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Abstract
This Dagstuhl Seminar also stood as the 11th European Workshop on Reinforcement Learning
(EWRL11). Reinforcement learning gains more and more attention each year, as can be seen
at the various conferences (ECML, ICML, IJCAI, . . . ). EWRL, and in particular this Dagstuhl
Seminar, aimed at gathering people interested in reinforcement learning from all around the
globe. This unusual format for EWRL helped viewing the field and discussing topics differently.
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Reinforcement Learning (RL) is becoming a very active field of machine learning, and this
Dagstuhl Seminar aimed at helping researchers have a broad view of the current state of this
field, exchange cross-topic ideas and present and discuss new trends in RL. It gathered 38
researchers together. Each day was more or less dedicated to one or a few topics, including
in particular: The exploration/exploitation dilemma, function approximation and policy
search, universal RL, partially observable Markov decision processes (POMDP), inverse
RL and multi-objective RL.This year, by contrast to previous EWRL events, several small
tutorials and overviews were presented. It appeared that researchers are nowadays interested
in bringing RL to more general and more realistic settings, in particular by alleviating the
Markovian assumption, for example so as to be applicable to robots and to a broader class
of industrial applications.This trend is consistent with the observed growth of interest in
policy search and universal RL. It may also explain why the traditional treatment of the
exploration/exploitation dilemma received less attention than expected.
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3 Overview of Talks

3.1 Preference-based Evolutionary Direct Policy Search
Robert Busa-Fekete (Universität Marburg, DE)

License Creative Commons BY 3.0 Unported license
© Robert Busa-Fekete

We introduce a preference-based extension of evolutionary direct policy search (EDPS) as
proposed by Heidrich-Meisner and Igel [2]. EDPS casts policy learning as a search problem
in a parametric policy space, where the function to be optimized is a performance measure
like expected total reward, andevolution strategies (ES) such as CMA-ES [1] are used as
optimizers. Moreover, since the evaluation of a policy can only be done approximately,
namely in terms of a finite number of rollouts, the authors make use of racing algorithms [3]
to control this number in an adaptive manner. These algorithms return a sufficiently reliable
ranking over the current set of policies (candidate solutions), which is then used by the ES
for updating its parameters and population. A key idea of our approach is to extend EDPS
by replacing the value-based racing algorithm with a preference-based one that operates on a
suitable ordinal preference structure and only uses pairwise comparisons between sample
rollouts of the policies.

References
1 N. Hansen and S. Kern. Evaluating the CMA evolution strategy on multimodal test func-

tions. In Parallel Problem Solving from Nature-PPSN VIII, pages 282–291, 2004.
2 V. Heidrich-Meisner and C. Igel. Hoeffding and Bernstein races for selecting policies in

evolutionary direct policy search. In Proceedings of the 26th International Conference on
Machine Learning, pages 401–408, 2009.

3 O. Maron and A.W. Moore.Hoeffding races: accelerating model selection search for classific-
ation and function approximation. In Advances in Neural Information Processing Systems,
pages 59–66, 1994.

3.2 Solving Simulator-Defined MDPs for Natural Resource
Management

Thomas G. Dietterich (Oregon State University, US)

License Creative Commons BY 3.0 Unported license
© Thomas G. Dietterich

Joint work of Dietterich, Thomas G.; Taleghan Alkaee, Majid; Crowley, Mark
Main reference T.G. Dietterich, M. Alkaee Taleghan, M. Crowley, “PAC Optimal Planning for Invasive Species

Management: Improved Exploration for Reinforcement Learning from Simulator-Defined MDPs,”
in Proc. of the AAAI Conference on Artificial Intelligence (AAAI’13), AAAI Press. 2013.

URL http://www.aaai.org/ocs/index.php/AAAI/AAAI13/paper/view/6478
URL http://web.engr.oregonstate.edu/~tgd/publications/dietterich-taleghan-crowley-pac-optimal-

planning-for-invasive-species-management-etc-aaai2013.pdf

Natural resource management problems, such as forestry, fisheries, and water resources,
can be formulated as Markov decisionprocesses. However, solving them is difficult for two
reasons. First, the dynamics of the system are typically available only in the form of a
complex and expensive simulator. This means that MDP planning algorithms are needed
that minimize the number of calls to the simulator. Second, the systems are spatial. A
natural way to formulate the MDP is to divide up the region into cells, where each cell is
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modeled with a small number of state variables. Actions typically operate at the level of
individual cells, but the spatial dynamics couple the states of spatially-adjacent cells. The
resulting state and action spaces of these MDPs are immense. We have been working on
two natural resource MDPs. The first involves the spread of tamarisk in river networks.
A native of the Middle East, tamarisk has become an invasive plant in the dryland rivers
and streams of the western US. Given a tamarisk invasion, a land manager must decide
how and where to fight the invasion (e.g., eradicate tamarisk plants? plant native plants?
upstream? downstream?). Although approximate or heuristic solutions to this problem would
beuseful, our collaborating economists tell us that our policy recommendations will carry
more weight if they are provably optimal with high probability. A large problem instance
involves 4.7× 106 states with 2187 actions in each state. On a modern 64-bit machine, the
action-value function for this problem can fit into main memory. However, computing the
full transition function to sufficient accuracy to support standardvalue iteration requires
on the order of 3× 1020 simulator calls. The second problem concerns the management of
wildfire in Eastern Oregon. In this region, prior to European settlement, the native ponderosa
pine forests were adapted to frequent, low-intensity fires. These fires allow the ponderosa
pine trees (which are well-adapted to survive fire) to grow very tall while preventing the
accumulation of fuel at ground level. These trees provide habitat for many animal species
and are also very valuable for timber. However, beginning in the early 1900s, all fires were
suppressed in this landscape, which has led to the build up of huge amounts of fuel. The
result has been large, catastrophic fires that kill even the ponderosa trees and that are
exceptionally expensive to control. The goal of fire management is to return the landscape
to a state where frequent, low-intensity fires are again the normal behavior. There are two
concrete fire management problems: Let Burn (decide which fires to suppress) and Fuel
Treatment (decide in which cells to perform fuel reduction treatments). Note that in these
problems, the system begins in an unusual, non-equilibrium state, and the goal is to return
the system to a desired steady state distribution. Hence, these problems are not problems
of reinforcement learning, but rather problems of MDP planning for a specific start state.
Many of the assumptions in RL papers, such as ergocity of all policies, are not appropriate
for this setting. Note also that it is highly desirable to produce a concrete policy (as opposed
to just producing near-optimal behavior viareceding horizon control). A concrete policy can
be inspected by stakeholders to identify missing constraints, state variables, and components
of the reward function. To solve these problems, we are exploring two lines of research. For
tamarisk, we have been building on recent work in PAC-RL algorithms(e.g., MBIE, UCRL,
UCRL2, FRTDP, OP) to develop PAC-MDP planning algorithms. We are pursuing two
innovations. First, we have developed an exploration heuristic based on an upper bound on
the discounted state occupancy probability. Second, we are developing tighter confidence
intervals in order to terminate the search earlier. These are based on combining Good-Turing
estimates of missing mass (i.e., for unseen outcomes) with sequential confidence intervals
for multinomial distributions. These reduce the degree to which we must rely on the union
bound, and hence give us tighter convergence. For the LetBurn wildfire problem, we are
exploring approximate policy iteration methods. For Fuel Treatment, we are extending
Crowley’s Equilibrium Policy Gradient methods. These define a local policy function that
stochastically chooses the action for cell i based on the actions already chosen for the cells in
the surrounding neighborhood. A Gibbs-sampling-style MCMC method repeatedly samples
from these local policies until a global equilibrium is reached. This equilibrium defines the
global policy. At equilibrium, gradient estimates can be computed and applied to improve
the policy.

