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Abstract

We consider a Reinforcement Learning setup where an agent interacts
with an environment in observation-reward-action cycles without any (esp.
MDP) assumptions on the environment. State aggregation and more generally
feature reinforcement learning is concerned with mapping histories/raw-states
to reduced/aggregated states. The idea behind both is that the resulting
reduced process (approximately) forms a small stationary finite-state MDP,
which can then be efficiently solved or learnt. We considerably generalize
existing aggregation results by showing that even if the reduced process is not
an MDP, the (q-)value functions and (optimal) policies of an associated MDP
with same state-space size solve the original problem, as long as the solution
can approximately be represented as a function of the reduced states. This
implies an upper bound on the required state space size that holds uniformly
for all RL problems. It may also explain why RL algorithms designed for
MDPs sometimes perform well beyond MDPs.
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1 Introduction

In Reinforcement Learning (RL) [SB98], an agent Π takes actions in some environ-
ment P and observes its consequences and is rewarded for them. A well-understood
and efficiently solvable [Put94] and efficiently learnable [SLL09, LH12] case is where
the environment is (modelled as) a finite-state stationary Markov Decision Process
(MDP). Unfortunately most interesting real-world problems P are neither finite-
state, nor stationary, nor Markov. One way of dealing with this mismatch is to
somehow transform the real-world problem into a small MDP: Feature Reinforce-
ment Learning (FRL) [Hut09c] and U-tree [McC96] deal with the case of arbitrary
unknown environments, while state aggregation assumes the environment is a large
known stationary MDP [GDG03, FPP04]. The former maps histories into states
(Section 2), the latter groups raw states into aggregated states.

Here we follow the FRL approach and terminology, since it is arguably most gen-
eral: It subsumes the cases where the original process P is an MDP, a k-order MDP,
a POMDP, and others (Section 3). Thinking in terms of histories also naturally
stifles any temptation of a naive frequency estimate of P (no history ever repeats).
Finally we find the history vs state terminologically somewhat neater than raw state
vs aggregated state.

More importantly, we consider maps ϕ from histories to states for which the
reduced process Pϕ is not (even approximately) an MDP (Section 4). At first this
seems to defeat the original purpose, namely of reducing P to a well-understood and
efficiently solvable problem class, namely small MDPs. The main novel contribution
of this paper is to show that there is still an associated finite-state stationary MDP
p whose solution (approximately) solves the original problem P , as long as the
solution can still be represented (Section 5). Indeed, we provide an upper bound
on the required state space size that holds uniformly for all P (Section 6). While
these are interesting theoretical insights, it is a-priori not clear whether they could
by utilized to design (better) RL algorithms. We also show how to learn p from
experience (Section 7), and sketch an overall learning algorithm and regret/PAC
analysis based on our main theorems (Section 8). We briefly discuss how to relax
one of the conditions in our main theorems by permuting actions (Section 9). We
conclude with an outlook on future work and open problems (Section 10). A list of
notation can be found in Appendix A.

The diagram below depicts the dependencies between our results:
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2 Feature Markov Decision Processes (ΦMDP)

This section formally describes the setup of [Hut09c]. It consists of the agent-
environment framework and maps ϕ from observation-reward-action histories to
MDP states. This arrangement is called “Feature MDP” or short ΦMDP. We use
upper-case letters P , Q, V , and Π for the Probability, (Q-)Value, and Policy of the
original (agent-environment interactive) Process, and lower-case letters p, q, v, and
π for the probability, (q-)value, and policy of the (reduced/aggregated) MDP.

Agent-environment setup [Hut09c]. We start with the standard agent-
environment setup [RN10] in which an agent Π interacts with an environment P .
The agent can choose from actions a∈A and the environment provides observations
o∈O and real-valued rewards r ∈R⊆ [0;1] to the agent. This happens in cycles
t=1,2,3,...: At time t, after observing ot and receiving reward rt, the agent takes
action at based on history

ht := o1r1a1...ot−1rt−1at−1otrt ∈ Ht := (O ×R×A)t−1 ×O ×R

Then the next cycle t+1 starts. The agent’s objective is to maximize its long-term
reward. To avoid integrals and densities, we assume spaces O andR are finite. They
may be huge, so this is not really restrictive. Indeed, the ΦMDP framework has been
specifically developed for huge observation spaces. Generalization to continuous O
and R is routine [Hut09a]. Furthermore we assume that A is finite and smallish,
which is restrictive. Potential extensions to continuousA are discussed in Section 10.

The agent and environment may be viewed as a pair of interlocking functions of
the history H :=(O×R×A)∗×O×R:

Env. P : H×A O ×R, P (ot+1rt+1|htat),
Agent Π : H A, Π(at|ht) or at = Π(ht),

�
 �	Agent Π
�
 �	Env.P

action 6

reward?

observation

?

where  indicates that mappings → are in general stochastic. We make no (sta-
tionarity or Markov or other) assumption on environment P . For most parts, en-
vironment P is assumed to be fixed, so dependencies on P will be suppressed. For
convenience and since optimal policies can be chosen to be deterministic, we consider
deterministic policies at=Π(ht) only.
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Value functions, optimal Policies, and history Bellman equations. We
measure the performance of a policy Π in terms of the P -expected γ-discounted
reward sum (0≤γ<1), called (Q-)Value of Policy Π at history ht (and action at)

V Π(ht) := EΠ[Rt+1|ht] and QΠ(ht,at) := EΠ[Rt+1|htat], where Rt :=
∞∑
τ=t

γτ−trτ

The optimal Policy and (Q-)Value functions are

V ∗(ht) := max
Π

V Π(ht) and Q∗(ht, at) := max
Π

QΠ(ht, at),

where Π∗ :∈ argmax
Π

V Π(ϵ) (1)

The maximum over all policies Π always exists [LH14] but may not be unique, in
which case argmax denotes the set of optimal policies and Π∗ denotes a representa-
tive or the whole set of optimal policies. Despite being history-based we can write
down (pseudo)recursive Bellman (optimality) equations for the (optimal) (Q-)Values
[Hut05, Sec.4.2]:

QΠ(ht, at) =
∑

ot+1rt+1

P (ot+1rt+1|htat)[rt+1+γV
Π(ht+1)], V

Π(ht)=Q
Π(ht,Π(ht)) (2)

Q∗(ht, at) =
∑

ot+1rt+1

P (ot+1rt+1|htat)[rt+1+γV
∗(ht+1)], V

∗(ht)=max
at∈A

Q∗(ht, at) (3)

Π∗(ht) ∈ argmax
at∈A

Q∗(ht, at) (4)

Unlike their classical state-space cousins (see below), they are not self-consistency
equations: The r.h.s. refers to a longer history ht+1 which is always different from the
history ht on the l.h.s, which precludes any learning algorithm based on estimating
the frequency of state/history visits. Still the recursions will be convenient for the
mathematical development.

From histories to states (ϕ). The space of histories is huge and unwieldy and no
history ever repeats. Standard ways of dealing with this are to define a similarity
metric on histories [McC96] or to aggregate histories [Hut09c]. We pursue the latter
via a feature map ϕ :H→S which reduces histories ht∈H to states st :=ϕ(ht)∈S.
W.l.g. we assume that ϕ is surjective. We also assume that state space S is finite;
indeed we are interested in small S. This corresponds and indeed is equivalent to a
partitioning of histories {ϕ−1(s):s∈S}. Classical state aggregation usually uses the
partitioning view [GDG03, Ort07], but the map notation is a bit more convenient
here.

The state st is supposed to summarize all relevant information in history ht,
which lower bounds the size of S. We pass from the complete history o1r1a1...onrn
to a ‘reduced’ history s1r1a1...snrn. Traditionally, ‘relevant’ means that the future
is predictable from st (and at) alone, or technically that the reduced history forms
a Markov decision process. This is precisely the condition this paper intends to lift
(later).
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From histories to MDPs. The probability of the successor states and rewards
can be obtained by marginalization

Pϕ(st+1rt+1|htat) :=
∑

õt+1:ϕ(htatõt+1rt+1)=st+1

P (õt+1rt+1|htat) (5)

The reduced process Pϕ is a Markov Decision Process, or Markov for short, if Pϕ
only depends on ht through st, i.e. is the same for all histories mapped to the same
state. Formally

Pϕ ∈ MDP :⇐⇒ ∃p : Pϕ(st+1rt+1|h̃tat) = p(st+1rt+1|stat) ∀ϕ(h̃t) = st (6)

Here and elsewhere a quantifier such as ∀ϕ(h̃t)=st shall mean: for all values of all
involved variables consistent with the constraint ϕ(h̃t)=st. The MDP Pϕ is assumed
to be stationary, i.e. independent of t; another condition to be lifted later. Condition
(6) is essentially the stochastic bisimulation condition generalized to histories and
being somewhat more restrictive regarding rewards [GDG03]: It is a condition on
the reward distribution, while [GDG03] constrains its expectation only. This could
easily be rectified but is besides the point of this paper. The bisimulation metric
[FPP04] is an approximate version of (6), which measures the deviation of Pϕ from
being an MDP.

