
i+1 with probability min{1, πTi

(x
(t)
i+1)πTi+1

(x
(t)
i)

πTi
(x

(t)
i)πTi+1

(x
(t)
i+1)
} (Swapping step).

The full details of PT are given in Algorithm 1.

10

Algorithm 1 Parallel Tempering (PT)

Require: An objective function h(x) to be minimized, or equivalently the target
distribution πC α e−h(x)/C for some positive constant C

Require: Swap probability parameter α0

Require: A proposal distribution q(y|x)
Require: Temperatures T1, T2, . . . , TL, and number of iterations N
1: Initialize arbitrary configurations x(1,1), ..., x(L,1)({x(k,i): represents the ith value

of x for temperature Tk;})
2: xopt ← argminx=x(·,1) h(x)
3: for i = 1 to N do
4: for k = 1 to L do
5: ỹ ← x(k,i−1)

6: Sample y from the proposal distribution q(y|ỹ)
7: r ← min{1, πTk

(y)q(y|ỹ)
πTk

(ỹ)q(ỹ|y)} (Metropolis Hastings)

8: Draw u ∼ Uniform[0,1] and update
9: if u ≤ r(ỹ, y) then
10: x(k,i) ← y
11: else
12: x(k,i) ← ỹ
13: end if
14: if h(xopt) > h(x(k,i)) then
15: xopt ← x(k,i)

16: end if
17: end for
18: Draw u ∼ Uniform[0,1]
19: if u ≥ α0 then
20: Draw a Uniform {1, ..., L− 1} and let b = a+ 1

21: r ← min{1, πTa (x
(b,i))πTb

(x(a,i))

πTa (x
(a,i))πTb

(x(b,i))
}

22: Draw v ∼ Uniform[0,1]
23: if v ≤ r then
24: Swap x(a,i) and x(b,i)

25: end if
26: end if
27: end for

Return xopt

If its swapping phase is excluded, PT is simply the combination of a fixed number
of Metropolis-Hastings procedures. The central point that makes PT powerful is its
swapping step where adjacent temperatures interchange their sampling regions. This
means that a good configuration can be allowed to use a cooler temperature and
exploit what it has found while a worse configuration is given a higher temperature
which results in more exploration.

11

3 The ΦMDP Algorithm

We now describe how the generic ΦMDP algorithm works. The general algorithm is
shown below (Algorithm 2). It first takes a number of random actions (5000 in all
our experiments). Then it defines the cost function Costα,β based on this history.
Stochastic search is then used to find a map Φ with low cost. Based on the optimal
Φ the history is transformed into a sequence of states, actions and rewards. We use
optimistic frequency estimates from this history to estimate probability parameters
for state transitions and rewards. More precisely, we use Rmax+r1+...+rm

m+1
instead of the

average r1+...+rm
m

to estimate expected reward, where r1, ..., rm are the rewards that
have been observed for a certain state-action pair, and Rmax is the highest possible
reward. The statistics are used to estimate Q values using AVI. After this the agent
starts to interact with the environment again using Q-learning initialized with the
values that resulted from the performed AVI. The switch from AVI to Q-Learning
is rather obvious, as Q-Learning only needs one cheap update per time step, while
AVI requires updating the whole environment model and running a number of value
iterations. The first set of random actions might not be sufficient to characterize
what the best maps Φ look like, so it might be beneficial to add the new history
gathered by the Q-Learning interactions with the environment to the old history,
and then repeat the process but without the initial sampling.

Algorithm 2 Generic Stochastic ΦMDP Agent (GSΦA)

Require: Environment; initialSampleNumber, agentLearningLoops,
stochasticIterations and additionalSampleNumber

1: Generate a history hinitial of length initialSampleNumber
2: h← hinitial

3: repeat
4: Run the chosen stochastic search scheme for the history h to find a Φ̂ with

low cost
5: Compute MDP statistics (optimistic frequency estimates R̂ and T̂) induced

from Φ̂
6: Apply AVI to find the optimal Q∗ values using the computed statistics R̂ and

T̂ .
7: Interact with environment for additionalSampleNumber iterations of Q-

Learning using Q∗ as initial values; the obtained additional history is stored
in hadditional

8: h← [h, hadditional]
9: agentLearningLoops← agentLearningLoops− 1
10: until agentLearningLoops = 0
11: Compute the optimal policy πoptimal from the optimal Φ and Q values

Return [Φoptimal, πoptimal]

In the first four experiments in Section 4, PT is employed to search over the Φ

12

space of Markov AOCTs.