13321



6 13321 – Reinforcement Learning

3.3 ABC and Cover Tree Reinforcement Learning
Christos Dimitrakakis (EPFL – Lausanne, CH)

License Creative Commons BY 3.0 Unported license
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Joint work of Dimitrakakis, Christos; Tziortziotis, Nikolaos
Main reference C. Dimitrakakis, N. Tziortziotis, “ABC Reinforcement Learning,” arXiv:1303.6977v4 [stat.ML],

2013; to appear in Proc. of ICML’13.
URL http://arxiv.org/abs/1303.6977v4

In this talk, I presented our recent results on methods for Bayesian reinforcement learning
using Thompson sampling, but differing significantly on their prior. The first, Approximate
Bayesian Computation Reinforcement Learning (ABC-RL), employs an arbitrary prior over a
set of simulators and is most suitable in cases where an uncertain simulation model is available.
The second,Cover Tree Bayesian Reinforcement Learning (CTB-RL), performs closed-form
online Bayesian inference on a cover tree and is suitable for arbitrary reinforcement learning
problems, when little is known about the environment and fast inference is essential. ABC-RL
introduces a simple, general framework for likelihood-free Bayesian reinforcement learning,
through Approximate Bayesian Computation (ABC). The advantage is that we only require
a prior distribution ona class of simulators. This is useful when a probabilistic model of
the underlying process is too complex to formulate, but where detailed simulation models
are available. ABC-RL allows the use of any Bayesian reinforcement learning technique
in this case. It can be seen as an extension of simulation methods to both planning and
inference. We experimentally demonstrate the potential of this approach in a comparison
with LSPI. Finally, we introduce a theorem showing that ABC is sound, in the sense that
the KL divergence between the incomputable true posterior and the ABC approximation
is bounded by an appropriate choice of statistics. CTBRL proposes an online tree-based
Bayesian approach for reinforcement learning. For inference, we employ a generalised context
tree model. This defines a distribution on multivariate Gaussian piecewise-linear models,
which can be updated in closed form. The tree structure itself is constructed using the cover
tree method, which remains efficient in high dimensional spaces. We combine the model with
Thompson sampling and approximate dynamic programming to obtain effective exploration
policies in unknown environments. The flexibility and computational simplicity of the model
render it suitable for many reinforcement learning problems in continuous state spaces. We
demonstrate this in an experimental comparison with least squares policy iteration.

References
1 N. Tziortziotis, C. Dimitrakakis and K. BlekasCover Tree Bayesian Reinforcement Learning.

arXiv:1305.1809

3.4 Some thoughts on Transfer Learning in Reinforcement Learning:
on States and Representation

Lutz Frommberger (Universität Bremen, DE)

License Creative Commons BY 3.0 Unported license
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Main reference L. Frommberger, “Qualitative Spatial Abstraction in Reinforcement Learning,” Cognitive
Technologies Series, ISBN 978-3-642-16590-0, Springer, 2010.

URL http://dx.doi.org/10.1007/978-3-642-16590-0

The term “transfer learning” is a fairly sophisticated term for something thatcan be considered
a core component of any learning effort of a human or animal: to base the solution to a new
problem on experience and learning success of prior learning tasks. This is something that a
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learning organism does implicitly from birth on: no task is ever isolated, but embedded in a
common surrounding or history. In contrary to this lifelong learning type setting, transfer
learning in RL[5] assumes two different MDPsM andM′ that have something “in common”.
This commonality is mostlikely given in a task mapping function that maps states and actions
fromM toM′ as a basis for reusing learned policies. Task mappings can be given by human
supervisors or learned, but mostly there is some instance telling the learning agent what to do
to benefit from its experience. In very common words: Here is taskM, there is taskM′, and
this is how you can bridge between them. This is a fairly narrow view on information reuse,
and more organic and autonomous variants of knowledge transfer are desirable. Knowledge
transfer, may it be in-task (i.e., generalization) or cross-task, exploits similarity between
tasks. By task mapping functions, information on similarity is brought into the learning
process from outside. This also holds for approaches that do not require an explicit state
mapping [2, 4], where relations or agent spaces, e.g., are defined a-priori. What is mostly
lacking so far is the agent’s ability to recognize similarities on its own and/or seamlessly
benefit from prior experiences as an integral part of the new learning effort. An intelligent
learning agent should easily notice if certain parts of the current task are identical or similar
to an earlier learning task, for example, general movement skills that remain constant over
many specialized learning tasks. In prior work, I proposed generalization approaches such as
task space tilecoding [1] that allow to reuse knowledge of the actual learning task if certain
state variables are identical. This works if structural information is made part of the state
space and does not require a mapping function. However, it needs a-priori knowledge of
which state variables are critical for action selection in a structural way. Recent approaches
foster thehope that such knowledge can be retrieved by the agent itself: e.g.,[3] allows for
identification of state variables that have a generally high impact on action selection over
one or several tasks. But even if we can identify and exploit certain state variables that
encode structural information and have this generalizing impact, these features must at least
exist. If they do not exist in the state representations, such approaches fail. For example,
if the distance to the next obstacle in front of an agent is this critical value, it does not
help if the agent’s position and the position of the obstacle are in the state representation,
as this implicitly hides the critical information. Thus, again, the question of state space
design becomes evident. How can we ensure that relevant information is encoded on the
level of features? Or how can we exploit information that is only implicitly given in the
state representation? Answering these questions will be necessary to take the next step into
autonomous knowledge reuse for RL agents.