Many problems P can be reduced (approximately) to stationary MDPs [Hut09c]:
Full-information games such as chess with static opponent are already Markov, clas-
sical physics is approximately 2nd-order Markov, (conditional) i.i.d. processes such
as Bandits have counting sufficient statistics, and for a POMDP planning problem,
the belief vector is Markov.

Markov decision processes (MDP). We have used and continue to use upper-
case letters V , Q, Π for the general process P . We will use lower-case letters v, q,
π for (stationary) MDPs p. We use s and a for the current state and action, and
s′ and r′ for successor state and reward. Consider a stationary finite-state MDP
p :S×A S×R and stationary deterministic policy π :S→A. Only in Section 3
will this p be given by (6), but in general p will be different from (6). In any case,
the p-expected γ-discounted reward sum, called (q-)value of (optimal) policy π(∗) in
MDP p, are given by the Bellman (optimality) equations

qπ(s, a) =
∑
s′r′

p(s′r′|sa)[r′+γvπ(s′)] and vπ(s) = qπ(s, π(s)) (7)

q∗(s, a) =
∑
s′r′

p(s′r′|sa)[r′+γv∗(s′)] and v∗(s) = max
a
q∗(s, a) (8)

π∗(s) ∈ argmax
a
q∗(s, a). Note: vπ(s) ≤ v∗(s), qπ(s, a) ≤ q∗(s, a) (9)

Using p(s′r′|sa)=p(r′|sas′)p(s′|sa) we could also rewrite them in terms of transition
matrix p(s′|sa) and expected reward E[r′|sa] [SB98].

5



More notation. While our equations often assume or imply s= st, a= at, s
′ =

st+1, r
′ = rt+1, (and ht+1 = htao

′r′) for some t, technically s,a,s′,r′ are different
variables from all variables in history hn=o1r1a1...otrtatot+1rt+1...anrn. Less prone
to confusion are o=ot, o

′=ot+1, h=ht, h
′=hao′r′.

We call a function f(h), piecewise constant or ϕ-uniform iff f(h)= f(h̃) for all
ϕ(h)=ϕ(h̃). Here and elsewhere ∀ϕ(h)=ϕ(h̃) is short for ∀h,h̃:ϕ(h)=ϕ(h̃). Similarly
∀s=ϕ(h) is short for ∀s,h :s=ϕ(h). Etc.

The Iverson bracket, [[R]] := 1 if R=true and [[R]] := 0 if R=false, denotes the
indicator function. Throughout, ε,δ≥0 denote approximation accuracy. Note that
this includes the exact =0 case.

We now show that if P reduces via ϕ to an MDP p, the solution of these equations
yields (Q-)Values and optimal Policy of the original process P . This is not surprising
and just a history-based versions of classical state-aggregation results [GDG03]. We
state and prove them here, since notation and setup are somewhat different, and
proof ideas and fragments will be reused later.

3 Exact Aggregation for Pϕ∈MDP

The following two theorems show that if ϕ reduces P to a stationary MDP via (5)
and (6), then V and Q (and Π∗) essentially coincide with v and q (and π∗), where
policy Π (Π∗) has to be assumed (will be shown) constant within each partition
ϕ−1(s). This allows to efficiently solve for (and learn in the case of unknown P ) V
and Q (and Π∗) in time polynomial in S by solving/learning (7) (or (8) and (9))
instead of (2) (or (3) and (4)).

Theorem 1 (ϕMDPπ) Let ϕ be a reduction such that Pϕ∈MDP reduces to MDP
p defined in (6), and let Π be some policy such that Π(h)=Π(h̃) for all ϕ(h)=ϕ(h̃).
Then for all a and h it holds:

V Π(h) = vπ(s) and QΠ(h, a) = qπ(s, a), where π(s) := Π(h) and s = ϕ(h)

Note that π(s) is well-defined, since ϕ is surjective and Π(h) is the same for all h∈
ϕ−1(s). The standard proof considers an m-horizon truncated MDP and induction
on m and m→∞. Besides the adaptation to histories, the proof below is a slight
variation that avoids such truncation and limit. This style will be useful later. We
explain all steps in detail here, since variations will be utilize later.

Proof. Let δ := sup
s=ϕ(h),a

|qπ(s,a)−QΠ(h,a)|. Using a′ :=π(s′)=Π(h′) for s′=ϕ(h′) and

(2) and (7) lets us bound the value difference

|vπ(s′)−V Π(h′)| = |qπ(s′, a′)−QΠ(h′, a′)| ≤ δ ∀s′ = ϕ(h′) (10)
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For any a and h, this implies

QΠ(h, a)
(a)
=

∑
o′r′

P (o′r′|ha)[r′ + γV Π(h′)] [h′ = hao′r′]

(b)

≶
∑
s′r′

∑
o′:ϕ(h′)=s′

P (o′r′|ha)[r′+γ(vπ(s′)± δ)] (11)

(c)
=

∑
s′r′

Pϕ(s
′r′|ha)[r′+γvπ(s′)]± γδ

(d)
=

∑
s′r′

p(s′r′|sa)[r′+γvπ(s′)]± γδ [s := ϕ(h)]

(e)
= qπ(s, a)± γδ

(a) is just (2). In (b) we sum over all o′ by first summing over all o′ such that
ϕ(hao′r′) = s′ and then summing over all s′. We have also upper/lower bounded
V Π(h′) via (10). (c) is the definition (5) of Pϕ and pulls out γδ using that probability
Pϕ sums to 1. (d) is the definition (6) of p. (e) is simply (7). The chain (11a-e)
holds for all s=ϕ(h) and a, hence

δ = sup
s=ϕ(h),a

|qπ(s, a)−QΠ(h, a)| ≤ γδ ⇒ δ ≤ 0

Hence vπ(s)=V Π(h) and qπ(s,a)=QΠ(h,a) for all s=ϕ(h) and a.

Theorem 2 (ϕMDP∗) Let ϕ be a reduction such that Pϕ∈MDP reduces to MDP
p defined in (6), Then for all a and h it holds:

Π∗(h) = π∗(s) and V ∗(h) = v∗(s) and Q∗(h, a) = q∗(s, a), where s = ϕ(h)

The core of the proof follows the same steps (11a-e) as for the previous theorem,
but the rest is slightly different. Additionally we have to show that Π∗ is piecewise
constant (in Theorem 1 we assumed Π was).

Proof. Let δ :=sup
s=ϕ(h),a

|q∗(s,a)−Q∗(h,a)|. We can bound the value difference

|v∗(s)−V ∗(h)| (a)= |max
a
q∗(s,a)−max

a
Q∗(h,a)|

(b)

≤max
a

|q∗(s,a)−Q∗(h,a)|
(c)

≤ δ ∀s= ϕ(h)

(12)
(a) follows from the definitions (3) and (8). (b) follows from the following general
elementary frequently used bound

|max
x

f(x)−max
x

g(x)| ≤ max
x

|f(x)− g(x)| (13)

(c) follows from the definition of δ.
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One now can show that Q∗(h,a)≶ q∗(s,a)±γδ for s=ϕ(h) by following exactly
the same steps as (10a-e) just with Π and π replaced by ∗ and using (12) instead
of (10), and using the Bellman optimality equations (3) and (8) instead of the
Bellman equations (2) and (7). Also as before, this implies δ ≤ γδ, hence δ ≤ 0,
hence v∗(s)=V ∗(h) and q∗(s,a)=Q∗(h,a) for all s=ϕ(h) and a. Finally, the latter
implies π∗(s)=argmaxaq

∗(s,a)=argmaxaQ
∗(h,a)=Π∗(h).

Approximate aggregation results if Pϕ is approximately MDP can also be derived
[FPP04]. The core results in the next section show that aggregation is possible far
beyond Pϕ being approximately MDP.

4 Approximate Aggregation for General P

This section prepares for the main technical contribution of the paper in the next
section. The key quantity to relate original and reduced Bellman equations is a form
of stochastic inverse of ϕ, whose choice and analysis will be deferred to Section 7.

Dispersion probability B. Let Bϕ :S×A H be a probability distribution on
finite histories for each state-action pair such that Bϕ(h|sa)=0 if s ̸=ϕ(h). B≡Bϕ

may be viewed as a stochastic inverse of ϕ that assigns non-zero probability only to
h∈ϕ−1(s). The formal constraints we pose on B are

B(h|sa) ≥ 0 and
∑
h∈H

B(h|sa) =
∑

h:ϕ(h)=s

B(h|sa) = 1 ∀s, a (14)

This implicitly requires ϕ to be surjective, i.e. ϕ(H)=S, which can always be made
true by defining S := Sϕ := ϕ(H). Note that the sum is taken over histories of
any/mixed length. In general, B is a somewhat weird distribution, since it assigns
probabilities to past and future observations given the current state and action. The
interpretation and choice of B does not need to concern us, except later when we
want to learn p.

