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Abstract

A popular approach of achieving fairness in optimization problems is by
constraining the solution space to “fair” solutions, which unfortunately typi-
cally reduces solution quality. In practice, the ultimate goal is often an aggre-
gate of sub-goals without a unique or best way of combining them or which
is otherwise only partially known. We turn this problem into a feature and
suggest to use a parametrized objective and vary the parameters within rea-
sonable ranges to get a set of optimal solutions, which can then be optimized
using secondary criteria such as fairness without compromising the primary
objective, i.e. without regret (societal cost).
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1 Introduction

Terminology. We consider the problem of optimizing a primary objective while
also caring about a second criterion. Before introducing our model, we need to clar-
ify terminology: The words “(sub)optimal”, “best”, “solution quality”, “regret”,
“(ir)relevant”, “(in)comparable” will always refer to the primary objective, hence-
forth called “objective”. On the other hand, “fair”, “just”, “equitable” will always
refer to the secondary criterion. If some of the latter aspects are relevant to the
primary objective, they should be incorporated there. While in practice there are
differences in meaning of fair/just/equitable and possibly treatment, the difference
does not matter in formalizing our basic idea, so we use the terms interchangeably.

Fairness by constraint. We consider the problem of (automated) decision-
making based on some (primary) objective U : S → R. Optimal solutions
s∗ := arg maxs U(s) sometimes appear to be unfair or unjust or not equitable. A
popular approach of achieving fairness or equality is by constraining the solution
space S [ZVRG17, ABD+18]. Sometimes (primary-objective) irrelevant attributes
such as gender are used (e.g. a quota-based system that admits the best students,
but constrained by selecting (at least) 30% women). Diversity arguments have more
force, if based on objective-relevant attributes, e.g. diversity in thinking or skills,
rather than diversity in looks or genes. In the former case, diversity is (only) an
instrumental goal: If diversity indeed improves whatever the ultimate goal is, then it
could in principle (already) be accounted for in the to-be-optimized primary objec-
tive, although operationally it may be easier to treat it as a constraint. If diversity
does not positively correlate with the ultimate goal, but is desirable for other rea-
sons, it can be modeled as a secondary objective or constraint. This constraining-of-
solution-space by (esp. irrelevant) factors is a popular approach, which unfortunately
reduces solution quality [MW18].1

Uncertainty in objective. In practice, the ultimate goal is often a (possibly
non-linear) aggregate of sub-goals, e.g. “life goals” include food, shelter, family,
education, entertainment, health, wealth, ... Few would argue there is a unique or
best way of combining the different sub-goals into one objective.

Fairness without regret. If we allow for a parametrized2 objective Uθ and vary the
parameters θ within reasonable ranges Θ, we get a set of (incomparable) optimal
solutions {s∗θ : θ ∈ Θ}, one solution s∗θ := arg maxs Uθ(s) for each θ, and can
optimize within this set for secondary criteria such as fairness F : S → R without
compromising the primary objective, i.e. without (societal) cost. The optimal fair
solution is s∗θ∗ , where θ∗ := arg maxθ F (s∗θ). The next few pages discuss and illustrate
this idea a bit more, but hardly go beyond this basic idea.

1In machine learning classification this is known as the Accuracy↔Fairness tradeoff.
2This formulation also covers partially specified, partially observed, and imprecise objectives,

but not stochastic uncertainty.
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What this work is NOT about. We kept this note deliberately simple and focus
on the basic idea. No probabilities, no machine learning, no fancy optimization
algorithm – yet. Besides an example, which is purely for illustration purpose only, we
also don’t discuss how objectives or fairness criteria or attributes could or should be
chosen. Whatever practitioners/society/ethicists deem appropriate, can be plugged
in. This work is also not about bias in the data; it assumes data is (sufficiently)
unbiased or has been (sufficiently) debiased by other means, a non-trivial [BS99,
BS16] but not impossible endeavor [CWV+17]. We also do not provide a ready
algorithm nor an integrated practical system nor treat specific applications.

What this work IS about. The focus is on introducing and discussing a novel
way to improve a (given) fairness criterion without compromising solution quality
with respect to some (given) primary objectives, given unbiased data.