References
1 Lutz Frommberger. Task space tile coding: In-task and cross-task generalization in re-

inforcement learning. In 9th European Workshop on Reinforcement Learning (EWRL9),
Athens, Greece, September 2011.

2 George D. Konidaris and Andrew G. Barto. Autonomous shaping: Knowledge transfer in
reinforcement learning. In Proceedings of the Twenty Third International Conference on
Machine Learning (ICML 2006), pp. 489–49, Pittsburgh, PA, June 2006.

3 Matthijs Snel and Shimon Whiteson. Multi-task reinforcement learning: shaping and fea-
ture selection. In Recent Advances in Reinforcement Learning, pp. 237–248. Springer, 2012.

4 Prasad Tadepalli, Robert Givan, and Kurt Driessens. Relational reinforcement learning:
An overview. In Proc. of the ICML-2004 Workshop on Relational Reinforcement Learning,
pp. 1–9, 2004.

5 Matthew E Taylor and Peter Stone. Transfer learning for reinforcement learning domains:
A survey. The Journal of Machine Learning Research, 10:1633–1685,2009.
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3.5 Actor-Critic Algorithms for Risk-Sensitive MDPs
Mohammad Ghavamzadeh (INRIA Nord Europe – Lille, FR)

License Creative Commons BY 3.0 Unported license
© Mohammad Ghavamzadeh

In many sequential decision-making problems we may want to manage risk by minimizing
some measure of variability in rewards in addition to maximizing a standard criterion.
Variance related risk measures are among the most common risk-sensitive criteria in finance
and operations research. However, optimizing many such criteria is known to be a hard
problem. In this paper, we consider both discounted and average reward Markov decision
processes. For each formulation, we first define a measure of variability for a policy, which
in turn gives us a set of risk-sensitive criteria to optimize. For each of these criteria, we
derive a formula for computing its gradient. We then devise actor-critic algorithms for
estimating the gradient and updating the policy parameters in the ascent direction. We
establish the convergence of our algorithms to locally risk-sensitive optimal policies. Finally,
we demonstrate the usefulness of our algorithms in a traffic signal control application.

3.6 Statistical Learning Theory in Reinforcement Learning and
Approximate Dynamic Programming

Mohammad Ghavamzadeh (INRIA Nord Europe – Lille, FR)

License Creative Commons BY 3.0 Unported license
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Approximate dynamic programming (ADP) and reinforcement learning (RL) algorithms are
used to solve sequential decision-making tasks where the environment (i.e., the dynamics
and the rewards) is not completely known and/or the size of thestate and action spaces is
too large. In these scenarios, the convergence and performance guarantees of the standard
DP algorithms are no longer valid, and adifferent theoretical analysis have to be developed.
Statistical learning theory (SLT) has been a fundamental theoretical tool to explain the
interaction between the process generating the samples and the hypothesis space used by
learning algorithms, and shown when and how-well classification and regression problems
can be solved. In recent years, SLT tools have been used to study the performance of batch
versions of RL and ADP algorithms with the objective of deriving finite-sample bounds on
the performance loss (w.r.t. the optimal policy) of the policy learned by these methods. Such
an objective requires to effectively combine SLT tools with the ADP algorithms, and to show
how the error is propagated through the iterations of these iterative algorithms.

3.7 Universal Reinforcement Learning
Marcus Hutter (Australian National University, AU)

License Creative Commons BY 3.0 Unported license
© Marcus Hutter

There is great interest in understanding and constructing generally intelligent systems
approaching and ultimately exceeding human intelligence. Universal AI is such a mathematical
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theory of machinesuper-intelligence. More precisely, AIXI is an elegant parameter-free theory
of an optimal reinforcement learning agent embedded in an arbitrary unknown environment
that possesses essentially all aspects of rational intelligence. The theory reduces all conceptual
AI problems to pure computational questions. After a brief discussion of its philosophical,
mathematical, and computational ingredients, I will give a formal definition and measure of
intelligence, which is maximized by AIXI. AIXI can be viewed as the most powerful Bayes-
optimal sequential decision maker, for which I will present general optimality results. This
also motivates some variations such as knowledge-seeking and optimistic agents, and feature
reinforcement learning. Finally I present some recent approximations, implementations, and
applications of this modern top-down approach to AI.

References
1 M. Hutter.Universal Artificial Intelligence.Springer, Berlin, 2005.
2 J. Veness, K. S. Ng, M. Hutter, W. Uther, and D. Silver.A Monte Carlo AIXI approximation.

Journal of Artificial Intelligence Research, 40:95–142, 2011.
3 S. Legg.Machine Super Intelligence. PhD thesis, IDSIA, Lugano, Switzerland, 2008.
4 M. Hutter. One decade of universal artificial intelligence. In Theoretical Foundations of

Artificial General Intelligence, pages 67–88. Atlantis Press, 2012.
5 T. Lattimore.Theory of General Reinforcement Learning. PhD thesis, Research School of

Computer Science, Australian National University, 2014.

3.8 Temporal Abstraction by Sparsifying Proximity Statistics
Rico Jonschkowski (TU Berlin, DE)
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Joint work of Jonschkowski, Rico; Toussaint, Marc;

Automatic discovery of temporal abstractions is a key problem in hierarchical reinforcement
learning. In previous work, such abstractions were found through the analysis of a set of
experienced or demonstrated trajectories [2]. We propose that, from such trajectory data,
we may learn temporally marginalized transition probabilities—which we call proximity
statistics—that model possible transitions on larger time scales rather than learning 1-step
transition probabilities. Viewing the proximity statistics as state values allows the agent to
generate greedy policies from them. Making the statistics sparse and combining proximity
estimates by proximity propagation can substantially accelerate planning compared to value
iteration while keeping the size of the statistics manageable. The concept of proximity
statistics and its sparsification approach is inspired from recent work in transit-node routing
in large road networks [1]. We show that sparsification of these proximity statistics implies
an approach to the discovery of temporal abstractions. Options defined by subgoals are
shown to be a special case of the sparsification of proximity statistics. We demonstrate the
approach and compare various sparsification schemes in a stochastic grid world.