The MDP requirement (6) will be replaced by the following definition:

p(s′r′|sa) :=
∑
h∈H

Pϕ(s
′r′|ha)B(h|sa) (15)

≡
∞∑
t=1

∑
ht∈Ht

Pϕ(st+1 = s′, rt+1 = r′|ht, at = a)B(ht|sa)

That is, the finite-state stationary MDP p is built from feature map ϕ, dispersion
probability B, and environment P : The p-probability of observing state-reward pair
(s′,r′) from state-action pair (s,a) is defined as the B-average over all histories h
consistent with (s,a) of the Pϕ-probability of observing (s′,r′) (obtained from P by
ϕ-marginalizing) given history h and action a. The r.h.s. of the first line is merely
shorthand for the second line. Note that sas′r′ are fixed and do not appear in h
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which ranges over histories H of all lengths. It is easy to see that p is a probability
distribution, and it is Markov by definition. If Pϕ ∈ MDP, then definition (15)
coincides with p defined in (6). In general, the MDP p, depending on arbitrary B,
is not the state distribution induced by P (and Π), which in general is non-Markov.
Note that p is a stationary MDP for any B satisfying (14) and any ϕ and P . We
need the following lemmas:

Some lemmas. The first lemma establishes the key relation between P and p via
B used later to relate original history Bellman (optimality) equations (2–4) with
reduced state Bellman (optimality) equations (7–9).

Lemma 3 (B-P -p relation) For any function f :S×R→R and p defined in (15)
in terms of P via (5), and s′ :=ϕ(h′) and h′ :=hao′r′ it holds∑

h∈H

B(h|sa)
∑
o′r′

P (o′r′|ha)f(s′
↑

depends on hao′r′

, r′) =
∑
s′r′

p(s′r′|sa)f(s′, r′)

Proof. ∑
h∈H

B(h|sa)
∑
o′r′

P (o′r′|ha)f(s′, r′)

(a)
=

∑
h∈H

B(h|sa)
∑
s′r′

∑
o′:ϕ(h′)=s′

P (o′r′|ha)f(s′, r′)

(b)
=

∑
h∈H

B(h|sa)
∑
s′r′

Pϕ(s
′r′|ha)f(s′, r′)

(c)
=

∑
s′r′

p(s′r′|sa)f(s′, r′)

In (a) we sum over all o′ by first summing over all o′ such that ϕ(hao′r′)= s′ and
then summing over all s′. In (b) we used the definition (5) of Pϕ. In (c) we used
the definition (15) of p.

Inequalities (10) and (12) trivially bound v−V differences in terms of q−Q
differences: |v−V |≤maxa|q−Q|. The following lemma shows that a reverse holds
in expectation, i.e. |q−⟨Q⟩B|≤γ|v−V |. The expectation can (only) be dropped if
Q is constant for h∈ϕ−1(s). Formally define

⟨f(h, a)⟩B :=
∑
h̃∈H

B(h̃|sa)f(h̃, a), where s := ϕ(h) (16)

That is, ⟨f(h,a)⟩B takes a B-average over all h̃ that ϕ maps to the same state as h.
For convenience we will drop the tilde, which we can do if we declare s :=ϕ(h) to
refer to the ‘global’ h in ⟨f(h,a)⟩B and not to the ‘local’ variable in the h∈H sum.
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Lemma 4 (|q−⟨Q⟩|≤γ|v−V |) For any P , ϕ, B, define p via (15) and (5).
(i) If |vπ(s)−V Π(h)|≤δ ∀s=ϕ(h)

then |qπ(s,a)−⟨QΠ(h,a)⟩B|≤γδ ∀s=ϕ(h) ∀a.
(ii) If |v∗(s)−V ∗(h)|≤δ ∀s=ϕ(h)

then |q∗(s,a)−⟨Q∗(h,a)⟩B|≤γδ ∀s=ϕ(h) ∀a.

Proof. (i) Let s :=ϕ(h) and h′ :=hao′r′ and s′ :=ϕ(h′). Then

⟨QΠ(h, a)⟩B
(16)
≡

∑
h∈H

B(h|sa)QΠ(h, a)

(2)
=

∑
h∈H

B(h|sa)
∑
o′r′

P (o′r′|ha)[r′ + γV Π(h′)]

(a)

≶
∑
h∈H

B(h|sa)
∑
o′r′

P (o′r′|ha)[r′+γ(vπ(s′)± δ)]

Lem.3
=

∑
s′r′

p(s′r′|sa)[r′+γvπ(s′)]± γδ

(7)
= qπ(s, a)± γδ

In (a) we used the assumption (i) of the Lemma. The derived upper and lower
bounds imply |qπ(s,a)−⟨QΠ(h,a)⟩B|≤γδ (for all s=ϕ(h) and a).

(ii) follows the same steps except with Π and π replaced by Π∗ and π∗, and
using (3) and (8) instead of (2) and (7) to justify the steps. Note that in general
Π∗ ̸=π∗!

5 Approximate Aggregation Results

This section contains the main technical contribution of the paper. We show that
histories (or raw states) can be aggregated and modeled by an MDP even if the true
aggregated process is actually not an MDP. A necessary condition for successful
aggregation is of course that the quantities of interest, namely (Q-)Value functions
and Policies can be represented as functions of the aggregated states. The results in
this section roughly show that this necessary condition, which is significantly weaker
than the MDP requirement, is also sufficient. All but one result also holds for ap-
proximate aggregation, i.e. approximate conditions lead to approximate reductions.
We also lift the stationarity assumption.

• Theorem 5 shows how (approximately) ϕ-uniform QΠ and Π can be obtained
from the reduced Bellman equations (7).

• Theorem 6 weakens the assumptions and conclusions to (approximately) ϕ-
uniform V Π and Π.
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• Theorem 7 shows that for (approximately) ϕ-uniform Q∗, the optimal policy
is (approximately) ϕ-uniform, and (an approximation of it) can be obtained
via the reduced Bellman optimality equations (8).

• Theorem 9 shows that for (approximately) ϕ-uniform V ∗ and Π∗ we can ob-
tain similar but somewhat weaker results. The proof of the latter involves
extra complications not present in the other three proofs. Indeed, whether the
arguably most desirable bound holds is Open Problem 10.

Note that all theorems crucially differ in their conditions and conclusions.

Theorem 5 (ϕQπ) For any P , ϕ, and B, define p via (15) and (5). Let Π be
some policy such that Π(h)=Π(h̃) and |QΠ(h,a)−QΠ(h̃,a)| ≤ ε for all ϕ(h)=ϕ(h̃)
and all a. Then for all a and h it holds:

|QΠ(h, a)− qπ(s, a)| ≤ ε

1− γ
and |V Π(h)− vπ(s)| ≤ ε

1− γ
,

where π(s) := Π(h) and s = ϕ(h)

Proof. Let δ :=sup
s=ϕ(h),a

|qπ(s,a)−QΠ(h,a)|. Then |vπ(s)−V Π(h)|≤δ ∀s=ϕ(h) by (10),

hence |qπ(s, a)− ⟨QΠ(h, a)⟩B| ≤ γδ ∀s = ϕ(h), a

by Lemma 4i. By assumption on QΠ and B, for s=ϕ(h) we have

⟨QΠ(h, a)⟩B ≡
∑

h̃∈H:ϕ(h̃)=s

B(h̃|sa)QΠ(h̃, a) ≶
∑

h̃∈H:ϕ(h̃)=s

B(h̃|sa)[QΠ(h, a)± ε] = QΠ(h, a)± ε

Together this implies |qπ(s,a)−QΠ(h,a)|≤γδ+ε, hence δ≤γδ+ε, hence δ≤ ε
1−γ .

