
Universal Prediction of Selected Bits

Tor Lattimore and Marcus Hutter and Vaibhav Gavane

Australian National University
tor.lattimore@anu.edu.au

Australian National University and ETH Zürich
marcus.hutter@anu.edu.au

VIT University, Vellore
vaibhav.gavane@gmail.com

20 July 2011

Abstract

Many learning tasks can be viewed as sequence prediction problems. For
example, online classification can be converted to sequence prediction with
the sequence being pairs of input/target data and where the goal is to cor-
rectly predict the target data given input data and previous input/target
pairs. Solomonoff induction is known to solve the general sequence predic-
tion problem, but only if the entire sequence is sampled from a computable
distribution. In the case of classification and discriminative learning though,
only the targets need be structured (given the inputs). We show that the
normalised version of Solomonoff induction can still be used in this case, and
more generally that it can detect any recursive sub-pattern (regularity) within
an otherwise completely unstructured sequence. It is also shown that the un-
normalised version can fail to predict very simple recursive sub-patterns.

Contents
1 Introduction 2
2 Notation and Definitions 3
3 Mnorm Predicts Selected Bits 6
4 M Fails to Predict Selected Bits 9
5 Discussion 14
A Table of Notation 17

Keywords

Sequence prediction; Solomonoff induction; online classification; discrimina-
tive learning; algorithmic information theory.

1

1 Introduction

The sequence prediction problem is the task of predicting the next symbol, xn after
observing x1x2 · · · xn−1. Solomonoff induction [Sol64a, Sol64b] solves this problem
by taking inspiration from Occam’s razor and Epicurus’ principle of multiple ex-
planations. These ideas are formalised in the field of Kolmogorov complexity, in
particular by the universal a priori semi-measure M.

Let µ(xn|x1 · · ·xn−1) be the true (unknown) probability of seeing xn having al-
ready observed x1 · · ·xn−1. The celebrated result of Solomonoff [Sol64a] states that
if µ is computable then

lim
n→∞

[M(xn|x1 · · ·xn−1)− µ(xn|x1 · · ·xn−1)] = 0 with µ-probability 1 (1)

That is, M can learn the true underlying distribution from which the data is sampled
with probability 1. Solomonoff induction is arguably the gold standard predictor,
universally solving many (passive) prediction problems [Hut04, Hut07, Sol64a].

However, Solomonoff induction makes no guarantees if µ is not computable. This
would not be problematic if it were unreasonable to predict sequences sampled from
incomputable µ, but this is not the case. Consider the sequence below, where every
even bit is the same as the preceding odd bit, but where the odd bits may be chosen
arbitrarily.

00 11 11 11 00 11 00 00 00 11 11 00 00 00 00 00 11 11 (2)

Any child will quickly learn the pattern that each even bit is the same as the pre-
ceding odd bit and will correctly predict the even bits. If Solomonoff induction is to
be considered a truly intelligent predictor then it too should be able to predict the
even bits. More generally, it should be able to detect any computable sub-pattern.
It is this question, first posed in [Hut04, Hut09] and resisting attempts by experts
for 6 years, that we address.

At first sight, this appears to be an esoteric question, but consider the following
problem. Suppose you are given a sequence of pairs, x1y1x2y2x3y3 · · · where xi is
the data for an image (or feature vector) of a character and yi the corresponding
ascii code (class label) for that character. The goal of online classification is to
construct a predictor that correctly predicts yi given xi based on the previously seen
training pairs. It is reasonable to assume that there is a relatively simple pattern
to generate yi given xi (humans and computers seem to find simple patterns for
character recognition). However it is not necessarily reasonable to assume there
exists a simple, or even computable, underlying distribution generating the training
data xi. This problem is precisely what gave rise to discriminative learning [LS06].

It turns out that there exist sequences with even bits equal to preceding odd
bits on which the conditional distribution of M fails to converge to 1 on the even
bits. On the other hand, it is known that M is a defective measure, but may be
normalised to a proper measure, Mnorm. We show that this normalised version does

2

converge on any recursive sub-pattern of any sequence, such as that in Equation (2).
This outcome is unanticipated since (all?) other results in the field are independent
of normalisation [Hut04, Hut07, LV08, Sol64a]. The proofs are completely different
to the standard proofs of predictive results.