Background and (un)related work. The literature on algorithmic fairness is
vast, but we are not aware of any idea to solving the fairness problem similar to ours.
[Zho18] is a lean tutorial introducing and comparing the most prominent notions of
bias and fairness in machine learning, and [MMS+19] contains a more comprehen-
sive survey and list of references. An empirical study comparing fairness-enhancing
interventions in machine learning can be found in [FSV+19]. The literature is scat-
tered due to the interdisciplinarity of the subject and its broad relevance for and
diverse applications in society, and possibly due to the plethora of contradictory
[Zho18, Sec.4.7] and contentious [VR18] and controversial [Har16, ZVRG17] notions
of fairness. How to deal with implicit bias in the data is subject to ongoing research
[BS16, CWV+17] and not addressed by our work. For instance, [KC09] “learn[]
unbiased models on biased training data [by] massaging the dataset by making the
least intrusive modifications which lead to an unbiased dataset.” Our work is closer
to work that tries to improve fairness by constraints [ZVRG17] in the sense that we
reject this notation and provide and argue for an alternative solution.

Content. Section 2 introduces the setup and the classical approach to fairness
as a constraint. In Section 3 we present the main idea of uncertain objectives,
which allows simultaneously for optimal and fair(er) solutions. Section 4 discusses
the resulting mathematical coupled bilevel optimization problem and, for linearly
parametrized objectives, its similarities and differences to multi-objective optimiza-
tion. Section 5 contains (more/informal) discussion of fairness, biased data, non-
unique objectives, and uncertainty in data. Section 6 is a brief outlook.

2 Fairness as a Constraint

In this section we describe the classical approach to fairness by confining the solution
space to solutions deemed fair. We illustrate its effect in reducing the solution
quality w.r.t. the primary objective on a small student admission example. This
sets the stage for our novel proposal in the subsequent section which circumvents
this problem.
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Optimal unconstrained solution. Consider an optimization problem with so-
lutions space S, and some objective quantified by an utility function U : S → R.
The3

optimal solution (by definition) is s∗ := arg max
s∈S

U(s) (1)

Example. Consider a simple example of student admissions based on IQ and grade.
Assume there is a pool of 6 potential students P ≡ {studenti : 1 ≤ i ≤ 6} applying
with information student = (ID, name, IQ, grade, gender} as displayed in Table 1 and
Figure 1.

Assume that high IQ and grade are deemed equally important for admission to
University. IQ is in the range 80–150 or maybe 50–200 in general, while grades
are in the range 5–10 or in general 0–10, so they are not directly commensurable.
Administrators typically rescale factors to make them commensurable, so dividing
IQ by 10 may be adopted. We thus arrive at a performance measure

U(student) := 1
2
IQ(student)/10 + 1

2
grade(student) ∈ [0; 15]

Assume the University can admit 2 students and A ⊆ P is the set of potentially
admitted students. The goal then is to maximize objective

U(A) :=
∑

student∈A

U(student)

which is the same as selecting the two students with highest U . The by-definition
optimal selection is

A∗ := arg max
A⊆P :|A|=2

U(A) = {student ∈ P : U(student) ≥ u}

for some suitable choice of u such that the condition holds for exactly 2 students.
From the U=U1/2-column in Table 1 one can see that Bob and Zac have the highest
score, i.e. A∗ = {Bob,Zac}.4

Classical fairness constraint. In the example, the average IQ and grade of men
is the same as for women, namely 〈IQ|m〉 = 120 = 〈IQ|f〉 and 〈grade|m〉 = 8 =
〈grade|f〉. Arguably admitting two men in this situation is unfair.5 Quotas have
been argued to increase fairness, e.g. admit at least 30% women. Formally one
restricts the solution space S to fair solutions Sfair := {s ∈ S : F (s) = fair}, where
F : S → {unfair, fair} is some (exact/hard) fairness constraint, leading to the

optimal fair solution s∗fair := arg max
s∈Sfair

U(s) (2)

3We assume finite S and bounded U to avoid distracting math subtleties.
4To connect the notation back to (1), set s := A and S = {A ⊆ P : |A| = 2}, then s∗ = A∗.

See also Figure 2.
5This is neither the place for such argument, nor what term, fair↔just↔equitable, is most

appropriate.
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Table 1: (Student data&score) There are 6 students in our running example P ,
together with their θ-weighted score Uθ := θ·IQ/10 + (1−θ)·grade for various θ.