3.1 Proposal Distribution for Stochastic Search over the
Markov-AOCT Space

The principal optional component of the above high-level algorithm, GSΦA, is a
stochastic search procedure of which some algorithms have been presented in Sec-
tion 2.4. In these algorithms, an essential technical detail is the proposal distribution
q. It is natural to generate the next tree (the next proposal or configuration) from
the current tree by splitting or merging nodes. It is possible to express the exact
form of our proposal distribution, and based on this to explain how the next tree
(next configuration) is proposed from the current tree (current configuration). How-
ever, the analytical form of the distribution is cumbersome to specify, so for better
exposition we opt to describe the exact behavior of the tree proposal distribution
instead.

The stochastic search procedure starts with a Markov AOCT where all of the
tree nodes are mergeable, and splittable. However, in the course of the search, a tree
node might become unmergeable, but not the other way round; and a splittable node
might turn to be unsplittable and vice versa. These specific transfering scenarios are
described as follows. A mergeable tree node of the current tree becomes unmergeable
if the current tree is proposed from the previous tree by splitting that node, and
the cost of the current tree is smaller than that of the previous tree. A splittable
leaf node of the current tree becomes unsplittable if the state associated with that
node is not present in the current history; however, an unsplittable leaf node might
revert to splittable when the state associated with that node is present in the future
updated history. The constraint on merging is to keep good short-term memory
for predicting rewards, while the other on splitting is simply following the Occam’s
razor principle.

Merge and split permits. Given some current tree at a particular point in time
of the stochastic search process, when considering the generation of the next tree
proposal, most of the tree nodes, though labeled splittable and/or mergeable, might
have no split, or merge permit, or neither. A node has split permit if it is a leaf node
with splittable label. When a leaf node has been split, we simply add all possible
children for this node, and label the edges according to the definition of AOCTs.
As mentioned above, the newly added leaf nodes might be labeled unmergeable if
the cost of the new tree is smaller than that of the old one; and these nodes might
also be labeled unsplittable if the states associated with the new leaf nodes are not
present in the current history. A node has merge permit if it is labeled mergeable,
and all of its children are leaf nodes. When a tree node is merged, all the edges and
nodes associated with its children are removed.

Markov-merge and Markov-split permits. Since our search space is the class
of Markov OACTs, whenever a split or merge occurs, extra adjustments might be

13

Figure 2: AOCT proposals

needed to make the new tree Markov. After a split, there might be nodes that make
the tree violate the Markov assumption, and therefore, need to be split. After we
split all of those we have to check again to see if any other nodes now need to be
split. This goes on until we have a Markov AOCT again. The same applies to
merging.

When a node is Markov-split, it and all of the leaf nodes that need to be split
(including recursive splits) as a consequence in order to make the tree Markov, are
split. A tree node is said to have Markov-split permit if it, and all the other nodes
that would be split in a Markov-split of the node, have split permits. This notion is
best illustrated with an example. First we define Markov and Non-Markov states of
an AOCT. A state of an AOCT is Markov if given any next action-observation pair,
the next state is determined; otherwise it is labeled as non-Markov. Now in Figure
2(A), suppose the current Markov AOCT is the tree without dashed edges. Then
after splitting the leaf node marked by * (the node associated with state 00101), the
state 001 becomes non-Markov so this associated node needs to be split. However,
after splitting this node (node associated with state 001), state 0 becomes non-
Markov, hence it needs splitting as well. In short, to split the node marked by *, the
two nodes associated with states 001 and 0 have to be split as well so as to ensure
the resulting tree is Markov after splitting. Similarly, a tree node has Markov-merge
permit if it, and all of the tree nodes that minimally and recursively need to be
merged after the original node is merged in order to make the tree Markov, have
merge permits. For example, in Figure 2(B), suppose the current tree is the tree
including both solid and dashed edges, then the node marked by * has Markov-
merge permit, if it itself, and the nodes associated with paths 001, 021 and 00101
that need to be merged, have merge permits. When a node with Markov-merge
permit is Markov-merged, it and its Markov-merge-associated nodes are merged.