References
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3.9 State Representation Learning in Robotics
Rico Jonschkowski (TU Berlin, DE)
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final.pdf

The success of reinforcement learning in robotic tasks is highly dependent onthe state
representation – a mapping from high dimensional sensory observations of the robot to states
that can be used for reinforcement learning. Currently, this representation is defined by
human engineers – thereby solving an essential part of the robotic learning task. However,
this approach does not scale because it restricts the robot to tasks for which representations
have been predefined by humans. For robots that are able to learn new tasks, we need
state representation learning. We sketch how this problem can be approached by iteratively
learning a hierarchy of task-specific state representations following a curriculum. We then
focus on a single step in this iterative procedure: learning a state representation that allows
the robot to solve asingle task. To find this representation, we optimize two characteristics of
good state representations: predictability and slowness. We implement these characteristics
in a neural network and show that this approach can find good state representations from
visual input in simulated robotic tasks.

3.10 Reinforcement Learning with Heterogeneous Policy
Representations

Petar Kormushev (Istituto Italiano di Tecnologia – Genova, IT)

License Creative Commons BY 3.0 Unported license
© Petar Kormushev

Joint work of Kormushev, Petar; Caldwell, Darwin G.
Main reference P. Kormushev, D.G. Caldwell, “Reinforcement Learning with Heterogeneous Policy

Representations,” 2013.
URL http://ewrl.files.wordpress.com/2013/06/ewrl11_submission_20.pdf

We propose a novel reinforcement learning approach for direct policy search that can
simultaneously: (i) determine the most suitable policy representation for a given task; and
(ii) optimize the policy parameters of this representation in order to maximize the reward
and thus achieve the task. The approach assumes that there is a heterogeneous set of policy
representations available to choose from. A naïve approach to solving this problem would
be to take the available policy representations one by one, run a separate RL optimization
process (i.e. conduct trials and evaluate the return) for each once, and at the very end pick
the representation that achieved the highest reward. Such an approach, while theoretically
possible, would not be efficient enough in practice. Instead, our proposed approach is to
conduct one single RL optimization process while interleaving simultaneously all available
policy representations. This can be achieved by leveraging our previous work in the area of
RL based on Particle Filtering (RLPF).

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.robotics.tu-berlin.de/fileadmin/fg170/Publikationen_pdf/Jonschkowski-13-ERLARS-final.pdf
http://www.robotics.tu-berlin.de/fileadmin/fg170/Publikationen_pdf/Jonschkowski-13-ERLARS-final.pdf
http://www.robotics.tu-berlin.de/fileadmin/fg170/Publikationen_pdf/Jonschkowski-13-ERLARS-final.pdf
http://www.robotics.tu-berlin.de/fileadmin/fg170/Publikationen_pdf/Jonschkowski-13-ERLARS-final.pdf
http://www.robotics.tu-berlin.de/fileadmin/fg170/Publikationen_pdf/Jonschkowski-13-ERLARS-final.pdf
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
P. Kormushev, D.\protect \kern +.1667em\relax G.\protect \kern +.1667em\relax  Caldwell, ``Reinforcement Learning with Heterogeneous Policy Representations,'' 2013.
P. Kormushev, D.\protect \kern +.1667em\relax G.\protect \kern +.1667em\relax  Caldwell, ``Reinforcement Learning with Heterogeneous Policy Representations,'' 2013.
http://ewrl.files.wordpress.com/2013/06/ewrl11_submission_20.pdf


Peter Auer, Marcus Hutter, and Laurent Orseau 11

3.11 Theoretical Analysis of Planning with Options
Timothy Mann (Technion – Haifa, IL)

License Creative Commons BY 3.0 Unported license
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We introduce theoretical analysis suggesting how planning can benefit from using options. Ex-
perimental results have shown that options often induce faster convergence [3, 4], and previous
theoretical analysis has shown that options are well-behaved in dynamic programming[2, 3].
We introduced a generalization of the Fitted Value Iteration (FVI) algorithm [1] that in-
corporates samples generated by options. Our analysis reveals that when the given set of
options contains the primitive actions, our generalized algorithm converges approximately as
fast as FVI with only primitive actions. When only temporally extended actions are used
for planning convergence can be significantly faster than planning with only primitives, but
this method may converge toward a suboptimal policy. We also developed precise conditions
where our generalized FVI algorithm converges faster with a combination of primitive and
temporally extended actions than with only primitive actions. These conditions turn out to
depend critically on whether the iterates produced by FVI underestimate the optimal value
function. Our analysis of FVI suggests that options can play an important role in planning
by inducing fast convergence.
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3.12 Learning Skill Templates for Parameterized Tasks
Jan Hendrik Metzen (Universität Bremen, DE)

License Creative Commons BY 3.0 Unported license
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Joint work of Metzen, Jan Hendrik; Fabisch, Alexander

We consider the problem of learning skills for a parameterized reinforcement learning problem
class. That is, we assume that a task is defined by a task parameter vector and, likewise,
a skill is considered as a parameterized policy. We propose skill templates, which allow
to generalize skills that have been learned using reinforcement learning to similar tasks.
In contrast to the recently proposed parameterized skills[1], skill templates also provide a
measure of uncertainty for this generalization, which is useful for subsequent adaptation of
the skill by means of reinforcement learning. In order to infer a generalized mapping from
task parameter space to policy parameter space and an estimate of its uncertainty, we use
Gaussian process regression [3]. We represent skills by dynamical movement primitives [2]
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and evaluate the approach on a simulated Mitsubishi PA10 arm, where learning a single skill
corresponds to throwing a ball to a fixed target position while learning the skill template
requires to generalize to new target positions. We show that learning skill templates requires
only a small amount of training data and improves learning in the target task considerably.