ID name IQ grade gender U = U1/2 U0.35 U0.2

A Amy 100 10 f 10 10 10
B Bob 150 7 m 11 9.8 8.6
E Eve 150 5 f 10 8.5 7.0
I Isa 110 9 f 10 9.7 9.4

M Max 70 9 m 8 8.3 8.6
Z Zac 140 8 m 11 10.1 9.2

60 70 80 90 100 110 120 130 140 150 160
4
5
6
7
8
9

10
Amy

Bob

Eve

IsaMax
Zac

Figure 1: (Student example) 6 students from P with IQ/grade on horizon-
tal/vertical axis.
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Figure 2: (Student pairs) All 15 pairs of students (all potential admissions
A ⊆ P : |A| = 2) with summed IQ/grade on horizontal/vertical axis, labeled with
name initials.
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Example. In the student admission example, one could set F (A) := fair iff A
contains more than 30% women, in which case A∗fair consists of Bob or Zac and Amy or
Eve or Isa. All 6 solutions score the same U(A∗fair) = 21 but less than U(A∗) = 22. In
general, the constrained optimum s∗fair is sub-optimal compared to the unconstrained
optimal solution s∗. Fairness comes with a cost or regret of U(s∗) − U(s∗fair) > 0
(unless s∗fair = s∗). In the example, 10 IQ-points or 1 in grade is sacrificed.

3 Fairness without Regret

We now introduce and discuss our novel idea, namely to improve a (given) fair-
ness criterion without compromising solution quality with respect to some (given)
primary objective. The main idea is based on the concept of uncertain objectives,
which allows simultaneously for optimal and fair(er) solutions. We illustrate the
idea on the running student example of the previous section.

Uncertain objective. The considered admission protocol involved a number of
not-so-well justified steps. For instance, IQ and grade were weighed equally, but what
if overall student grade is refined to STEM grade and HASS grade, then weighing
IQ:STEM:HASS as 1:1:1 may be more natural, effectively weighing IQ by 1

3
and

grade by 2
3
. Equally concerning is the adopted rescaling to make IQ and grade

commensurable. The chosen scaling was plausible but by far unique. Dividing IQ
by 20 to get IQ and grade into the same range 0 – 10 seems equally justified. While
sophisticated analyses or deliberations may narrow down the choices, in many social
real-world problems, a considerable degree of freedom or uncertainty in the objective
remains.

Core Idea: Fairness without Regret (FAWOR). The main idea of this note is
to actually turn this problem into a feature, enabling fairer decision making without
regret: If a unique objective is not achievable, consider the class of reasonable
(primary) objective functions, or at least a sub-class thereof, say {Uθ : θ ∈ Θ}.
Each choice θ ∈ Θ leads to a potentially different

θ-optimal solution s∗θ := arg max
s∈S

Uθ(s) (3)

Since (by assumption) no objective among {Uθ} is more justified than another, Uθ-
optimal solutions s∗θ are incomparable. We hence can use some (secondary) fairness

criterion F : S → R to choose among the Uθ-optimal solutions S∗Θ := {s∗θ : θ ∈ Θ}
without regret, e.g. the fairest solution:

s∗θ∗ = arg max
s∈S∗Θ

F (s) (with θ∗ := arg max
θ∈Θ

F (s∗θ) ) (4)

is (the parameter corresponding to) the maximally fair solution among optimal
solutions s∗θ.
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Example. In our example, we could introduce a parameter weighing IQ versus
grade:

Uθ(student) := θ·IQ(student)/10 + (1−θ)·grade(student) with 1
3
≤ θ ≤ 2

3

We definitely want to take IQ and grade into account, so θ should not be close to
0 or 1. A range 1

3
≤ θ ≤ 2

3
may be deemed plausible. A smaller range seems too

dogmatic while a much larger range risks to focus too much on one attribute. The
Uθ-optimal admissions then are

A∗θ := arg max
A⊆P :|A|=2

Uθ(A) = {student ∈ P : Uθ(student) ≥ uθ}

for a suitable threshold uθ ∈ R so that |A∗θ| = 2. As a (soft/approximate) fairness
criterion we could measure the male-female number mismatch