Our procedure to generate the next tree from the current tree (draw sample from
q(y|·)) in the space of Markov AOCTs consists of the following main steps:

• From the given tree, identify two sets: one is NS containing nodes with

14

Markov-split permits, and the other NM containing nodes with Markov-merge
permits.

• Suppose that either NS or NM is non-empty otherwise the algorithm (GSΦA)
must stop; then if either NS or NM is empty, select a node uniformly at random
from the other set; otherwise select NS or NM randomly with probability 1

2

each, and after that choose a tree node randomly from the selected set.

• Markov-split the node if it belongs to NS, otherwise Markov-merge it

Once we have drawn the new tree ỹ, the Metropolis Hastings correction factor can
be straightforwardly calculated via the formula

q(y|ỹ)
q(ỹ|y)

=

{
|ÑM |
|NS |

if ỹ is proposed from y by Markov-splitting
|ÑS |
|NM | if ỹ is proposed from y by Markov-merging

here ÑS and ÑM are respectively the set of nodes with Markov-split permits, and
the set of nodes with Markov-merge permits of ỹ.

Sharing. If the stochastic search algorithm utilized is PT, we apply another trick to
effectively accelerate the search process. Whenever a node is labeled unmergeable,
that is, by splitting this node the cost function decreases, or in other words a good
additional relevant short-term memory for predicting rewards is found, the states
associated with the new nodes created by the splitting are replicated in the trees
with the other temperatures.

4 Experiments

4.1 Experimental Setup

Below in this section we present our empirical studies of the ΦMDP algorithm GSΦA
described in Section 3. For all of our experiments, stochastic search (PT) is applied
in the Φ space of Markov AOCTs.

For a variety of tested domains, our algorithm produces consistent results using
the same set of parameters. These parameters are shown in Table 4.1, and are not
fine tuned.

The results of ΦMDP and the three competitors in the four above-listed envi-
ronments are shown in Figures 3, 4, 7 and 8. In each of the plots, various time
points are chosen to assess and compare the quality of the policies learned by the
four approaches. In order to evaluate how good a learned policy is, at each point,
the learning process of each agent, and the exploration of the three competitors are
temporarily switched off. The selected statistic to compare the quality of learning
is the averaged reward over 5000 actions using the current policy. For stability, the
statistic is averaged over 10 runs.

15

Parameter Component Value

α Costα,β 0.1
β Costα,β 0.1

initialSampleNumber GSΦA 5000
agentLearningLoops GSΦA 1

Iterations PT 100
I PT 10

Ti, i ≤ I PT Ti = β × i× log(n)
α0 PT 0.7
γ AVI, Q-Learning 0.999999
η Q-Learning 0.01

Table 2: Parameter setting for the GSΦA algorithm

As shown in more detail below, ΦMDP is superior to U-tree and active-LZ, and is
comparable to MC-AIXI-CTW in short-term memory domains. Overall conclusions
are clear, and we, therefore, omit error bars.

4.2 Environments and results

We describe each environment, the resulting performance, and the tree that was
found by ΦMDP in the cheese maze domain.

4 × 4 Grid. The domain is a 4×4 grid world. At each time step, the agent can

Figure 3: 4× 4 Grid

16

move one cell left, right, up and down within the grid world. The observations are
uninformative. When the agent enters the bottom-right corner of the grid; it gets a
reward of 1, and is automatically and randomly sent back to one of the remaining
15 cells. Entering any cell other than the bottom-right one gives the agent a zero
reward. To achieve the maximal total reward, the agent must be able to remember
a series of smart actions without any clue about its relative position in the grid.

The context tree found contains 34 states. Some series of actions that take the
agent towards the bottom-right corner of the grid are present in the context tree.
As shown in the 4×4-grid plot in Figure 3, after 5000 experiences gathered from
the random policy, ΦMDP finds the optimal policy, and so does MC-AIXI-CTW
and U-Tree. Active-LZ, however, does not converge to an optimal policy even after
50,000 learning cycles.