2 Notation and Definitions

We use similar notation to [Gác83, Gác08, Hut04]. For a more comprehensive in-
troduction to Kolmogorov complexity and Solomonoff induction see [Hut04, Hut07,
LV08, ZL70].

Strings. A finite binary string x is a finite sequence x1x2x3 · · ·xn with xi ∈ B =
{0, 1}. Its length is denoted ℓ(x). An infinite binary string ω is an infinite sequence
ω1ω2ω3 · · · . The empty string of length zero is denoted ϵ. Bn is the set of all binary
strings of length n. B∗ is the set of all finite binary strings. B∞ is the set of all infinite
binary strings. Substrings are denoted xs:t := xsxs+1 · · ·xt−1xt where s, t ∈ N and
s ≤ t. If s > t then xs:t = ϵ. A useful shorthand is x<t := x1:t−1. Strings may be
concatenated. Let x, y ∈ B∗ of length n and m respectively. Let ω ∈ B∞. Then,

xy := x1x2 · · ·xn−1xny1y2 · · · ym−1ym

xω := x1x2 · · ·xn−1xnω1ω2ω3 · · ·

For b ∈ B, ¬b = 0 if b = 1 and ¬b = 1 if b = 0. We write x ⊑ y if x is a prefix of y.
Formally, x ⊑ y if ℓ(x) ≤ ℓ(y) and xi = yi for all 1 ≤ i ≤ ℓ(x). x @ y if x ⊑ y and
ℓ(x) < ℓ(y).

Complexity. Here we give a brief introduction to Kolmogorov complexity and the
associated notation.

Definition 1 (Inequalities). Let f, g be real valued functions. We write f(x)
×
≥ g(x)

if there exists a constant c > 0 such that f(x) ≥ c · g(x) for all x. f(x)
×
≤ g(x) is

defined similarly. f(x)
×
= g(x) if f(x)

×
≤ g(x) and f(x)

×
≥ g(x).

Definition 2 (Measures). We call µ : B∗ → [0, 1] a semimeasure if µ(x) ≥∑
b∈B µ(xb) for all x ∈ B∗, and a probability measure if equality holds and µ(ϵ) = 1.

µ(x) is the µ-probability that a sequence starts with x. µ(b|x) := µ(xb)
µ(x)

is the prob-
ability of observing b ∈ B given that x ∈ B∗ has already been observed. A function
P : B∗ → [0, 1] is a semi-distribution if

∑
x∈B∗ P (x) ≤ 1 and a probability distribu-

tion if equality holds.

Definition 3 (Enumerable Functions). A real valued function f : A → R is
enumerable if there exists a computable function f : A × N → Q satisfying
limt→∞ f(a, t) = f(a) and f(a, t+ 1) ≥ f(a, t) for all a ∈ A and t ∈ N.

3

Definition 4 (Machines). A Turing machine L is a recursively enumer-
able set (which may be finite) containing pairs of finite binary strings
(p1, y1), (p2, y2), (p3, y3), · · · .

L is a prefix machine if the set {p1, p2, p3 · · · } is prefix free (no program is a prefix
of any other). It is a monotone machine if for all (p, y), (q, x) ∈ L with ℓ(x) ≥ ℓ(y),
p ⊑ q =⇒ y ⊑ x.

We define L(p) to be the set of strings output by program p. This is different
for monotone and prefix machines. For prefix machines, L(p) contains only one
element, y ∈ L(p) if (p, y) ∈ L. For monotone machines, y ∈ L(p) if there exists
(p, x) ∈ L with y ⊑ x and there does not exist a (q, z) ∈ L with q @ p and
y ⊑ z. For both machines L(p) represents the output of machine L when given
input p. If L(p) does not exist then we say L does not halt on input p. Note that for
monotone machines it is possible for the same program to output multiple strings.
For example (1, 1), (1, 11), (1, 111), (1, 1111), · · · is a perfectly legitimate monotone
Turing machine. For prefix machines this is not possible. Also note that if L is a
monotone machine and there exists an x ∈ B∗ such that x1:n ∈ L(p) and x1:m ∈ L(p)
then x1:r ∈ L(p) for all n ≤ r ≤ m.