−F (A) :=
∣∣∣#{student ∈ A : gender(student) = m}

− #{student ∈ A : gender(student) = f}
∣∣∣

Table 1 shows Uθ for θ = 1/2 and θ = 0.35 and the out-of-range θ = 0.2. −F (A)
is minimized if the number of male and female admissions is the same. For θ = 0.35,
Aθ = {Amy,Zac} achieves this, while our original objective U = U1/2 does not. Hence
the optimal fair solution is A∗θ∗ = {Amy,Zac} achieved by reducing the weight of IQ
a bit to e.g. 0.35 = θ∗ ∈ arg maxθ F (A∗θ).

More generally one can show (most conveniently by inspecting Figure 2) that
3/8<θ<

3/4 admits two men, 1/4<θ
∗< 3/8 admits one male and one female, and θ< 1/4

would admit two women, but this has been deemed out-of-range, so no fairness
criterion could achieve this, unless Θ is enlarged.

Note that U0.35(A∗0.35) = 20.1 while U1/2(A∗1/2) = U(A∗) = 22. This does not
imply that the fair solution is inferior to the original unconstrained solution. Uθ(A)
for different θ are incomparable (even on the same A). Indeed, in general, the fair
utility Uθ∗(s

∗
θ∗) may even be higher than the original U(s∗) (assuming ∃θ : U = Uθ).

For instance, this would happen if we added an (otherwise irrelevant) large positive
constant to all grades, or if we apply an (otherwise irrelevant) transformation fθ to
Uθ, e.g. using Ũθ := (1−θ)·Uθ.

Generality. We want to emphasize the generality of this idea/approach and for-
mulation (3) and (4). It does not rely on any specific functional shape of utility Uθ
nor fairness criterion F . The parameter space Θ as well as underlying (student) at-
tributes can be continuous or ordinal (IQ, grades, age) or boolean (award-nominee)
or categorical (school, ethnicity). Also, the application domain and solution space S
are completely general. In the above toy example we considered student admission
based on IQ and grades and gender, and S consisted of subsets of students of size
two.

7



As a side remark, while studies have shown that IQ positively correlates with
(alternative measures of) intelligence, with academic success, with job performance,
and with social status [HM96, NAB+12], others have disputed or at least cautioned
about their validity [RN15]. Similarly for (school) grades. We want to stress that
these controversies are irrelevant to our proposal in the following sense: This paper
neither endorses nor rejects the suitability of any attributes or categories (be it
IQ or grades or else) for assessing students, not even whether gender or ethnic
balance is desirable or not. If an attribute or category is deemed (ir)relevant or
controversial, this has to be sorted out, whether using FAWOR or quotas or any
other methodology. Indeed, if anything, FAWOR ameliorates the problem, by
allowing to flexibly incorporate the attributes, without having to completely resolve
the issue. Anyone concerned about the automation of ethical decisions should be
pleased that 4 of the 5 steps in the protocol in the box have to be done by humans,
with Step 4 reserved for ethicists. Only the last step is purely algorithmic. Further
discussion is deferred to Section 5.

FAWOR Protocol

1. Choose S: A committee (say) searches for attributes that potentially affect
the primary objective, e.g. are potentially indicative of the suitability and
performance of students, such as prior grades and other achievements.

2. Choose Uθ: Based on these attributes s, the committee develops “utility”
functions Uθ(s) that potentially capture the a-priori intuitive objective, e.g.
of student’s success. In the simplest case this could just be a θ-weighted
average of attributes.

3. Choose Θ: The next step is to select a reasonable range for θ, e.g. reason-
able ranges for each weight. The range of utility functions {Uθ(s) : θ ∈ Θ}
should be chosen as broad as reasonable. An important feature that distin-
guishes FAWOR from constraint-based quota systems is that the committee
members do not need to agree. They could just take the union (or convex
hull) of their individual choices, as long as everyone is acting in good faith.

4. Choose F : The committee determines the fairness criterion F (s) of interest,
which can depend on additional attributes such as gender or race.

5. Compute s∗θ∗: In theory, they then calculate the set of all optimal solutions
S∗Θ via (3) and from that the optimal fair solution s∗θ∗ via (4). Practical
approaches to finding this solution are suggested in Section 4.