Theorem 6 (ϕV π) For any P , ϕ, and B, define p via (15) and (5). Let Π be
some policy such that Π(h)=Π(h̃) and |V Π(h)−V Π(h̃)|≤ε for all ϕ(h)=ϕ(h̃). Then
for all a and h it holds:

|V Π(h)− vπ(s)| ≤ ε

1− γ
and |qπ(s, a)− ⟨QΠ(h, a)⟩B| ≤

εγ

1− γ
where π(s) := Π(h) and s = ϕ(h)

Proof. Let δ :=sup
s=ϕ(h),a

|vπ(s)−V Π(h)|, fix some s=ϕ(h), and let aπ :=Π(h). Now

⟨QΠ(h, aπ)⟩B ≡
∑
h̃∈H:ϕ(h̃)=s

B(h̃|saπ)QΠ(h̃, aπ)
(a)
=

∑
h̃∈H:ϕ(h̃)=s

B(h̃|saπ)V Π(h̃)

≶
∑
h̃∈H:ϕ(h̃)=s

B(h̃|saπ)[V Π(h)± ε] = V Π(h)± ε (17)

11



where (a) follows from aπ=Π(h)=Π(h̃) and QΠ(h̃,Π(h̃))=V Π(h̃). By Lemma 4i we
have

|qπ(s, a)− ⟨QΠ(h, a)⟩B| ≤ γδ ∀s = ϕ(h), a (18)

We also have qπ(s,aπ)=qπ(s,π(s))=vπ(s) from (7). Together with (17) and (18) for
a=aπ this yields

|vπ(s)− V Π(h)| ≤ |vπ(s)−⟨QΠ(h, aπ)⟩B|+ |⟨QΠ(h, aπ)⟩B−V Π(h)| ≤ γδ + ε

hence δ ≤ γδ+ ε by the definition of δ, hence δ ≤ ε
1−γ . Note that while

|qπ(s,aπ)−QΠ(h,aπ)| ≤ εγ
1−γ , in general |qπ(s,a)−QΠ(h,a)| ̸≤ εγ

1−γ for a ̸= aπ.
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Example. Consider a process P which itself is an
MDP in the observations with transition matrix T
and reward function R, i.e. P (o′r′|ha)=T aoo′Rar′

oo′ .
The example on the right has the special form
P (o′r′|ha) = Too′ · [[r′ = R(o)]]. It is an action-
independent Markov process T with deterministic
reward function R, which can be read off from the
diagram. Observation space is O={00,01,10,11}.
Consider reduction

st := ϕ(ht) :=

{
0 if ot = 00 or 10

1 if ot = 01 or 11

}
∈ S := {0, 1}

The reduced process Pϕ is not (even approximately) Markov:

Pϕ(s
′ = 0|o = 00) = T00,00 + T00,10 = 0 + 1/2 = 1/2 ̸=

Pϕ(s
′ = 0|o = 10) = T10,00 + T10,10 = 0 + 0 = 0

That is, P violates the bisimulation condition [GDG03], and raw states 00 and 10
have a large bisimulation distance [FPP04, Ort07]. On the other hand, the (Q-)Value
function V (ot) :=V

π(ht)=Q
π(ht,at)∀at can easily be verified to be

V (00) = V (10) =
γ

1− γ2
and V (01) = V (11) =

1

1− γ2

That is, V and Q are ϕ-uniform. The conditions of Theorems 5 and 6 are
satisfied exactly (ε=0), and hence the four raw states O can be aggregated into two
states S despite Pϕ ̸∈MDP (the policy is irrelevant and can be chosen constant). ♢

We now turn from the fixed policy case to similar theorems for optimal policies.

12



Theorem 7 (ϕQ∗) For any P , ϕ, and B, define p via (15) and (5). Assume
|Q∗(h,a)−Q∗(h̃,a)| ≤ ε for all ϕ(h) = ϕ(h̃) and all a. Then for all a and h and
s=ϕ(h) it holds:

(i) |Q∗(h, a)− q∗(s, a)| ≤ ε

1− γ
and |V ∗(h)− v∗(s)| ≤ ε

1− γ
,

(ii) 0 ≤ V ∗(h)− V Π̃(h) ≤ 2ε

(1− γ)2
, where Π̃(h) := π∗(s)

(iii) If ε = 0 then Π∗(h) = π∗(s)

Proof. (i) The proof follows the same steps as the proof of Theorem 5, replacing
all Π and π by ∗ and using (12) instead of (10) and Lemma 4ii instead of Lemma 4i
to justify the steps.

(iii) If ε = 0, then Q∗(h,a) = q∗(s,a) by (i) implies Π∗(h) = π∗(s), where it is
worthwhile to carefully check that the latter has actually not been used inadvertently
in proving the former. Cf. the next theorem and proof.

(ii) For s=ϕ(h) and ã :=Π̃(h)=π∗(s),

V ∗(h)− ε

1− γ

(i)

≤ v∗(s)
(8)
= q∗(s, ã)

(i)

≤ Q∗(h, ã) +
ε

1− γ

which implies Q∗(h,Π̃(h)) ≥ V ∗(h)− 2ε
1−γ . The claim now follows from the next

Lemma 8 below.

The following lemma shows that if replacing the first action after h of the op-
timal policy Π∗ by the action provided by Π thereafter following Π∗ is at most
ε-suboptimal, then always using Π is at most ε

1−γ -suboptimal.

Lemma 8 (Qπ∗) If Q∗(h,Π(h))≥V ∗(h)−ε for all h for some policy Π, then for
all h and a

0 ≤ Q∗(h, a)−QΠ(h, a) ≤ εγ

1− γ
and 0 ≤ V ∗(h)− V Π(h) ≤ ε

1− γ

Proof. Let δ :=sup
h,a

[Q∗(h,a)−QΠ(h,a)]. This implies

0
(a)

≤ V ∗(h)− V Π(h)
(b)

≤ ε+Q∗(h,Π(h))−QΠ(h,Π(h))
(c)

≤ ε+ δ (19)

(a) follows from (1); (b) by assumption; and (c) by definition of δ for a=Π(h). Now
for any a and h, this implies

QΠ(h, a)
(1)

≤ Q∗(h, a)
(3)
=

∑
o′r′

P (o′r′|ha)[r′ + γV ∗(h′)] [h′ = hao′r′]

(19)

≤
∑
o′r′

P (o′r′|ha)[r′ + γ(V Π(h′) + ε+ δ)]
(2)
= QΠ(h, a) + γ(ε+ δ)

Hence δ≤γ(ε+δ), hence δ≤ εγ
1−γ .
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Theorem 9 (ϕV ∗) For any P , ϕ, and B, define p via (15) and (5). Assume
Π∗(h)=Π∗(h̃) and |V ∗(h)−V ∗(h̃)|≤ε for all ϕ(h)=ϕ(h̃). Then for all a and h and
s=ϕ(h) it holds:

(i) |V ∗(h)− v∗(s)| ≤ 3ε

(1− γ)2
and |q∗(s, a)− ⟨Q∗(h, a)⟩B| ≤

3εγ

(1− γ)2
,

(ii) If ε = 0 then Π∗(h) = π∗(s)

The proof actually implies the stronger lower bound V ∗(h)−v∗(s) ≥ 3ε
1−γ and

similarly for Q∗, but we do not know whether the upper bound can be improved.

Proof. While proofs start to get routine, here is a warning that care is in order when
recycling similar proofs. Theorem 6 relies on the assumption that π(s)=Π(h) for
s=ϕ(h), while we were lucky that the proof of Theorem 7 worked without knowing
π∗(s)=Π∗(h) in advance. Here we have to work a bit harder.

Let us define a0 :=π0(s) :=Π∗(h) for s=ϕ(h). The Bellman equation for policy
π0 is

qπ
0

(s, a) =
∑
s′r′

p(s′r′|sa)[r′+γvπ0

(s′)] and vπ
0

(s) = qπ
0

(s, π0(s)) (20)

At this stage π0 may well be different from π∗, since π∗ satisfies (8), not (20), but
we will now show that it actually does. First note that

qπ
0

(s, a0) = vπ
0

(s) ≶ V Π∗
(h)± ε

1− γ
= V ∗(h)± ε

1− γ
(21)

where the bounds follow from Theorem 6 applied to Π := Π∗ (with π = π0). For
general a we only get an upper bound:

qπ
0

(s, a)− εγ

1− γ

Thm.6

≤ ⟨QΠ∗
(h, a)⟩B

(16)
=

∑
h∈H

B(h|sa)Q∗(h, a) (22)

(4)

≤
∑
h∈H

B(h|sa)Q∗(h,Π∗(h))
(14)
=
(3)

∑
h̃∈H:ϕ(h̃)=s

B(h̃|sa)V ∗(h̃)

(a)

≤
∑

h̃∈H:ϕ(h̃)=s

B(h̃|sa)[V ∗(h) + ε]
(14)
= V ∗(h) + ε

(a) uses the theorem’s assumption on V ∗(h). Together, (21) and (22) imply

vπ
0

(s)
(20)
= qπ

0

(s,a0) ≤ max
a
qπ

0

(s,a)
(22)

≤ V ∗(h) +
ε

1− γ

(21)

≤ vπ
0

(s) +
2ε

1− γ
(23)

(ii) For ε=0, the previous equation implies vπ
0
(s) =maxaq

π0
(s,a), hence (20)

can be rewritten as

qπ
0

(s, a) =
∑
s′r′

p(s′r′|sa)[r′+γvπ0

(s′)] and vπ
0

(s) = max
a
qπ

0

(s, a)

14



This shows that (qπ
0
,vπ

0
) satisfies the same Bellman optimality equation as (q∗,v∗)

does. Since it has a unique solution, we must have qπ
0 ≡ q∗ and vπ

0 ≡ v∗ and
π∗≡π0, which for s=ϕ(h) implies Π∗(h)=π∗(s) by definition of π0. It also implies
V ∗(h)=v∗(s) by (21), and q∗(s,a)= ⟨Q∗(h,a)⟩B by Lemma 4ii, i.e. the ε=0 version
of (i).