Tiger. The tiger domain is described as follows. There are two doors, left and
right; an amount of gold and a tiger are placed behind the two doors in a random
order. The person has three possible actions: listen to predict the position of the
tiger, open the right door, and open the left door. If the person listens, he has to
pay some money (reward of -1). The probability that the agent hears correctly is
0.85. If the person opens either of the doors and sees the gold, the obtained reward
is 10; or otherwise he faces the tiger, then the agent receives a reward of -100. After
the door is opened, the episode ends; and in the next episode the tiger sits randomly
again behind either the left or the right door.

Figure 4: Tiger

Our parallel tempering procedure found a context tree consisting of 39 states
including some important states where the history is such that the agent has listened
a few times before opening the door. It can be seen from the tiger plot in Figure

17

4 that the optimal policy ΦMDP found after 5,000 learning experiences does yield
positive reward on average, while from time point 10,000 on, it achieves as high
rewards as MC-AIXI-CTW. U-Tree appears to learn more slowly but eventually
manages to get positive averaged rewards after 50,000 cycles like ΦMDP and MC-
AIXI-CTW. Active-LZ is performing far worse. The optimal policy that ΦMDP,
MC-AIXI-CTW, and U-Tree ultimately found is the following. First listen two
times, if the listening outcomes are consistent, open the predicted door with gold
behind; otherwise take one more listening action, and based on the majority to open
the appropriate door.

Cheese Maze. This domain, as shown in Figure 5, consists of a eleven-cell maze

Figure 5: Cheese-maze domain

with a cheese in it. The agent is a mouse that attempts to find the cheese. The
agent’s starting position for each episode is at one of the eleven cells uniformly
random. The actions available to the agent are: move one cell left (0), right (1),
up (2) and down (3). However, it should be noticed that if the agent hits the wall,
its relative position in the maze remains unchanged. At each cell the agent can
observe which directions among left, right, up and down the cell is blocked by a
wall. If wall-blocking statuses of each cell are represented by 1 (blocked), and 0
(free) respectively; then an observation is described by a four-digit binary number
where the digits from left to right are wall-blocking statuses of up, left, down and
right directions. For example, 0101 = 5, 0111 = 7, ... as described in Figure 5.
The agent gets a reward of -1 when moving into a free cell without a cheese; hitting
the wall gives it a penalty of -10; and a reward of 10 is given to the agent when it
finds the cheese. As can be seen, some observations themselves alone are insufficient
for the mouse to locate itself unambiguously in the maze. Hence, the mouse must
learn to resolve these ambiguities of observations in the maze to be able to find the
optimal policy.

Our algorithm found a context tree consisting of 43 states that contains the tree
as shown in Figure 6. The tree splits from the root into the 6 possible observations.
Then observations 5 and 10 are split into the four possible actions; and some of these
actions, the ones that come from a different location and not a wall collision, are
split further into the 6 “possible” observations before that. This resolves which 5 or

18

Figure 6: Cheese-maze tree

which 10 we are at. The states in this tree resolve the most important ambiguities
of the raw observations and an optimal policy can be found. The domain contains
an infinite amount of longer dependencies among which our found states pick up
a small subset. The cheese-maze plot in Figure 7 shows that after the initial 5000
experiences, ΦMDP is marginally worse than MC-AIXI-CTW but is better than U-
Tree and Active-LZ. From time point 10,000, there is no difference between ΦMDP
and MC-AIXI-CTW. U-Tree and Active-LZ remain inferior.

Figure 7: Cheese maze

Kuhn Poker. In Kuhn poker [17] a deck of only three cards (Jack, Queen and
King) is used. The agent always plays second in any game (episode). After putting

19

Figure 8: Kuhn poker

a chip each into play, the players are dealt a card each. Then the first player says bet
or pass and the second player chooses bet or pass. If player one says pass and player
two says bet then player one must choose again between bet and pass. Whenever
a player says bet they must put in another chip. If one player bets and the other
pass the better gets all the chips in play. Otherwise the player with the highest card
gets the chips. Player one plays according to a fixed but stochastic Nash optimal
strategy [11]. ΦMDP finds 89 states. It can be observed from the Kunh-poker plot
in Figure 8 that ΦMDP is comparable to MC-AIXI-CTW and much better than
U-Tree and Active-LZ, who loose money.

5 Conclusions

Based on the Feature Reinforcement Learning framework [14] we defined actual prac-
tical reinforcement learning agents that perform very well empirically. We evaluated
a reasonably simple instantiation of our algorithm that first takes 5000 random ac-
tions followed by finding a map through a search procedure and then it performs
Q-learning on the MDP defined by the map’s state set.