Step 1 is the same as for any methodology optimizing some (social) objective. It
neither is nor needs to be specific to FAWOR, and for better comparison with other
methods indeed should not be tailored to FAWOR. Step 2 is an exploratory phase
which should also be very similar between different methods.

Unlike in the pedagogical example, where we first considered a single fixed ob-
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jective U = U1/2 , rejected the solution, and then reconsidered how to achieve fair(er)
solutions, it is important that Step 3 is actually done before Step 5, i.e. before
looking at the result and ideally also before looking at the data. If the committee
would start modifying/enlarging Θ, maybe because they feel the outcome is not
“fair enough”, they face the risk of post-hoc rationalization and inadvertently or
deliberately rigging the system. But note that the classical fairness-as-a-constraint
approach described in Section 2 is (arguably) rigged from the outset, i.e. carefully
iterating the Protocol above, is still less problematic than quota-based approaches.

4 The Optimization Problem

Unfortunately our novel fairness criterion (3) and (4) involve a nasty double opti-
mization problem. Structurally it is a (special case of a) so-called bilevel optimiza-
tion problem. We first suggest a naive gradient ascent algorithm, which can work
for some objectives, but unfortunately not for the most likely linear ones appearing
in practice. Fortunately for linearly parametrized objectives, our problem reduces
to a multi-objective optimization problem, albeit with the crucial difference that
the fairness criterion restricts the Pareto front. Again, we illustrate the different
solutions on our running student admission example. Finally, a machine learning
approach to unknown objective Uθ would be to somehow learn θ from data itself,
which can reduce the uncertainty Θ (somewhat) but rarely if ever completely.

Bilevel optimization. In order to obtain an optimal fair solution s∗θ∗ or A∗θ∗ ,
one has to solve the coupled optimization problems (3) and (4). In general, this is
a nasty non-convex and non-continuous bilevel optimization problem over discrete
choices (s ∈ S or A ⊆ P ) and continuous parameters (θ ∈ Θ). Principled [Bar98] or
heuristic [Tal13] off-the-shelf general-purpose optimization algorithms may work for
some choices of Uθ(), F (), Θ, and data. Possibly special-purpose optimizers have to
be developed for large-scale real-world problems. Our problem is actually not a fully
general bilevel optimization problem, but exhibits special properties which may be
exploitable.

A naive gradient ascent algorithm. In case of a continuous solution space S ⊆
Rd′ and continuous parameter space Θ ⊆ Rd and (twice) continuously differentiable
Uθ(s) and F (s), we could try to incrementally improve both by gradient ascent:
Assume first, we solve (3) exactly, and want to improve fairness F (s∗θ) by updating
θ in direction of6

∇θF (arg max
s
Uθ(s)) ≡ ∇θF (s∗θ) =: Gθ(s

∗
θ)

An explicit expression for G can be obtained by implicit differentiation [FAHG16,

6All vectors are taken to be column vectors, including the gradient ∇, unless transposed by >.
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Lem.1&2]7

Gθ(s) = −∇θ∇>s Uθ(s) · [∇s∇>s Uθ(s)]−1 · ∇sF (s)

Starting with some (s,θ), for this fixed θ, we could now improve s by either solving
maximization (3) exactly for s← s∗θ or incrementally by gradient ascent

s ← ΠS[s+ α∇sUθ(s)]

where α is the learning rate and ΠS a projection back into S. We then update θ to
increase fairness by

θ ← ΠΘ[θ + βGθ(s)]

where β is a learning rate and ΠΘ a projection back into Θ. We then repeat and
alternate between the two gradient steps. This is just one (naive) suggestion how the
optimization problem could be solved. This naive algorithm may give satisfactory
approximate solutions on some problems.

In our student example, S is discrete, but we could try some integer relaxation.
For instance, we could represent selected students A as a binary vector s ∈ S :=
{0, 1}6 with si = 1 iff studenti ∈ A, then U(A) ≡ U(s) =

∑6
i=1 si U(studenti).

We could then expand S to the simplex {s ∈ R6 : si ≥ 0∀i ∧
∑6

i=1 si = 2}.
Unfortunately ∇s∇>s Uθ(s) ≡ 0, since Uθ(s) is linear in s, so the double gradient
algorithm above cannot be applied naively. If we add the convex constraints on s,
this becomes (a special case of) a BiLevel optimization problem [GFC+16].