References
1 B.C. da Silva, G. Konidaris, and A.G. Barto. Learning Parameterized Skills, 29th Inter-

national Conference on Machine Learning, 2012.
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Primitives: Learning Attractor Models for Motor Behaviors. Neural Computation, 25:2,
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3.13 Online learning in Markov decision processes
Gergely Neu (Budapest University of Technology & Economics, HU)

License Creative Commons BY 3.0 Unported license
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Main reference A. Zimin, G. Neu, “Online learning in Markov decision processes by Relative Entropy Policy

Search,” to appear in Advances in Neural Information Processing 26.

We study the problem of online learning in finite episodic Markov decision processes (MDPs)
where the loss function is allowed to change between episodes. The natural performance
measure in this learning problem is the regret defined as the difference between the total
loss of the best stationary policy and the total loss suffered by the learner. We assume that
the learner is given access to a finite action space A and the state space X has a layered
structure with L layers, so that state transitions are only possible between consecutive layers.
We propose several learning algorithms based on applying the well-known Mirror Descent
algorithm to the problem described above. For deriving our first method, we observe that
Mirror Descent can be regarded as a variant of the recently proposed Relative Entropy Policy
Search (REPS) algorithm of [1]. Our corresponding algorithm is called Online REPS or
O-REPS. Second, we show how to approximately solve the projection operations required by
Mirror Descent without taking advantage of the connections to REPS. Finally, we propose a
learning method based on using a modified version of the algorithm of[2] to implement the
Continuous Exponential Weights algorithm for the online MDP problem. For these last two
techniques, we provide rigorous complexity analyses. More importantly, we show that all of
the above algorithms satisfy regret bounds of O(

√
L |X | |A|T log(|X | |A| /L)) in the bandit

setting and O(L
√
T log(|X | |A| /L)) in thefull information setting (both after T episodes).

These guarantees largely improve previously known results under much milder assumptions
and cannot be significantly improved under general assumptions.
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3.14 Hierarchical Learning of Motor Skills with Information-Theoretic
Policy Search

Gerhard Neumann (TU Darmstadt – Darmstadt, DE)

License Creative Commons BY 3.0 Unported license
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The key idea behind information-theoretic policy search is to bound the ‘distance’ between the
new and old trajectory distribution, where the relative entropy is used as ‘distance measure’.
The relative entropy bound exhibits many beneficial properties, such as a smooth and fast
learning process and a closed-form solution for the resulting policy. We summarize our work
on information theoretic policy search for motor skill learning where we put particular focus
on extending the original algorithm to learn several options for a motor task, select an option
for the current situation, adapt the option to the situation and sequence options to solve an
overall task. Finally, we illustrate the performance of our algorithm with experiments on
real robots.

3.15 Multi-Objective Reinforcement Learning
Ann Nowe (Free University of Brussels, BE)

License Creative Commons BY 3.0 Unported license
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Joint work of Nowe, Ann; Van Moffaert, Kristof; Drugan, M. Madalina
Main reference K. Van Moffaert, M.M. Drugan, A. Nowé, “Hypervolume-based Multi-Objective Reinforcement

Learning,” in Proc. of the 7th Int’l Conf. on Evolutionary Multi-Criterion Optimization (EMO’13),
LNCS, Vol. 7811, pp. 352–366, Springer, 2013.

URL http://dx.doi.org/10.1007/978-3-642-37140-0_28

We focus on extending reinforcement learning algorithms to multi-objective problems, where
the value functions are not assumed to be convex. In these cases, the environment – either
single-state or multi-state – provides the agent multiple feedback signals upon performing
an action. These signals can be independent, complementary or conflicting. Hence, multi-
objective reinforcement learning (MORL) is the process of learning policies that optimize
multiple criteria simultaneously. In our talk, we briefly describe our extensions to multi-
armed bandits and reinforcement learning algorithms to make them applicable in multi-
objective environments. In general, we highlight two main streams in MORL, i.e. either the
scalarization or the direct Pareto approach. The simplest method to solve a multi-objective
reinforcement learning problem is to use a scalarization function to reduce the dimensionality
of the objective space to a single-objective problem. Examples are the linear scalarization
function and the non-linear Chebyshev scalarization function. In our talk, we highlight that
scalarization functions can be easily applied in general but their expressive power depends
heavily on on the fact whether a linear or non-linear transformation to a single dimension
is performed [2]. Additionally, they suffer from additional parameters that heavily bias the
search process. Without scalarization functions, the problem remains truly multi-objective
andQ-values have to be learnt for each objective individually and therefore a state-action is
mapped to a Q-vector. However, a problem arises in the boots trapping process as multiple
actions be can considered equally good in terms of the partial order Pareto dominance
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relation. Therefore, we extend the RL boots trapping principle to propagating sets of Pareto
dominating Q-vectors in multi-objective environments. In [1], we propose to store the average
immediate reward and the Pareto dominating future discounted reward vector separately.
Hence, these two entities can converge separately but can also easily be combined with a
vector-sum operator when the actual Q-vectors are requested. Subsequently, the separation
is also a crucial aspect to determine the actual action sequence to follow a converged policy
in the Pareto set.
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3.16 Bayesian Reinforcement Learning + Exploration
Tor Lattimore (Australian National University – Canberra, AU)
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A reinforcement learning policy π interacts sequentially with an environment µ. In each
time-step the policy π takes action a ∈ A before receiving observation o ∈ O and reward
r ∈ R. The goal of an agent/policy is to maximise some version of the (expected/discounted)
cumulative reward. Since we are interested in the reinforcement learning problem we will
assume that thetrue environment µ is unknown, but resides in some known set M. The
objective is to construct a single policy that performs well in some sense for all/most µ ∈M.
This challenge has been tackled for many specificM, including bandits and factored/partially
observable/regular MDPs, but comparatively few researchers have considered more general
history-based environments. Here we consider arbitrary countable M and construct a
principled Bayesian inspired algorithm that competes with the optimal policy in Cesaro
average.