We performed an evaluation on four test domains used to evaluate MC-AIXI-
CTW in [28]. Those domains are all suitably attacked with context tree methods.
We defined a ΦMDP agent for a class of maps based on context trees, and compared
it to three other context tree-based methods. Key to the success of our ΦMDP
agent was the development of a suitable stochastic search method for the class
of Markov AOCTs. We combined parallel tempering with a specialized proposal
distribution that results in an effective stochastic search procedure. The ΦMDP

20

agent outperforms both the classical U-tree algorithm [21] and the recent Active-LZ
algorithm [6], and is competitive with the newest state of the art method MC-AIXI-
CTW [28]. The main reason that ΦMDP outperforms U-tree is that ΦMDP uses a
global criterion (enabling the use of powerful global optimizers) whereas U-tree uses
a local split-merge criterion. ΦMDP also performs significantly better than Active-
LZ. Active-LZ learns slowly as it overestimates the environment model (assuming
n-Markov or complete context-tree environment models); and this leads to unreliable
value-function estimates.

Below are some detailed advantages of ΦMDP over MC-AIXI-CTW:

• ΦMDP is more efficient than MC-AIXI-CTW in both computation and mem-
ory usage. ΦMDP only needs an initial number of samples and then it finds
the optimal map and uses AVI to find MDP parameters. After this it only
needs a Q-learning update for each iteration. On the other hand, MC-AIXI-
CTW requires model updating, planning and value-reverting at every single
cycle which together are orders of magnitude more expensive than Q-learning.
In the experiments ΦMDP finished in minutes while MC-AIXI-CTW needed
hours. Another disadvantage of MC-AIXI-CTW is that it is a memory-hungry
algorithm. ΦMDP learns the best tree representation using stochastic search,
which expands a tree towards relevant histories. MC-AIXI-CTW learns the
mixture of trees where the number of tree nodes grows (and thereby the mem-
ory usage) linearly with time.

• ΦMDP learns a single state representation and can use many classical RL
algorithms, e.g. Q-Learning, for MDP learning and planning.

• Another key benefit is that ΦMDP represents a more discriminative approach
than MC-AIXI-CTW since it aims primarily for the ability to predict future
rewards and not to fully model the observation sequence. If the observation
sequence is very complex, this becomes essential.

On the other hand, to be fair it should be noted that compared to ΦMDP, MC-
AIXI-CTW is more principled. The results presented in this paper are encouraging
since they show that we can achieve comparable results to the more sophisticated
MC-AIXI-CTW algorithm on problems where only short-term memory is needed.
We plan to utilize the aforementioned advantages of the ΦMDP framework, like
flexibility in environment modeling and computational efficiency, to attack more
complex and larger problems.

Acknowledgement

This work was supported by ARC grant DP0988049 and by NICTA. We also thank
Joel Veness and Daniel Visentin for their assistance with the experimental compar-
ison.

21

References

[1] Akaike, H.: A new look at the statistical model identification. IEEE Transac-
tions on Automatic Control 19, 716–723 (1974)

[2] Bertsekas, D.P., Tsitsiklis, J.N.: Neuro-Dynamic Programming. Anthena Sci-
entific, Belmont, MA (1996)

[3] Brafman, R.I., Tennenholz, M.: R-max -a general polynomial time algorithm
for near-optimal reinforcement learning. Journal of Machine Learing Research
3, 213–231 (2002)

[4] Chrisman, L.: Reinforcement learning with perceptual aliasing: The perceptual
distinctions approach. In: AAAI. pp. 183–188 (1992)

[5] Cover, T.M., Thomas, J.A.: Elements of Information Theory. John Willey and
Sons (1991)

[6] Farias, V., Moallemi, C., Van Roy, B., Weissman, T.: Universal reinforcement
learning. Information Theory, IEEE Transactions on 56(5), 2441 –2454 (May
2010)

[7] Geyer, C.J.: Markov chain Monte Calro maximum likelihood. In: Comput-
ing Science and Statistics: the 23rd Symposium on the Interface. pp. 156–163.
Interface Foundation, Fairfax (1991)