(i) We now continue with the general ε>0 case. For all s and a we have

0
(9)

≤ q∗(s,a)− qπ0

(s,a)
(7)
=
(8)

∑
s′r′

p(s′r′|sa)γ(v∗(s′)−vπ0

(s′))
(a)

≤ γmax
s′

{v∗(s′)−vπ0

(s′)}

0
(9)

≤ v∗(s)−vπ0

(s)
(23)

≤
(8)

max
a
q∗(s,a)−max

a
qπ

0

(s,a)+ 2ε
1−γ

(13)

≤ max
a

{q∗(s,a)−qπ0

(s,a)}+ 2ε
1−γ

In (a) we have upper bounded the p-expectation by the maximum. Together this
gives

max
s

{v∗(s)− vπ
0

(s)} ≤ γmax
s

{v∗(s)− vπ
0

(s)}+ 2ε

1− γ

⇒ max
s

{v∗(s)− vπ
0

(s)} ≤ 2ε

(1− γ)2

Hence for s=ϕ(h) : V ∗(h)− ε

1− γ

(21)

≤ vπ
0

(s)
(9)

≤ v∗(s)
↖
≤ vπ

0

(s)+
2ε

(1− γ)2
(24)

(21)

≤ V ∗(h) +
ε

1− γ
+

2ε

(1− γ)2
≤ V ∗(h) +

3ε

(1− γ)2

Together with Lemma 4ii this implies (i).

We are primarily interested in the optimal policy Π∗(h); to correctly represent
the value V ∗(h) is only of indirect interest. If Π∗ is ϕ-uniform, it can be represented
as Π∗(h)=π0(s) for some π0, but if the ϕ-uniformity condition on V ∗ in Theorem 9
is dropped, the conclusion Π∗(h)=π∗(s) can fail as the following example shows.

Counter Example. Let P be the MDP P (o′r′|ha) :=T aoo′ ·[[r′=Ra
o ]] with two raw

states o∈{0,1} and two actions a∈{α,β} formally defined on the left and depicted
on the right:

Tα :=

(
1 0

1 0

)
, Rα :=

(
1/6

1

)
,

T β :=

(
1/2 1/2

1/2 1/2

)
, Rβ :=

(
0

1/2

)
,

&%
'$
0 &%

'$
1

-β, r′ = 0, p = 1/2

� α, r′ = 1
�
β, r′ = 1/2, p =

1/2

� �
?

� 
6

α, r′ = 1/6
� 
6

The value of policy π in vector notation is V π=Rπ+γT πV π, where V π
ot :=V

π(ht).
The 4 stationary policies are denoted by π= a0a1, where ao is the action taken in
raw state o. For γ=0, their values are

γ = 0, π αα αβ βα ββ

V π
0 = R

π(0)
0 1/6 1/6 0 0

V π
1 = R

π(1)
1 1 1/2 1 1/2
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Policy π=αα has the highest value, therefore Π∗(h)≡α. Let us now aggregate raw
states o∈{0,1} to a 1-state MDP. Its value is v= 1

1−γρ
⊤R=ρ⊤R for γ=0, where ρ is

the stationary distribution ρ⊤=ρ⊤T of T , in particular ρα=(1
0
) for Tα and ρβ=(1/2

1/2
)

for T β. Since there is only 1 aggregated state, there are only 2 stationary policies,
one for each action. This leads to vα= 1

6
< 1

4
=vβ, hence π∗(s)≡β ̸=α≡Π∗(h) ∀s,h.

That is, despite Π∗ being constant, π∗ ̸=Π∗, which shows that the condition on V ∗

in Theorem 9 cannot be dropped. Note that V ∗=V αα=(1/6
1
) is far from constant.

By continuity, the policy reversal also holds for γ > 0. Indeed, this example works
for all γ< 2

5
and other examples work for all 0≤γ<1. ♢

Open Problem 10 (ϕV ∗) Under the same conditions as Theorem 9, is

V ∗(h)− V Π̃(h)
??
= O

( ε

(1− γ)?

)
where Π̃(h) := π∗(s) (25)

Arguments. Here are some arguments why it might be true (or false):
(1) For ε=0 it immediately follows from Theorem 9, since in this case Π̃(h)=

Π∗(h). Some continuity argument might allow to establish a bound for small ε>0.
(2) Theorem 7i&iii mostly carried over to Theorem 9, so a-priori it is not too

implausible that Theorem 7ii carries over to (25). On the other hand, the proofs of
(i) and (iii) of both theorems were sufficiently different, so the analogy argument is
weak.

(3) Let ã :=Π̃(h) :=π∗(s) for s=ϕ(h). Then

⟨Q∗(h, ã)⟩B
Thm.9i

≥ q∗(s, ã)− 3εγ

(1− γ)2
(8)
= v∗(s)− 3εγ

(1− γ)2

(24)

≥ V ∗(h)− 3ε

(1− γ)2

Q∗(h, ã)
(3)

≤ V ∗(h)

For ε=0 this pair of inequalities implies that Q∗(h,ã) lower bounds its own expec-
tation, therefore it must be constant and equal to V ∗(h) on each ϕ−1(s)-partition.
For ε > 0, with high probability Q∗(h,ã) cannot be much smaller than V ∗(h). If
it weren’t for the probability qualifier we could now apply Lemma 8 to establish
(25) (as in the proof of Theorem 7ii). Low probability events could invalidate this
argument.

Discussion. Open Problem 10 would be the main result if we had a proof for
ε>0. Absent of it we have to be content with Theorem 7ii. Both statements imply
that we can aggregate histories as much as we wish, as long as the optimal value
function and policy are still approximately representable as functions of aggregated
states. Whether the reduced process Pϕ is Markov or not is immaterial. We can use
surrogate MDP p to find an ε-optimal policy for P .
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Most RL work, including on state aggregation, is formulated in terms of MDPs,
i.e. the original process P is already an MDP. Let us call this the original or raw
MDP. We could interpret the whole history as a raw state, which formally makes
every P an MDP, but normally only observations are identified with raw states,
i.e. P is a raw MDP iff P (o′r′|ha) =P (o′r′|oa). In this case, V ∗(ht) = V ∗(ot) etc.
depends on raw states only (which is well known or follows from Theorem 2 with
ϕ(ht)=ot). Since our results hold for all P , they clearly hold if P is a raw MDP and
if ϕ(ht) :=ϕ(ot) maps raw states to aggregated states.

The remainder of this paper shows how much we can aggregate and how to
develop RL algorithms exploiting these insights.

6 Extreme Aggregation

The results of Section 5 showed that histories can be aggregated and modeled by an
MDP even if the true aggregated process is not an MDP. The only restrictions were
that the (Q-)Value functions and Policies could still be (approximately) represented
as functions of the aggregated states. We will see in this section that in theory this
allows to represent any process P as a small finite-state MDP.

Extreme aggregation based on Theorem 7. Consider ϕ that maps each history
to the vector-over-actions of optimal Q-values Q∗(h,·) discretized to some finite ε-
grid:

ϕ(h) :=
(
⌊Q∗(h, a)/ε⌋

)
a∈A ∈ {0, 1, ..., ⌊ 1

ε(1−γ)⌋}
A =: S (26)

That is, all histories with ε-close Q∗-values are mapped to the same state:

|Q∗(h, a)−Q∗(h̃, a)| ≤ ε ∀ϕ(h) = ϕ(h̃) ∀a

Now choose some B and determine p from P via (15) and (5). Find the optimal
policy π∗ of MDP p of size |S|. Define Π̃(h) :=π∗(ϕ(h)). By Theorem 7ii, Π̃ is an
ε′-optimal policy of original process P in the sense that

|V Π̃(h)− V ∗(h)| ≤ 2ε

(1− γ)2
=: ε′

Extreme aggregation based on Open Problem 10. If (25) holds, we can
aggregate even better: Consider ϕ that maps each history to the optimal Value
V ∗(h) discretized to some finite ε-grid and to the optimal action Π∗(h):

ϕ(h) :=
(
⌊V ∗(h)/ε⌋,Π∗(h)

)
∈ {0, 1, ..., ⌊ 1

ε(1−γ)⌋} × A =: S (27)

That is, all histories with ε-close V ∗-Values and same optimal action are mapped to
the same state:

|V ∗(h)− V ∗(h̃)| ≤ ε and Π∗(h) = Π∗(h̃) ∀ϕ(h) = ϕ(h̃)
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As before, determine p, find its optimal policy π∗, and define Π̃(h) :=π∗(ϕ(h)). If
(25) holds, then Π̃ is an ε′-optimal policy of original process P in the sense that

|V Π̃(h) − V ∗(h)| = O
( ε

(1− γ)?