3.17 Knowledge-Seeking Agents
Laurent Orseau (AgroParisTech – Paris, FR)
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Vol. 8139, pp. 146–160, Springer, 2013.
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Observing that the optimal Bayesian rational agent AIXI does not explore its environment
entirely led us to give a seek a definition of an optimal Bayesian that does so in an optimal
way. We recently defined such a knowledge-seeking agent, KL-KSA, designed for countable
hypothesis classes of stochastic environments. Although this agent works for arbitrary
countable classes and priors, we focus on the especially interesting case where all stochastic
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computable environments are considered and the prior is based on Solomonoff’s universal
prior. Among other properties, we show that KL-KSA learns the true environment in the
sense that it learns to predict the consequences of actions it does not take. We show that it
does not consider noise to be information and avoids taking actions leading to inescapable
traps. We also present a variety of toy experiments demonstrating that KL-KSA behaves
according to expectation.

3.18 Toward a more realistic framework for general reinforcement
learning

Laurent Orseau (AgroParisTech – Paris, FR)

License Creative Commons BY 3.0 Unported license
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URL http://dx.doi.org/10.1007/978-3-642-35506-6_22

The traditional agent framework, commonly used in reinforcement learning (RL)and elsewhere,
is particularly convenient to formally deal with agents interacting with their environment.
However, this framework has a number of issues that are usually of minor importance but
can become severe when dealing with general RL and artificial general intelligence, where
one studies agents that are optimally rational, or can merely have a human-level intelligence.
As a simple example, an intelligent robot that is controlled by rewards and punishments
through a remote control should by all means try to get hold of this remote control, in order
to give itself as many rewards as possible. In a series of paper [1, 2, 4, 3], we studied various
consequences of integrating the agent more and more in its environment, leading to a new
definition of artificial general intelligence where the agent is fully embedded in the world, to
the point where it is even computed by it [3].
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3.19 Colored MDPs, Restless Bandits, and Continuous State
Reinforcement Learning

Ronald Ortner (Montan-Universität Leoben, AT)
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We introduce the notion of colored MDPs that allows to add structural information to
ordinary MDPs. Thus, state-action pairs are assigned the same color when they exhibit
similar rewards and transition probabilities. This extra information can be exploited by an
adaptation of the UCRL algorithm, leading to regret bounds that depend on the number of
colors instead of the size of the state-action space. As applications, we are able to derive
regret bounds for the restless bandit problem as well as for continuous state reinforcement
learning.

3.20 Reinforcement Learning using Kernel-Based Stochastic
Factorization

Joëlle Pineau (McGill University – Montreal, CA)
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Recent years have witnessed the emergence of several reinforcement-learning techniques that
make it possible to learn a decision policy from a batch of sample transitions. Among them,
kernel-based reinforcement learning (KBRL)stands out for two reasons. First, unlike other
approximation schemes, KBRL always converges to a unique solution. Second, KBRL is
consistent in the statistical sense, meaning that adding more data improves the quality of
the resulting policy and eventually leads to optimal performance. Despite its nice theoretical
properties, KBRL has not been widely adopted by the reinforcement learning community.
One possible explanation for this is that the size of the KBRL approximator grows with the
number of sample transitions, which makes the approach impractical for large problems. In
this work, we introduce a novel algorithm to improve the scalability of KBRL. We use a
special decomposition of a transition matrix, called stochastic factorization, which allows us
to fix the size of the approximator while at the same time incorporating all the information
contained in the data. We apply this technique to compress the size of KBRL-derived models
to a fixed dimension. This approach is not only advantageous because of the model-size
reduction; it also allows a better bias-variance trade-off, by incorporating more samples inthe
model estimate. The resulting algorithm, kernel-based stochastic factorization (KBSF), is
much faster than KBRL, yet still converges to a unique solution. We derive a theoretical
bound on the distance between KBRL’s solutionand KBSF’s solution. We show that it is also
possible to construct the KBSF solution in a fully incremental way, thus freeing the space
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complexity of the approach from its dependence on the number of sample transitions. The
incremental version of KBSF (iKBSF) is able to process an arbitrary amount of data, which
results in a model-based reinforcement learning algorithm that canbe used to solve large
continuous MDPs in on-line regimes. We present experiments on a variety of challenging RL
domains, including thedouble and triple pole-balancing tasks, the Helicopter domain, the
penthatlon event featured in the Reinforcement Learning Competition 2013, and a model of
epileptic rat brains in which the goal is to learn a neurostimulation policy to suppress the
occurrence of seizures.

3.21 A POMDP Tutorial
Joëlle Pineau (McGill University – Montreal, CA)
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This talk presented key concepts, algorithms, theory and empirical results pertaining to
learning and planning in Partially Observable Markov Decision Processes (POMDPs).

3.22 Methods for Bellman Error Basis Function construction
Doina Precup (McGill University – Montreal, CA)

License Creative Commons BY 3.0 Unported license
© Doina Precup

Function approximation is crucial for obtaining good results in large reinforcement learning
tasks, but the problem of devising a good function approximator is difficult and often solved in
practice by hand-crafting the“right” set of features. In the last decade, a considerable amount
of effort has been devoted to methods that can construct value function approximators
automatically from data. Among these methods, Bellman error basis functionc onstruction
(BEBF) are appealing due to their theoretical guarantees and good empirical performance
in difficult tasks. In this talk, we discuss on-going developments of methods for BEBF
construction based on random projections (Fard, Grinberg, Pineau and Precup, NIPS 2013)
and orthogonal matching pursuit (Farahmand and Precup, NIPS 2012).

3.23 Continual Learning
Mark B. Ring (IDSIA – Lugano, CH)
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A continual-learning agent is one that begins with relatively little knowledge and few skills
but then incrementally and continually builds up new skills and new knowledge based on
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what it has already learned. But what should such an agent do when it inevitably runs out
of resources? One possible solution is to prune away less useful skills and knowledge, which
is difficult if these are closely connected to each other in a network of complex dependencies.
The approach I advocate in this talk is to give the agent at the outset all the computational
resources it will ever have, such that continual learning becomes the process of continually
reallocating those fixed resources. I will describe how an agent’s policy can be broken into
many pieces and spread out among many computational units that compete to represent
different parts of the agent’s policy space. These units can then be arranged across a
lower-dimensional manifold according to those similarities, which results in many advantages
for the agent. Among these advantages are improved robustness, dimensionality reduction,
and an organization that encourages intelligent reallocation of resources when learning new
skills.