Multi-objective optimization and Pareto optimality [Mie08]. For linearly
parametrized objectives (and only for those), there is the following relation to
Pareto optimality: In multi-objective optimization one considers m > 1 objec-
tives U1, ..., Um : S → R over solution space S. A solution s ∈ S is called
Pareto optimal iff it is not dominated by any other s′ ∈ S in the sense of
¬∃s′ ∈ S : [∀j : Uj(s

′) ≥ Uj(s) ∧ ∃j : Uj(s
′) > Uj(s)]. The Pareto front

PF ⊆ S is the set of all Pareto optimal s ∈ S. All other s /∈ PF are clearly
sub-optimal. Consider now the weighted sum of utilities Uθ(s) :=

∑m
j=1 θjUj(s)

with θj > 0 ∀j (strict inequality is important here). It is easy to see that for
any θ > 0, s∗θ := arg maxs∈S Uθ(s) is Pareto optimal. The converse, that any
s ∈ PF is Uθ-optimal for some θ > 0 however is in general not true. It holds true
if {(U1(s), ..., Um(s)) : s ∈ S} is a convex set,8 but for a finite data sets S (e.g.
S = {A ⊆ P : |A| = k = 2}) in the student example) this is never convex.9 Lacking
a better term, let us call CPF := {s∗θ : θ > 0} the “convex” Pareto front.10 An s ∈ S

7Differentiate ∇sUθ(s)|s=s∗θ ≡ 0 w.r.t. θ and solve for ∇θs∗θ, and plug this into ∇θF (s∗θ) =

∇θs∗>θ ·∇sF (s)|s=s∗θ .
8Or more generally if all points in this set lie on the boundary of its convex hull, which may or

may not be true for finite S.
9For instance if we admit k = 1 student in our example, then PF = {Amy, Bob, Isa, Zac} ( S

are Pareto optimal, but Isa is not Uθ-optimal for any θ > 0.
10CPF itself can of course not be convex, since S is not a vector space, but even UPF :=
{(U1(s), ..., Um(s)) : s ∈ CPF} is usually not convex, but all points in UPF lie on the boundary of
the convex hull of UPF.
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is called weakly Pareto optimal (WPF) iff ¬∃s′ ∈ S : [∀j : Uj(s
′) > Uj(s)]. For fair

decision making, we are only interested in reasonable mixtures θ ∈ Θ ( (0;∞)m,
and the set Θ may not even be an axis-aligned hypercube. Therefore in general

{s∗θ∗} ( S∗Θ ( CPF ( PF ( WPF ( S

For instance, for our example one can show that all inclusions are strict (see Fig-
ure 2):

optimal Fair solution: s∗θ∗ = {Amy,Zac},
(Θ)-optimal solution set: S∗Θ = {s∗θ∗} ∪ {{Bob,Zac}},

convex Pareto front: CPF = S∗Θ ∪ {{Amy, Isa}, {Bob,Eve}},
Pareto front: PF = CPF ∪ {{Amy,Bob}, {Bob, Isa}, {Isa,Zac}},

weak Pareto front: WPF = PF ∪ {{Eve,Zac}},
solution space: S = WPF ∪ {{Amy,Eve}, {Bob,Eve}, {Max, ∗}}

Nevertheless, for linear mixtures one may use ideas from multi-objective optimiza-
tion and Pareto frontiers to narrow down the solution space to aid finding S∗Θ and
ultimately s∗θ∗ . Note though that this approach is limited to linear mixtures of ob-
jectives, but not generally parametrized objectives Uθ, and even Θ does not need to
be a (subset of a) vector space, so the connection to Pareto optimality is somewhat
weak.

Machine Learning [MB12]. The machine learning approach to unknown objec-
tive Uθ would be to somehow learn θ. This requires relevant labeled examples, e.g.
a data base of now-graduated students containing their original application profile
side-by-side with their grades at graduation. Even better would be to follow-up and
record their future success in life, which would presumably be closer to the true
objective of student admission selection.

Absent of such data we are left with the problem of hand-designed objectives,
with a range of reasonable θ as in our example. Even if we have training data, this
still leaves at least two sources of indeterminate θ.