Definition 5 (Complexity). Let L be a prefix or monotone machine then define

λL(y) :=
∑

p:y∈L(p)

2−ℓ(p) CL(y) := min
p∈B∗

{ℓ(p) : y ∈ L(p)}

If L is a prefix machine then we write mL(y) ≡ λL(y). If L is a monotone machine
then we write ML(y) ≡ λL(y). Note that if L is a prefix machine then λL is an
enumerable semi-distribution while if L is a monotone machine, λL is an enumerable
semi-measure. In fact, every enumerable semi-measure (or semi-distribution) can be
represented via some machine L as λL.

For prefix/monotone machine L we write Lt for the first t program/output pairs
in the recursive enumeration of L, so Lt will be a finite set containing at most t
pairs.1

The set of all monotone (or prefix) machines is itself recursively enumerable
[LV08],2 which allows one to define a universal monotone machine UM as follows.
Let Li be the ith monotone machine in the recursive enumeration of monotone
machines.

(i′p, y) ∈ UM ⇔ (p, y) ∈ Li

where i′ is a prefix coding of the integer i. A universal prefix machine, denoted UP ,
is defined in a similar way. For details see [LV08].

1Lt will contain exactly t pairs unless L is finite, in which case it will contain t pairs until t is
greater than the size of L. This annoyance will never be problematic.

2Note the enumeration may include repetition, but this is unimportant in this case.

4

Theorem 6 (Universal Prefix/Monotone Machines). For the universal monotone
machine UM and universal prefix machine UP ,

mUP
(y) > cLmL(y) for all y ∈ B∗ MUM

(y) > cLML(y) for all y ∈ B∗

where cL > 0 depends on L but not y.

For a proof, see [LV08]. As usual, we will fix reference universal prefix/monotone
machines UP , UM and drop the subscripts by letting,

m(y) := mUP
(y) ≡

∑
p:y∈UP (p)

2−ℓ(p) M(y) := MUM
(y) ≡

∑
p:y∈UM (p)

2−ℓ(p)

K(y) := CUP
(y) ≡ min

p∈B∗
{ℓ(p) : y ∈ UP (p)} Km(y) := min

p∈B∗
{ℓ(p) : y ∈ UM(p)}

The choice of reference universal Turing machine is usually3 unimportant since a
different choice varies m,M by only a multiplicative constant, while K,Km are
varied by additive constants. For natural numbers n we define K(n) by K(⟨n⟩)
where ⟨n⟩ is the binary representation of n.

M is not a proper measure, M(x) > M(x0)+M(x1) for all x ∈ B∗, which means
that M(0|x) +M(1|x) < 1, so M assigns a non-zero probability that the sequence
will end. This is because there are monotone programs p that halt, or enter infinite
loops. For this reason Solomonoff introduced a normalised version, Mnorm defined
as follows.

Definition 7 (Normalisation).

Mnorm(ϵ) := 1 Mnorm(yn|y<n) ≡
Mnorm(y1:n)

Mnorm(y<n)
:=

M(y1:n)

M(y<n0) +M(y<n1)
.

This normalisation is not unique, but is philosophically and technically the most
attractive and was used and defended by Solomonoff. Historically, most researchers
have accepted the defective M for technical convenience. As mentioned, the differ-
ence seldom matters, but in this paper it is somewhat surprisingly crucial. For a
discussion of normalisation, see [LV08].

Theorem 8. The following are results in Kolmogorov complexity. Proofs for all can
be found in [LV08].

1. m(x)
×
= 2−K(x)

2. 2−K(xb) ×
= 2−K(x¬b)

3. M(x)
×
≥ m(x)

3See [HM07] for a subtle exception. All the results in this paper are independent of universal
Turing machine.

5

4. If P is an enumerable semi-distribution, then m(y)
×
≥ P (y)

5. If µ is an enumerable semi-measure, then M(y)
×
≥ µ(y)

Note the last two results are equivalent to Theorem 6 since every enumerable
semi-(measure/distribution) is generated by a monotone/prefix machine in the sense
of Theorem 6 and vice-versa.

Before proceeding to our own theorems we need a recently proven result in al-
gorithmic information theory.