3.24 Multi-objective Reinforcement Learning
Manuela Ruiz-Montiel (University of Malaga, ES)
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Joint work of Ruiz-Montiel, Manuela; Mandow, Lawrence; Pérez-de-la-Cruz, José-Luis
Main reference M. Riuz-Montiel, L. Mandow, J. L. Pérez-de-la-Cruz, “PQ-Learning: Aprendizaje por Refuerzo

Multiobjetivo,” in Proc. of the XV Conference of the Spanish Association for Artificial Intelligence
(CAEPIA’13), pp. 139–148, 2013.

URL http://www.congresocedi.es/images/site/actas/ActasCAEPIA.pdf

In this talk we present PQ-learning, a new Reinforcement Learning (RL)algorithm that
determines the rational behaviours of an agent in multi-objective domains. Most RL
techniques focus on environments with scalar rewards. However, many real scenarios are
best formulated in multi-objective terms: rewards are vectors and each component stands
for an objective to maximize. In scalar RL, the environment is formalized as a Markov
Decision Problem, defined by a set S of states, a set A of actions, a function Psa(s′) (the
transition probabilities) and a function Rsa(s′) (the obtained scalar rewards). The problem
is to determine apolicy π : S → A that maximizes the discounted accumulated reward
Rt = Σ∞

k=0γ
krt+k+1.E.g., Q-learning [1] is an algorithm that learns such policy. It learns

the scalar values Q(s, a) : S × A → R, that represent the expected accumulated reward
when following a given policy after taking a in s. The selected action a in each state is
given by the expression argmaxaQ(s, a). In the multi-objective case the rewards are vectors
−→r ∈ Rn, so different accumulated rewards cannot be totally ordered; −→v dominates −→w
when ∃i : vi > wi ∧ @j : vj < wj . Given a set of vectors, those that are not dominated by
any other vector are said to lie in the Pareto front. We seek the set of policies that yield
non-dominated accumulated reward vectors. The literature on multi-objective RL (MORL)
is relatively scarce (see Vamplew et al. [2]). Most methods use preferences (lexicographic
ordering or scalarization) allowing a total ordering of the value vectors, and approximate
the front by running a scalar RL method several times with different preferences. When
dealing with non-convex fronts, only a subset of the solutions is approximated. Some
multi-objective dynamic programming (MODP) methods calculate all the policies at once,
assuming a perfect knowledge of Psa(s′) and Rsa(s′). We deal with the problem of efficiently
approximating all the optimal policies at once, without sacrificing solutions nor assuming
a perfect knowledge of the model. As far as we know, our algorithm is the first to bring
these featurestogether. As we aim to learn a set of policies at once, Q-learning is apromising
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starting point, since the policy used to interact with theenvironment is not the same that
is learned. At each step, Q-learning shifts the previous estimated Q-value towards its new
estimation: Q(s, a)← (1−α)Q(s, a) +α(r+ γmaxa′Q(s′, a′)). In PQ-learning, Q-values are
sets of vectors, so the max operator is replaced by ND(

⋃
a′ Q(s′, a′))), where ND calculates

the Pareto front. A naive approach to perform the involved set addition is a pairwise
summation (imported from MODP methods), but it leads to an uncontrolled growth of the
sets and the algorithm becomes impractical, as it sums vectors that correspond to different
action sequences. The results of these mixed sums are useless when learning deterministic
policies, because two sequences cannot be followed at once. We propose a controlled set
addition that only sums those pairs of vectors that correspond to useful action sequences.
This is done by associating each vector −→q with two data structures with information about
the vectors that (1) have been updated by −→q and (2) have contributed to its value. In this
talk we describe in detail the application ofPQ-learning to a simple example, and the results
that the algorithm yields when applied to two problems of a benchmark [2]. It approximates
all the policies in the true Pareto front, as opposed to the naive approach, that produces
huge fronts with useless values that dramatically slow down the process.1
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2 P. Vamplew et al., Empirical EvaluationMethods For Multiobjective Reinforcement Learn-

ing, in Machine Learning84(1-2) pp. 51-80, 2011.

3.25 Recent Advances in Symbolic Dynamic Programming for Hybrid
MDPs and POMDPs

Scott Sanner (NICTA – Canberra, AU)
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Many real-world decision-theoretic planning problems are naturallymodeled using mixed
discrete and continuous state, action, and observation spaces, yet little work has provided
exact methodsfor performing exact dynamic programming backups in such problems. This
overview talk will survey a number of recent developments in the exact and approximate
solution of mixed discrete and continuous (hybrid) MDPs and POMDPs via the technique of
symbolic dynamic programming (SDP) as covered in recent work by the authors [1, 2, 3, 4].
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for discrete and continuous state MDPs. In In Proc. of the 27th Conf. on Uncertainty in
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2 Z. Zamani, S. Sanner, K. V. Delgado, and L. Nunes de Barros. Robust optimization for
hybrid mdps with state-dependent noise. In Proc. of the 23rd International Joint Conf. on
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and Universidad de Málaga, Campusde Excelencia Internacional Andalucía Tech. Manuela Ruiz-Montiel
is funded by the Spanish Ministry of Education through the National F.P.U. Program.
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3 Z. Zamani, S. Sanner, and C. Fang. Symbolic dynamic programming for continuous state
and action mdps.In In Proc. of the 26th AAAI Conf. on Artificial Intelligence (AAAI-12),
Toronto, Canada, 2012.

4 Z. Zamani, S. Sanner, P. Poupart, and K. Kersting. Symbolic dynamic programming for
continuous state and observation pomdps.In In Proc. of the 26th Annual Conf. on Advances
in Neural Information Processing Systems (NIPS-12), Lake Tahoe, Nevada, 2012.

3.26 Deterministic Policy Gradients
David Silver (University College – London, GB)

License Creative Commons BY 3.0 Unported license
© David Silver

Joint work of David Silver

In this talk we consider deterministic policy gradient algorithms for reinforcement learning
with continuous actions. The deterministic policy gradient has a particularly appealing
form: it is the expected gradient of the action-value function. This simple form means that
the deterministic policy gradient can be estimated much more efficiently than the usual
stochastic policy gradient. To ensure adequate exploration, we introduce an off-policy actor-
critic algorithm that learns a deterministic target policy from an exploratory behaviour policy.
We demonstrate that deterministic policy gradient algorithms can significantly outperform
their stochastic counterparts in high-dimensional action spaces.