[8] Givan, R., Dean, T., Greig, M.: Equivalence notions and model minimization
in Markov decision process. Artificial Intelligence 147, 163–223 (2003)

[9] Granville, V., Kr̆ivánek, M., Rasson, J.P.: Simulated annealing: A proof of
convergence. IEEE Transactions on Pattern Analysis and Machine Intelligence
16(6), 652–656 (June 1994)

[10] Grünwald, P.D.: The Minimum Description Length Principle. The MIT Press
(2007)

[11] Hoehn, B., Southey, F., Holte, R.C., Bulitko, V.: Effective short-term opponent
exploitation in simplified poker. In: AAAI. pp. 783–788 (2005)

[12] Hukushima, K., Nemoto, K.: Exchange monte carlo method and application to
spin glass simulations. Journal of the Physical Socieity of Japan 65(4), 1604–
1608 (1996)

[13] Hutter, M.: Universal Articial Intelligence: Sequential Decisions based on Al-
gorithmic Probability. Springer, Berlin (2005)

[14] Hutter, M.: Feature reinforcement learning: Part I. Unstructured MDPs. Jour-
nal of General Artificial Intelligence (2009)

22

[15] Kaelbling, L.P., Littman, M.L., Cassandra, A.R.: Planning and acting in pari-
tally observable stochastic domains. Artifical Intelligence 101, 99–134 (1998)

[16] Kocsis, L., Szepesvári, C.: Bandit based monte-carlo planning. In: The 17th

European Conference on Machine Learning. pp. 99–134 (2006)

[17] Kuhn, H.W.: A simplified two-persion poker. In: Contributions to the Theory
of Games. pp. 97–103 (1950)

[18] Li, L., Walsh, T.J., Littmans, M.L.: Towards a unified theory of state ab-
straction for Mdps. In: In Proceedings of the 9th International Symposium on
Artificial Intelligence and Mathematics (2006)

[19] Liu, J.S.: Monte Carlo Strategies in Scientific Computing. Springer (2001)

[20] Madani, O., Handks, S., Condon: On the undecidability of probabilistic plan-
ning and related stochastic optimization problems. Artifical Intelligence 147,
5–34 (2003)

[21] McCallum, A.K.: Reinforcement Learning with Selective Perception and Hid-
den State. Ph.D. thesis, Department of Computer Science, University of
Rochester (1996)

[22] Rissanen, J.: A universal data compression system. IEEE Transactions on In-
formation Theory 29(5), 656–663 (1983)

[23] Schneider, J., Kirkpatrick, S.: Stochastic Optimization. Springer, first edn.
(2006)

[24] Singh, S.P., James, M.R., Rudary, M.R.: Predictive state representations: A
new theory for modeling dynamical systems. In: Proceedings of the 20th Con-
ference in Uncertainty in Artificial Intelligence. pp. 512–518. Banff, Canada
(2004)

[25] Suman, B., Kumar, P.: A survey of simulated annealing as a tool for single and
multiobjecctive optimization. Journal of the Operational Research Society 57,
1143–1160 (2006)

[26] Sunehag, P., Hutter, M.: Consistency of feature Markov processes. In: Proc.
21st International Conf. on Algorithmic Learning Theory (ALT’10). LNAI, vol.
6331, pp. 360–374. Springer, Berlin, Canberra (2010)

[27] Sutton, R., Barto, A.: Reinforcement Learning. The MIT Press (1998)

[28] Veness, J., Ng, K.S., Hutter, M., Uther, W., Silver, D.: A Monte-Carlo AIXI
approximation. Journal of Artifiicial Intelligence Research 40(1), 95–142 (2011)

23

[29] Vidal, E., Thollard, F., Higuera, C.D.L., Casacuberta, F., Carrasco, R.C.:
Probabilitic finite-state machines. IEEE Transactions on Pattern Analysis and
Machine Intelligence 27(7), 1013–1025 (July 2005)

[30] Wallace, C.S., Dowe, D.L.: Minimum message length and komogorov complex-
ity. Computer Journal 42(4), 270–283 (1999)

[31] Wilems, F.M.J., Shtarkov, Y.M., Tjalkens, T.J.: The context tree weighting
method: Basic properties. IEEE Transactions on Information Theory 41, 653–
644 (1995)

24