)
=: ε′

The following theorem summarizes the considerations for the two choices of ϕ above:

Theorem 11 (Extreme ϕ) For every process P there exists a reduction ϕ ( (26)
or (27) will do) and MDP p defined via (15) and (5) whose optimal policy π∗ is an
ε′-optimal policy Π̃(h):=π∗(ϕ(h)) for P . The size of the MDP is bounded (uniformly
for any P ) by

|S| ≤
( 3

ε′(1− γ)3

)|A|
and if (25) holds even by |S| = O

( |A|
ε′(1− γ)1+?

)
Proof. For S defined in (26) we have

|S| =
(
⌊ 1
ε(1−γ)⌋+1

)|A|
=

(
⌊ 2
ε′(1−γ)3 ⌋+1

)|A| ≤
(

3
ε′(1−γ)3

)|A|

where in the last inequality we have assumed ε′ ≤ 1
1−γ . (For ε′> 1

1−γ the theorem
is trivial, since any policy is ε′-optimal). For S defined in (27) the derivation is
similar. The theorem now follows from the considerations in the paragraphs before
the theorem.

Discussion. A valid question is of course whether Theorem 11 is just an interesting
theoretical insight/curiosity or of any practical use. After all, ϕ depends on Q∗ (or
V ∗ and Π∗), but if we knew Q∗, Π∗ would readily be available and the detour through
p and π∗ pointless.

Theorem 11 reaches relevance by the following observation: If we start with a
sufficiently rich class of maps Φ that contains at least one ϕ approximately represent-
ing Q∗(h,·), and have a learning algorithm that favors such ϕ, then Theorems 5–9
tell us that we do not need to worry about whether Pϕ is MDP or not; we “sim-
ply” use/learn MDP p instead. Theorem 11 tells us that this allows for extreme
aggregation far beyond MDPs.

This program is in parts worked out in the next two sections, but more research
is needed for its completion. Learning p from (real) P -samples is considered in
Section 7 and learning ϕ in Section 8.

7 Reinforcement Learning

In RL, P and therefore p are unknown. We now show how to learn p from samples
from P . For this we have to link B to the distribution over histories induced by P
and to the behavior policy ΠB the agent follows. We still assume ϕ is given.
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Behavior policy ΠB. Let ΠB :H A be the behavior policy of our RL agent, which
in general is non-stationary due to learning, often stochastic to ensure exploration,
and (usually) different from any policy considered so far (Π∗, π∗, Π̃,π0,Π,π). Note
that a sequence of policies Π1,Π2,... where each Πt is learnt from ht and used at
time t (or for some number of steps) is nothing but a single non-stationary policy
ΠB(ht)=Πt(ht)∀t,ht, so ΠB indeed includes the case of policy learning.

Choice of B. The interaction of agent ΠB with environment P stochastically
generates some history ht followed by action at with joint probability, say PB(htat).
We use subscripts B and/or ϕ to indicate dependence on ΠB and/or ϕ. A natural
choice for B(h|sa) in (14) would be to condition of PB on stat. We now show that
this does not work and how to fix the problem. We can get PϕB(ht|stat) from P and
ΠB and several other useful distributions as follows:

PB(ht+1|ht) = P (ot+1rt+1|htat)ΠB(at|ht) [ht+1 = htatot+1rt+1]

PB(hn) =
n−1∏
t=0

PB(ht+1|ht), PB(htat) = ΠB(at|ht)PB(ht)

PϕB(stat) =
∑

ht:ϕ(ht)=st

PB(htat), PϕB(ht|stat) =
PB(htat)

PϕB(stat)
[[ϕ(ht) = st]]

PϕB(st+1rt+1|stat) =
∑

ht:ϕ(ht)=st

Pϕ(st+1rt+1|htat)PϕB(ht|stat) [see (5) for def. of Pϕ] (28)

PϕB(statst+1rt+1) = PϕB(st+1rt+1|stat)PϕB(stat)

PϕB(ht|stat) has the following properties:

PϕB(ht|stat) ≥ 0 and
∑
ht∈Ht

PϕB(ht|stat) =
∑

ht:ϕ(ht)=st

PϕB(ht|stat) = 1 ∀t, st, at (29)

This is close to the required condition (14) for B but crucially different. The sum
in (14) is over histories of all lengths while in (29) the sum is limited to histories of
length t. It is easy to miss this difference due to the compact notation. Technically
PB is a probability measure on infinite sequencesH∞ and PB(ht) is short for PB(Γht)
where Γht is the set of infinite histories starting with ht, i.e. PB(ht) is the probability
that the infinite history starts with ht (

∑
ht∈Ht

PB(ht)= 1∀t). On the other hand,
B(h) is a probability distribution over finite histories of mixed length (

∑
h∈HB(h)=

1); similarly for PB and B conditioned on / parameterized by s and a.

We can fix this mismatch by introducing weights wt :S×A [0;1] and define

B(ht|sa) := wt(sa)PϕB(ht|st = s, at = a) ∀t, where
∞∑
t=1

wt(sa) = 1 ∀s, a (30)

which now satisfies (14) (due to
∑

h∈H=
∑∞

t=1

∑
ht∈Ht

). MDP p can now be repre-
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sented as

p(s′r′|sa) =
∞∑
t=1

wt(sa)
∑
ht∈Ht

Pϕ(st+1=s
′, rt+1=r

′|ht, at=a)PϕB(ht|st=s, at=a)

=
∞∑
t=1

wt(sa)P
t
ϕB(s

′r′|sa) (31)

That is, p is the w-weighted time-average of P t
ϕB. The first equality follows from (15)

and (30); the second one from (28). We also introduced the shorthand P t
ϕB(s

′r′|sa):=
PϕB(st+1=s

′,rt+1=r
′|st=s,at=a).

Choice of wt. If P t
ϕB in (31) is stationary, i.e. independent of t, then p(s′r′|sa)=

P t
ϕB(s

′r′|sa) for all t, since the weights sum to one, and estimation is easy. Note
that in general we cannot estimate non-stationary P t

ϕB, since for each t we have only
one sample available, but we will see that estimation of p is still possible. Assume
we have observed hn, and choose

wt(sa) :=
P t
ϕB(sa)∑n

t=1 P
t
ϕB(sa)

for t ≤ n and 0 for t > n (32)

Inserting this into (31) and using (28) gives

p(s′r′|sa) =
1
n

∑n
t=1 P

t
ϕB(sas

′r′)
1
n

∑n
t=1 P

t
ϕB(sa)

(33)

We estimate numerator and denominator separately.

Law of large numbers. For t=1,2,3,... let Xt∈{0,1} be binary random variables
with expectation E[Xt]. Define n1 =

∑n
t=1Xt be the number of sampled 1s. The

strong law of large numbers says that

n1

n
− 1

n

n∑
t=1

E[Xt]
n→∞−→ 0 almost surely under weak conditions (34)

Note that the law holds far beyond i.i.d. random variables under a variety of con-
ditions [Faz06, VGS05] which we collectively call ‘weak conditions’. It is not even
necessary for n1/n to converge.

Estimation of p. Now fix some (s,a), and let Xt :=[[st=s,at=a]]. (Here we assume
that variables in ht are random variables and sas′r′ are realizations.) Then

n(sa) := n1 =
n∑
t=1

Xt = #{t ≤ n : st = s, at = a}

is the number of times action a is taken in state s, and E[Xt]=P (Xt=1)=P t
ϕB(sa),

hence (34) implies

n(sa)

n
− 1

n

n∑
t=1

P t
ϕB(sa)

n→∞−→ 0 a.s. under weak conditions (35)
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Similarly for Yt :=[[statst+1rt+1=sas
′r′]] and n(sas′r′) :=

∑n
t=1Yt we have

n(sas′r′)

n
− 1

n

n∑
t=1

P t
ϕB(sas

′r′)
n→∞−→ 0 with P -probability 1 (36)

under weak conditions. (35) and (36) via (33) are nearly sufficient to imply

n(sas′r′)

n(sa)
− p(s′r′|sa) n→∞−−−→ 0 almost surely (37)

A sufficient but by far not necessary condition is

lim inf
n→∞

n(sa)

n
> 0 almost surely (38)

Theorem 12 (p-estimation) For B defined in (30) and (32) we have: If (36)
and (38) hold, then (37) holds. For example, if Yt are stationary ergodic processes,
then (36) and (38) hence (37) hold for all state-action pairs that matter (i.e. for
those occurring with non-zero probability).