(i) Finite data can never determine sharp values for θ. Some parameters may
be learnable exactly-for-all-practical-purposes, others may have large error bars. In
the latter case, a confidence interval/set could be chosen for θ.

(ii) Even infinite data can only determine θ uniquely and correctly if we uniquely
and exactly know the ultimate success criterion (the labels) we are aiming at. Since
we often don’t, this just lifts the problem one level up. For instance, is it really grades
we care to optimize for when admitting students? Or is future lifetime income more
relevant, which would still be measurable in a longitudinal study? Or is maximizing
for positive contribution to society a better criterion? But is that measured by a
student’s direct+indirect increase of GDP or GNH [UAZW12] or otherwise [SFD18]?
Such uncertainties lead to a set of possible training labels admitθi = 1 ∈ {0, 1} if a
student turned out to be successful according to criterion Cθ. Assume we have a
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parametrized probabilistic classifier Ĉw
θ : P → [0; 1]. The predictive log-loss then

is Lθ(w) := log |admitθi − Ĉw
θ (studenti)|. The minimizer w∗ := arg minw Lθ(w) (or

some regularized version or confidence interval estimation) then leads to objective
Uθ := Ĉw∗

θ . Note that w∗ depends on θ, so we now have a coupled triple-optimization
problem.

So as long as the ultimate objective is debatable or data not perfect, we are
left with a set {Uθ : θ ∈ Θ} of possible objectives, and the approach in this paper
remains relevant.

5 Discussion

This section contains a more qualitative discussion of issues related to notions of
fairness, bias in data, non-unique objectives, and uncertainty in data.

Perfect fairness. We have demonstrated how to incorporate fairness as a sec-
ondary optimization criterion without compromising solution quality by exploiting
that many real-life objectives cannot unambiguously be defined. It is important to
note that if there is a binary notion of perfect fairness, it may not be achievable
with this procedure (unlike in the simple example).

Controversial fairness. On the other hand, fairness is a notoriously contentious
notion [VR18]. In our example, should irrelevant birth factors be even taken into
account, i.e. included in the data? If so, then which ones and why? Gender? Skin
color? Body height? Eye color? Should any imbalance in the pool of applicants be
taken into account (not a problem in our example)? Is representational/demographic
parity fair? If so, w.r.t. which attributes? Gender? Political spectrum? IQ? Deten-
tion rates? Given there are many contradictory notions of fairness [Zho18, Sec.4.7],
improving (presumed) fairness is probably wiser than aiming for perfect fairness.
Our approach does the former without harming solution quality; even optimizing
for controversial fairness notions (e.g. demographic parity [Har16, ZVRG17]) be-
comes unproblematic. Our running student example should neither be construed
as endorsing any of the chosen attributes or categories or numbers, nor choice of
fairness criterion.

Biased data. We also assumed that there is no bias in the data, or at least this work
did not address this issue. While removing explicit attributes in the data regarded
as irrelevant is easy, how to deal with implicit bias in the data is subject to ongoing
research [KC09, BS16, CWV+17]. One may argue that once data is debiased, there
is no need for secondary fairness criteria, but the former seems difficult to achieve
or even know, and further diversity arguments will probably always remain.

Non-unique objectives. Coming up with an appropriate parametrized objective
can itself be a challenge, but arguably this is a better/easier problem than to specify
a unique objective. Being forced to agree on a relative weighing of factors can be
arduous and the result may easily be determined by authority or whoever shouts
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loudest rather than rationally by reason and deliberation. A range of objectives
seems easier to converge to. In the simplest case one could pool the proposed utility
functions of different experts, or better, start with a large parametrized class {Uθ},
e.g. any (non)linear combination of attributes, then choose Θ to be the convex hull
of expert choices θ1, θ2, θ3, .... One may lean towards a smaller range Θ if the fairness
criterion is controversial, or a larger range Θ if fairness is deemed crucial.