Theorem 9. [Lempp, Miller, Ng and Turetsky, 2010, unpublished, private commu-

nication] limn→∞
m(ω<n)
M(ω<n)

= 0, for all ω ∈ B∞.

3 Mnorm Predicts Selected Bits

The following Theorem is the main positive result of this paper. It shows that any
computable sub-pattern of a sequence will eventually be predicted by Mnorm.

Theorem 10. Let f : B∗ → B ∪ {ϵ} be a total recursive function and ω ∈ B∞

satisfying f(ω<n) = ωn whenever f(ω<n) ̸= ϵ. If f(ω<ni
) ̸= ϵ is defined for an

infinite sequence n1, n2, n3, · · · then limi→∞Mnorm(ωni
|ω<ni

) = 1.

Essentially the Theorem is saying that if there exists a computable predictor f
that correctly predicts the next bit every time it tries (i.e when f(ω<n) ̸= ϵ) then
Mnorm will eventually predict the same bits as f . By this we mean that if you
constructed a predictor fMnorm defined by fMnorm(ω<n) = argmaxb∈B Mnorm(b|ω<n),
then there exists an N such that fMnorm(ω<n) = f(ω<n) for all n > N where
f(ω<n) ̸= ϵ. For example, let f be defined by

f(x) =

{
xℓ(x) if ℓ(x) odd

ϵ otherwise

Now if ω ∈ B∞ satisfies ω2n = f(ω<2n) = ω2n−1 for all n ∈ N then Theorem 10 shows
that limn→∞Mnorm(ω2n|ω<2n) = 1. It says nothing about the predictive qualities of
Mnorm on the odd bits, on which there are no restrictions.

The proof essentially relies on using f to show that monotone programs for
ω<ni

¬ωni
can be converted to prefix programs. This is then used to show that

M(ω<ni
¬ωni

)
×
= m(ω<ni

¬ωni
). The result will then follow from Theorem 9.

Theorem 10 insists that f be totally recursive and that f(ω<n) = ϵ if f refrains
from predicting. One could instead allow f to be partially recursive and simply not
halt to avoid making a prediction. The proof below breaks down in this case and we
suspect that Theorem 10 will become invalid if f is permitted to be only partially
recursive.

6

Proof of Theorem 10. We construct a machine L from UM consisting of all programs
that produce output that f would not predict. We then show that these programs
essentially form a prefix machine. Define L by the following process

1. L := ∅ and t := 1.

2. Let (p, y) be the tth pair in UM .

3. Let i be the smallest natural number such that yi ̸= f(y<i) ̸= ϵ. That is, i is
the position at which f makes its first mistake when predicting y. If f makes
no prediction errors then i doesn’t exist.4

4. If i exists then L := L ∪ {(p, y1:i)} (Note that we do not allow L to contain
duplicates).

5. t := t+ 1 and go to step 2.

Since f is totally recursive and UM is recursively enumerable, the process above
shows that L is recursively enumerable. It is easy to see that L is a monotone
machine. Further, if (p, y), (q, x) ∈ L with p ⊑ q then y = x. This follows since by
monotonicity we would have that y ⊑ x, but f(x<ℓ(y)) = f(y<ℓ(y)) ̸= yℓ(y) = xℓ(y)

and by steps 3 and 4 in the process above we have that ℓ(x) = ℓ(y).
Recall that Lt is the tth enumeration of L and contains t elements. Define

L̄t ⊆ Lt to be the largest prefix free set of shortest programs. Formally, (p, y) ∈
L̄t if there does not exist a (q, x) ∈ Lt such that q @ p. For example, if Lt =
(1, 001), (11, 001), (01, 11110), (010, 11110) then L̄t = (1, 001), (01, 11110). If we now
added (0, 11110) to Lt to construct Lt+1 then L̄t+1 would be (1, 001), (0, 11110).

Since Lt is finite, L̄t is easily computable from Lt. Therefore the following
function is computable.

P (y, t) :=
∑

p:(p,y)∈L̄t

2−ℓ(p) ≥ 0.