Proof. We introduce the following (n-dependent) shorthands:

X̄ :=
n(sa)

n
, x̄ :=

1

n

n∑
t=1

P t
ϕB(sa), α := lim inf

n→∞

n(sa)

n
,

Ȳ :=
n(sas′r′)

n
, ȳ :=

1

n

n∑
t=1

P t
ϕB(sas

′r′)

With these abbreviations, assumption (36) implies (35), i.e.

Ȳ − ȳ → 0 implies X̄ − x̄ =
∑
s′r′

Ȳ −
∑
s′r′

ȳ =
∑
s′r′

[Ȳ − ȳ] → 0 (39)

since S and R have been assumed finite. Now∣∣∣n(sas′r′)
n(sa)

− p(s′r′|sa)
∣∣∣ =

∣∣∣ Ȳ
X̄

− ȳ

x̄

∣∣∣ ≤
∣∣∣ Ȳ
X̄

− ȳ

X̄

∣∣∣ +
∣∣∣ ȳ
X̄

− ȳ

x̄

∣∣∣
=

1

X̄
|Ȳ − ȳ| +

ȳ

X̄x̄
|x̄− X̄| ≤ 1

X̄

(
|Ȳ − ȳ| + |x̄− X̄|

)
n→∞−→ 0 a.s.

The first inequality is just the triangle inequality. The second inequality follows
from ȳ≤ x̄. The limit is zero, since almost surely lim supn→∞[1/X̄]=1/α<∞ and
Ȳ − ȳ→ 0 and X̄−x̄→ 0. Hence (37) holds. Finally, for stationary ergodic Yt, we
have ȳ= 1

n

∑n
t=1E[Yt]=E[Y1]=constant, and hence x̄=

∑
s′r′ ȳ=constant. Therefore

(36) holds by Ȳ =
1

n

n∑
t=1

Yt
ergodicity−−−−−→ E[Y1]

stationarity
=

1

n

n∑
t=1

E[Yt] = ȳ,

(38) holds by lim inf
n→∞

X̄
(39)
= x̄

stationarity
= E[X1] = P 1

ϕB(sa)
assumption

> 0
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Discussion. Limit (37) shows that standard frequency estimation for p will con-
verge to the true p under weak conditions. If Pϕ is MDP, samples are conditionally
i.i.d. and the ‘weak conditions’ are satisfied. But the law of large numbers and hence
(37) holds far beyond the i.i.d. case [FK01, VGS05], e.g. for stationary ergodic pro-
cesses. Condition (38) that every state-action pair be visited with non-vanishing
relative frequency can be significantly relaxed. Stationarity is also not necessary,
and indeed often does not hold due to a non-stationary environment P or a non-
stationary behavior policy ΠB (or both).

Other choices for wt are possible, e.g. we could multiply numerator and denom-
inator of (32) by some arbitrary positive function ut(as), which leads to a weighted
average estimator.

We estimate p in order to estimate q∗ and ultimately π∗. This is model-based RL.
We can also learn π∗ model-free. For instance, condition (37) should be sufficient
for Q-learning to converge to Q∗.

Q-learning and other RL algorithms designed for MDPs have been observed to
often (but not always) perform well even if applied to non-MDP domains. Our
results appear to explain why, but this calls for further investigations.

8 Feature Reinforcement Learning

The idea of FRL is to learn ϕ [Hut09c]. FRL starts with a class of maps Φ, compares
different ϕ ∈ Φ, and selects the most appropriate one given the experience ht so
far. Several criteria based on how well ϕ reduces P to an MDP have been devised
[Hut09b, Hut09a] and theoretically [SH10] and experimentally [NSH11] investigated
[Ngu13]. Theorems 5–9 show that demanding Pϕ to be approximately MDP is
overly restrictive. Theorem 11 suggests that if we relax this condition, much more
substantial aggregation is possible, provided Φ is rich enough.

(F)RL deals with the case of unknown P . We first discuss learning ϕ for the
unrealistic case of exact aggregation (ε=0) and infinite sample size (n=∞). This
serves as a useful guide to work out its generalization to the realistic but significantly
more complex case of approximate aggregation based on finite sample size. Finally
we discuss a family of recent algorithms (BLB and extensions [Ngu13]) that appear
to nearly have the right properties for our purpose. This section is more a collection
of ideas and outlook towards algorithms exploiting and motivating the usefulness of
the new insights obtained in the previous sections.

Search for exact ϕ based on infinite sample size. Since we are now concerned
with comparing different ϕ ∈ Φ, we subscribe quantities with ϕ when necessary.
Consider the unrealistic case of infinite sample size (n=∞) and a search for exact
reductions ϕ. We call a reduction ϕ :H→Sϕ exact iff Q∗(h,a)=q∗ϕ(s,a) and Π∗(h)=
π∗
ϕ(s) for all s=ϕ(h) and a.
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Even for n=∞, P hence Q∗ needed for Π∗ is (usually) not estimable (from h∞).
On the other hand, for each ϕ∈Φ, p=pϕ can be determined (exactly) by (37) (under
weak conditions). From pϕ we can determine q∗ϕ and π

∗
ϕ via (8) and (9). The solution

always satisfies the reduced Bellman equations exactly, even for very bad reductions,
e.g. single state ϕ(h)≡ 0∀h. So the reduced problem is not sufficient to judge the
quality of ϕ. An alternative to assuming n=∞ is to assume that P is known, which
also allows to determine pϕ, etc. So what follows applies to stochastic planning as
well.

Coarsening and refining reductions ϕ: Let us now coarsen ϕ, i.e. further merge
some partitions ϕ−1(s). In the simplest case we just merge two states into one.
In general, consider coarsening χ :Sϕ→Sψ and coarser reduction ψ :H→Sψ such
that ψ(h) = χ(ϕ(h)). We also call Sϕ a refinement of Sψ. For example, U-trees
[McC96, UV98] and Kd-trees have been used in RL [EGW05], where expanding a
leaf corresponds to splitting a state. Or in ϕDBN, Sϕ= {0,1}d is a binary feature
vector, where removing one component corresponds to pairwise combining 2d states
to 2d−1 states [Hut09a].

Ordering reductions in Φ: We can partially order Φ as follows:

ψ ≺ ϕ :⇔ q∗ϕ and π∗
ϕ are constant on all sϕ ∈ χ−1(sψ) for all sψ and a

⇔ q∗ϕ(sϕ, a) = q∗ψ(sψ, a) and π
∗
ϕ(sϕ) = π∗

ψ(sψ) for all sψ = χ(sϕ) and a.

ψ≺ ϕ means ψ is a better reduction than ϕ since it leads to the same optimal q-
value and policy as ψ does, but is more parsimonious (coarser) than ϕ. If q∗ϕ or π∗

ϕ

is not constant on ψ-partitions, coarsening ϕ to ψ and using ψ (potentially) leads
to suboptimal solutions.

Enriching the order ≺: ≺ is a transitive but ‘very’ partial order. Two maps
are incomparable if neither is a refinement of the other. We can enrich order ≺ as
follows: For any two maps ψ and ψ′, the map ϕ(h) := (ψ(h),ψ′(h))∈Sϕ=Sψ×Sψ′

refines both. Define ψ≺×ψ
′ iff ψ≺ϕ≺ψ′. Extended order ≺× is still not total. The

remaining incomparable cases are: Case ψ≺ϕ≻ψ′: This is only possible if q∗ and π∗

of ψ and ψ′ (and ϕ) coincide. A secondary criterion based on the relative complexity
of ψ and ψ′ could decide the case, e.g. ψ≺×ψ

′ iff |Sψ|< |Sψ′|. Case ψ≻ϕ≺ψ′: Both
ψ and ψ′ are inferior to ϕ. If class Φ is closed under cartesian product, ϕ should be
favored over ψ and ψ′ so their relative order is not or less important.