Uncertainty in data. Consider a selection problem of k items from a large(r)
population P = {x1, ..., xn} as in the example, where xi ∈ X was a student record,
n = 6 and k = 2. Assume some attributes such as IQ are missing or not precisely
known, which can be modeled as interval-valued or more generally set-valued at-
tributes. In this case, a student record becomes a set Xi ⊆ X, the data set becomes
P = X1 × ... × Xn, and P ∈ P is one (arbitrary) completion or choice or imputa-
tion of attributes.11 For each choice we can find the optimal solution and then the
(supposedly) fairest choice:

A∗P := arg max
|A|=k

UP (A) and P ∗ := arg max
P∈P

F (A∗P ) (5)

Despite the similarity in mathematical structure to the uncertain objective case
(Θ=̂P and θ=̂P ), there is a crucial difference which renders A∗P ∗ actually very biased
or unfair. Assume that naively using mean values for uncertain attributes leads
to a high proportion of male admissions. Using (5) instead may indeed lead to
more women being admitted, but inspecting P ∗ would reveal that this has been
achieved by imputing IQ and grades at the low interval boundary for males and at
the high interval end for women, which is difficult to justify as fair. To summarize:
Uncertainty in data is fundamentally different from uncertainty in the objective,
and procedure (5) does not lead to fair decisions.

Ethical concerns.Many ethicists disapprove of (semi)automating ethical decisions.
They believe this approach is misguided or dangerous or inhuman, but this attitude
is unhelpful. Society unlikely will forgo decision algorithms with societal impact and
hence ethical consequences. The realistic choice is between algorithms that make
more or less ethical decisions. In any case, 4 out of 5 steps in our FAVOR protocol
in Section 3 are under human control.

We are also fully aware of the (five) abstraction errors criticized in [SBF+19], but
progress on fundamental questions requires over-simplifying abstractions initially.
Scientists who present neat and clean ideas (including us) are (usually) neither
naive nor ignorant about the intricacies of real societal challenges.

A short response to such accusations is: Quotas are a fairly crude instrument to
improve equality, but are nevertheless often used in practice if/since other instru-
ments are not realistically available or effective. The (only) claim this paper makes
is that FAWOR is a superior alternative to such constraint-based approaches, and

11While in this notation P strictly speaking is an n-tupel, we will interpret P also as a set of
size n, so that A ⊆ P is well-defined.
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its usage is nearly as easy as quota-based systems (apart from algorithmic complex-
ities).

A longer response is: Rome was not built in a single day by a single person, so
neither does every paper need to produce a complete ready-to-employ ethical system
approved by society. Many philosophical, mathematical, ethical, computational,
machine learning, political, and engineering ideas need to be combined to produces
such systems. Science works by a division of labor, some develop fundamental novel
ideas and concepts in the abstract, others (jointly) try to integrate and test them and
adapt them to make them fit for practice, still others decide whether the resulting
system will in the end be deployed or not. But without over-simplifying abstractions
of real-world problems in a first instance, progress on difficult problems would be
impossible.

For instance, the difference between fair/just/equitable didn’t matter for this
work. Of course this does not mean that we believe there is no difference between
these concepts or that they don’t matter. They matter when concretely instantiating
UΘ and F , and possibly for refining the core idea itself, and when integrated it into
an overall system.

Also, the mentioning of certain attributes (gender, race, IQ, ...) was for purely
illustrative purposes, and in any case “the use of racial categories in algorithmic
fairness research (i.e. the research community which has emerged around venues
like FAT* and AIES) has largely gone unquestioned.” [HDSS20], and as explained
above, it would be off-topic for this work to engage in these questions.

6 Outlook

The basic proposed idea (possibly) can and needs to be extended in various ways: For
instance, we have not discussed stochastic uncertainty: The data could be stochastic,
and/or the evaluation of the objective may be stochastic.

Many problems involve a machine learning component to solve, so there could
be bias and uncertainty in the learned model.

Possibly the most important theoretical question is how much can fairness be
increased by expanding a single objective to a parametrized class, or more generally,
how does F (s∗θ) depend on Θ. This will heavily depend on the problem domain,
primary objective, the fairness criterion, the data, and how large a Θ can be well-
justified before it becomes an opportunity for rigging rather than fairness. To make
theoretical progress on this question, some structural assumptions on Uθ, Θ, and F
have to be made. In practice one should probably refrain from iterating the FAWOR
protocol.

Finally, in order to obtain optimal fair solutions one has to solve a challenging
non-convex and non-continuous bilevel optimization problem over discrete choices
and continuous parameters.
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