3.27 Sequentially Interacting Markov Chain Monte Carlo BasedPolicy
Iteration

Orhan Sönmez (Boğaziçi University – Istanbul, TR)
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In this ongoing research, we introduce a policy iteration method where policies are evaluated
using sequentially interacting Markov chain Monte Carlo (SIMCMC) [1] for planning in
discrete time continuous state space Markov decision processes (MDPs).In order to do so, we
utilize the expectation-maximization algorithm derived for solving MDPs [2] and employ a
SIMCMC sampling scheme in its intractable expectation step. Fortunately, the maximization
step has a closed form solution due to Markov properties. Meanwhile, we approximate the
policy as a function over the continuous state space using Gaussian processes [3]. Hence, in
the maximization step, we simply select the state-action pairs of the trajectories sampled by
SIMCMC as the support of the Gaussian process approximator. We are aware that SIMCMC
methods are not the best choice with respect to sample efficiency compared to sequential
Monte Carlo samplers (SMCS)[4]. However, they are more appropriate for online settings
due to their estimation at any time property which SMCSs lack. As a future work, we are
investigating different approaches to develop an online reinforcement learning algorithm
based on SIMCMC policy evaluation. As a model based approach, the dynamics of the model
would be approximated with Gaussian processes [5].
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3.28 Exploration versus Exploitation in Reinforcement Learning
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My presentation was a tutorial overview of the exploration vs exploitation dilemma in
reinforcement learning. I began in the multi-armed bandit setting and went through Markov
Decision Processes to the general reinforcement learning setting that has only recently
been studied. The talk discussed the various strategies for dealing with the dilemma like
optimismin a frequentist setting or posterior sampling in the Bayesian setting, as well as the
performance measures like sample complexity in discounted reinforcement learning or regret
bounds for undiscounted the setting. Itwas concluded that sample complexity bounds can be
proven in much more general settings than regret bounds. Regret bounds need some sort of
recoverability guarantees while unfortunately sample complexity says less about how much
reward the agent will achieve. The speaker’s recommendation is to try to achieve optimal
sample complexity but only within the class of rational agents described by an axiomatic
system developed from classical rational choice decision theory.

3.29 The Quest for the Ultimate TD(λ)
Richard S. Sutton (University of Alberta – Edmonton, CA)
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(AGI’10), Advances in Intelligent Systems Research Series, 6 pp., 2010.
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TD(λ) is a computationally simple model-free algorithm for learning to predict long term
consequences. It has been used to learn value functions, to form multi-scale models of
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the world, and to compile planning into policies for immediate action. It is a natural core
algorithm for artificial intelligence based on reinforcement learning. Before realizing its full
potential, however, TD(λ) needs to be generalized in several ways: to off-policy learning, as
has already been partially done, to maximally general parameterization, as has also been
partially done, and to off-policy eligibility traces,which was previously thought impossible
but now perhaps we can see how this too can be done. In all these ways we see a glimmer
of a perfected and complete algorithm—something inspired by TD(λ), with all its positive
computational and algorithmic features, and yet more general, flexible, and powerful. Seeking
this perfected algorithm is the quest for the ultimate TD (λ); this talk is a status report on
the goals for it and the prospects for achieving them.
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3.30 Relations between Reinforcement Learning, Visual Input,
Perception and Action

Martijn van Otterlo (Radboud University Nijmegen, NL)
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Typical reinforcement learning (RL) algorithms learn from traces of state, action, state, action,
. . . sequences, in order to optimize action selection for each state (wrt. a reward criterium).
The field of RL has come up with many algorithms based on abstraction and generalization[7].
In my view general RL amounts to feedback-based, interactive experimentation with particular
abstraction levels forstates, actions and tasks. However, despite all previous efforts direct
couplings of RL with complex visual input (e.g. raw images) are still rare. In roughly the
recent decade, RL has been combined with so-called relational knowledge representation for
states and languages[5, 6]. Also, many forms of decision-theoretic planning, using abstract
or relational version of Bellman equations, can employ powerful knowledge representation
schemes[4]. An interesting development is that also in the computervision community,
people wish to employ similar relational generalization overvisual input, due to advances
in (probabilistic) logical learning (e.g. see our recent work on the interpretation of houses
from images [1] and robotics [3, 2]). My talk is about a possibilities for relational integration
of both relational action and vision. The real potential of relational representations is that
states can share information with actions (e.g. parameters, or more specifically objects).
Possibilities exist to define novel languages for interactive experimentation with relational
abstraction levels in the context of both complex visual input and complex behavioral output.
This includes new types of interactions – for example dealing with scarce human feedback,
new types of experimentation – for example incorporating visual feedback and physical
manipulation, and new types of abstraction levels – such as probabilistic programming
languages. I will present first steps towards amore tight integration of relational vision and
relational action for interactive 2 learning settings. In addition I present several new problem
domains.

2 See also the IJCAI Workshop on Machine Learning forInteractive Systems (http://mlis-workshop.org/
2013/)
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3.31 Universal RL: applications and approximations
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While the main ideas underlying Universal RL have existed for over a decadenow (see [1] for
historical context), practical applications are only juststarting to emerge. In particular, the
direct approximation introduced by Venesset al. [2, 3] was shown empirically to compare
favorably to a number of other model-based RL techniques on small, partially observable
environments with initially unknown, stochastic dynamics. Since then, a variety of additional
techniques have been introduced that allow for the construction of far more sophisticated
approximations. We present and review some of the mainideas that have the potential to
lead to larger scale applications.
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3.32 Learning and Reasoning with POMDPs in Robots
Jeremy Wyatt (University of Birmingham – Birmingham, GB)
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Sequential decision making under state uncertainty is a well understood if intractable
problem.In this talk I show various ways that approximate methods for belief state planning
and learningcan be developed to solve practical robot problems including those that scale to
high dimensional continuous state and action spaces, problems with incomplete information,
and problems requiring real-time decision making.
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Scott Sanner: Tutorial on Symbolic Dynamic Programming
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Timothy Mann: Theoretical Analysis of Planning with Options
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Control
David Silver: Deterministic Policy Gradients

Thursday
Morning

Joëlle Pineau: Tutorial on POMDPs
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MDPs and POMDPs
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Christos Dimitrakakis: RL competition
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