Search for ϕ: Assume Φ contains at least one exact reduction. Then the ≺×-
minimal elements in Φ are exactly the maximally coarse exact ϕ∈Φ. If Φ is closed
under arbitrary coarsening, then there is a unique minimizer (modulo isomorphism).
If Φ is also closed under cartesian product, the same holds for ≺. This implies that
any exhaustive search for a ≺×-minimum in Φ will give an exact ϕ with minimal
number of states, say ϕ0. Now Theorem 7 tells us that q∗ϕ0 and π∗

ϕ0
are the optimal

value and policy also of the original process P , irrespective of whether Pϕ0 is Markov
or not. So while the conditions of Theorem 7 cannot be verified in practice, the
theorem justifies a search procedure based on (q∗ϕ,π

∗
ϕ) that ignores the (non-)Markov

structure of Pϕ.
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Search for approximate ϕ based on finite sample size. The principle approach
in the previous paragraph is sound, but needs to be generalized in various ways
before it can be used: Real sample size is finite, which means we only have access to
approximations q̂∗ϕ and π̂∗

ϕ via estimation p̂ϕ of pϕ. The criterion for exact equality
q∗ϕ=q

∗
ψ in ≺ needs to be replaced by a suitable q̂∗ϕ≈ q̂∗ψ, which should be done anyway,

since real-word problems seldom allow for exact reductions. ≈ should be chosen so
as to come with statistical guarantees; e.g. Kolmogorov-Smirnov tests have been
used in [McC96]. A suitable π̂∗

ϕ≈ π̂∗
ψ requires more effort (see outlook). For large Φ

this also requires appropriate regularization, i.e. penalizing complex ϕ [Hut09c]. To
ensure q̂∗→ q∗ for n→∞, we need proper exploration strategies [SLL09]. Finally,
we want an efficient search procedure in Φ, rather than exhaustive search. This will
be heuristic or will require strong assumptions on Φ [Ngu13]. All but the last point
raised above have or should have general solutions (see next paragraph).

Utilizing existing algorithms. The BLB algorithm [MMR11] and its extensions
IBLB [NMRO13] and improvements OMS [NOR13] solve most of the problems above
and can (nearly) readily be used for our purpose.

The BLB family uses the same basic FRL setup from [Hut09c] used also here.
The authors consider a countable class Φ assumed to contain at least one ϕ such
that Pϕ is an MDP (6). They consider average reward, rather then discounting, and
analyze regret, which (in general) requires some assumption on the mixing rate or
‘diameter’ of the MDP. They prove that the total regret grows with Õ(n1/2...2/3),
depending on the algorithm.

Their algorithms and analyses rely on UCRL2 [JOA10], an exploration algorithm
for finite-state MDPs. Going through the BLB proofs, it appears that the condition
that Pϕ is an MDP can be removed if p (15) is used instead, modulo the analysis of
UCRL2 itself. The proofs for the bounds for UCRL2 exploit that s′,r′ conditioned on
s,a are i.i.d., which is true if Pϕ is Markov but not in general. Asymptotic versions
should remain valid under the ‘weak conditions’ alluded to in (37). With some
stronger assumptions that guarantee good convergence rates, the regret analysis of
UCRL2 should remain valid too. Formally, the use of Hoeffding’s inequality for i.i.d.
need to be replaced by comparable bounds with weaker conditions, e.g. Azuma’s
inequality for martingales.

There is one serious gap in the argument above. BLB uses average reward while
our theorems are for discounted reward. It is often possible to adapt algorithms
and proofs which come with regret bounds for average reward to PAC bounds for
discounted reward or vice versa. This would have to be done first: either a PAC
version of BLB by combining MERL [LHS13] with UCRLγ [LH12], or average reward
versions of the bounds derived in this paper.
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9 Miscellaneous

Action permutation instead of policy condition. We can rename actions
without changing the underlying problem: Let A :A→Ã be a bijection, and define
P̃ (o′r′|hã) :=P (o′r′|ha), where ã :=A(a). Clearly, all results for P also hold for P̃ if
a is replaced by ã everywhere, in particular Π̃(h) :=A(Π(h)). In general, this is of
little use. Things become more interesting if we allow the bijection A to be history-
dependent, which we can do since our results hold for any, even non-stationarity,
P̃ . This allows us to devise an A :A×H→Ã such that A(Π(h);h) =constant for
the policy Π of interest. For example, for Ã :=A, this is achieved by a permutation
that swaps action a=Π(h) with some arbitrary but fixed action a1∈A, and leaves
all other actions unchanged:

A(a;h) :=


a1 if Π(h) = a
Π(h) if Π(h) ̸= a = a1

a else

Since Π̃(h)≡A(Π(h);h)≡a1 is constant, the ϕ-uniformity condition for Π̃ in Theo-
rems 5, 6 and 9 becomes vacuous. While this transformation is theoretical interest,
it only becomes practically useful if we can somehow learn the function A without
knowledge of Π, and in particular for Π∗. We could also allow non-bijective A that
merge actions that have (approximately) the same (optimal) Q-value.

10 Discussion

Summary. Our results show that RL algorithms for finite-state MDPs can be
utilized even for problems P that have arbitrary history dependence and history-
to-state reductions/aggregations ϕ that induce Pϕ that are also neither stationary
nor MDP. The only condition to be placed on the reduction is that the quantities of
interest, (Q-)Values and (optimal) Policies, can approximately be represented. This
considerably generalizes previous work on feature reinforcement learning and MDP
state aggregation and allows for extreme state aggregations beyond MDPs. The
obtained results may also explain why RL algorithms designed for MDPs sometimes
perform well beyond MDPs.

Outlook. As usual, lots remains to be done. A list of the more interesting remaining
tasks and open questions follows:
• While the approximate ϕ-uniformity condition on Q∗ in Theorem 7 is very weak

compared to bisimilarity, uniformity of V ∗ in Theorem 9 is even weaker (Theorem 11
shows how much of a difference this can make). It is an Open Problem 10 whether
an analogue of Theorem 7ii also holds for Theorem 9 beyond ε=0.
• An algorithm learning ϕ beyond MDPs that comes with regret or PAC guaran-

tees has yet to be developed. This could be done by generalizing the partial order
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≺× to n<∞, or by adapting the class and proofs of BLB algorithms, or by inte-
grating MERL with UCRLγ. • All bounds contain 1

1−γ to some power. Can the
exponents be improved? For which environments/examples are the bounds tight?

• The trick to use a-dependent Q∗ as a-independent map ϕ in Section 6 was to
vectorize Q∗ in a. Unfortunately this leads to a state-space size exponential in A.
Solution ϕ based on (V ∗,Π∗) pair is only linear in A, but rests on Open Problem 10.
Are there other/better ways of dealing with actions? Other extreme aggregations
ϕ, or are a-dependent ϕ possible?

• Are average-reward total-regret versions of our discounted reward results pos-
sible, under suitable mixing rate conditions?

• For small discrete action spaces typical for many board games, the exact condi-
tions on Π are met. For continuous action spaces as in robotics, we can simply dis-
cretize the action space, introducing another ε-error, but action-continuous versions
of our results would be nicer. Except for Theorem 7, any interesting generalization
should replace the exact by approximate ϕ-uniformity conditions on Π.

• Our theorems and/or proof ideas should allow to extend existing convergence
theorems for RL algorithms such as Q-learning and others from MDPs to beyond
MDPs.

• The bisimulation conditions of classical state aggregation results are for re-
ward and transition probabilities. It would be interesting to derive explicit weaker
conditions for them that still imply our conditions on (Q-)Values.
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A List of Notation

General notation

[[R]] = 1 if R=true and =0 if R=false (Iverson bracket)

#X size of set X
ε,δ small non-negative real numbers

⌊z⌋ largest integer ≤z

Original history-based process

O,R,A = finite observation, reward, action spaces.

otrtat ∈ O×R×A = observation, reward, action at time t

t≤n∈N = any time ≤ sample size

P,Q,V,Π = Probability, (Q-)Value, Policy of original history-based Process

Π∗,Π̃,ΠB = optimal, approximately optimal, behavior Policy

h∈H = (O×R×A)∗×O×R = possible histories of any length

h′=hao′r′ = successor history of h∈H
ht = o1r1a1...otrt = history up to time t

Ht = (O×R×A)t−1×O×R = history of length t

P (o′r′|ha) = probability of next observation&reward given history&action

Reduction/aggregation from history to states

Sϕ = finite state space induced by ϕ (range of ϕ)

ϕ :H→Sϕ = reduction/map/aggregation from histories to states

st = ϕ(ht)∈S = state at time t

Pϕ(s
′r′|ha) = marginalized P -probability over state&reward given history&action

B(h|sa) = dispersion probability. Stochastic “inverse” of ϕ

⟨Q(h,a)⟩B = B-average over {h̃ :ϕ(h̃)=ϕ(h)}
wt(sa) = non-negative weight function

∑∞
t=1wt(sa)=1 ∀sa

PB(h) = probability of h from P interacting with ΠB

PϕB() = (partially) ϕ-reduced, marginalized, conditionalized PB

≺,≺× = (extended) ordering of ϕ w.r.t. quality (n=∞ so far only)

Finite state Markov decision process (MDP)

S = finite state space

p,q,v,π = probability, (q-)value, policy of MDP

s,a,s′,r′ = stat, action, successor state, reward

n(sas′r′) = number of times sas′r′ appears in hn+1

γ∈ [0;1) = discount factor

28