Now L̄t is prefix free, so by Kraft’s inequality
∑

y∈B∗ P (y, t) ≤ 1 for all t ∈ N. We
now show that P (y, t + 1) ≥ P (y, t) for all y ∈ B∗ and t ∈ N which proves that
P (y) = limt→∞ P (y, t) exists and is a semi-distribution.

Let (p, y) be the program/output pair in Lt+1 but not in Lt. To see how P (·, t)
compares to P (·, t+ 1) we need to compare L̄t and L̄t+1. There are three cases:

1. There exists a (q, x) ∈ Lt with q @ p. In this case L̄t+1 = L̄t.

4This is where the problem lies for partially recursive prediction functions. Computing the
smallest i for which f predicts incorrectly is incomputable if f is only partially recursive, but
computable if it is totally recursive. It is this distinction that allows L to be recursively enumerable,
and so be a machine.

7

2. There does not exist a (q, x) ∈ Lt such that p @ q. In this case (p, y) is simply
added to L̄t to get L̄t+1 and so L̄t ⊂ L̄t+1. Therefore P (·, t + 1) ≥ P (·, t) is
clear.

3. There does exist a (q, x) ∈ L̄t such that p @ q. In this case L̄t+1 differs from
L̄t in that it contains (p, y) but not (q, x). Since p @ q we have that y = x.
Therefore P (y, t + 1) − P (y, t) = 2−ℓ(p) − 2−ℓ(q) > 0 since p @ q. For other
values, P (·, t) = P (·, t+ 1).

Note that it is not possible that p = q since then x = y and duplicates are not added
to L. Therefore P is an enumerable semi-distribution. By Theorem 8 we have

m(ω<ni
¬ωni

)
×
≥ P (ω<ni

¬ωni
) (3)

where the constant multiplicative fudge factor in the
×
≥ is independent of i. Suppose

ω<ni
¬ωni

∈ UM(p). Therefore there exists a y such that ω<ni
¬ωni

⊑ y and (p, y) ∈
UM . By parts 2 and 3 of the process above, (p, ω<ni

¬ωni
) is added to L. Therefore

there exists a T ∈ N such that (p, ω<ni
¬ωni

) ∈ Lt for all t ≥ T .
Since ω<ni

¬ωni
∈ UM(p), there does not exist a q @ p with ω<ni

¬ωni
∈ UM(q).

Therefore eventually, (p, ω<ni
¬ωni

) ∈ L̄t for all t ≥ T . Since every program in UM

for ω<ni
¬ωni

is also a program in L, we get

lim
t→∞

P (ω<ni
¬ωni

, t) ≡ P (ω<ni
¬ωni

) = M(ω<ni
¬ωni

).

Next,

Mnorm(¬ωni
|ω<ni

) ≡ M(ω<ni
¬ωni

)

M(ω<ni
ωni

) +M(ω<ni
¬ωni

)
(4)

×
≤ m(ω<ni

¬ωni
)

M(ω1:ni
)

(5)

×
=

m(ω1:ni
)

M(ω1:ni
)

(6)

where Equation (4) follows by the definition of Mnorm. Equation (5) follows from

Equation (3) and algebra. Equation (6) follows since m(xb)
×
= 2−K(xb) ×

= 2−K(x¬b) ×
=

m(x¬b), which is Theorem 8. However, by Theorem 9, limi→∞
m(ω<ni)

M(ω<ni)
= 0 and so

limi→∞Mnorm(¬ωni
|ω<ni

) = 0. Therefore limi→∞Mnorm(ωni
|ω<ni

) = 1 as required.

We have remarked already that Theorem 10 is likely not valid if f is permitted
to be a partial recursive function that only output on sequences for which they make
a prediction. However, there is a class of predictors larger than the totally recursive
ones of Theorem 10, which Mnorm still learns.

8

Theorem 11. Let f : B∗ → B ∪ {ϵ} be a partial recursive function and ω ∈ B∞

satisfying

1. f(ω<n) is defined for all n.

2. f(ω<n) = ωn whenever f(ω<n) ̸= ϵ.

If f(ω<ni
) ∈ B for an infinite sequence n1, n2, n3, · · · then

lim
i→∞

Mnorm(ωni
|ω<ni

) = 1.

The difference between this result and Theorem 10 is that f need only be defined
on all prefixes of at least one ω ∈ B∞ and not everywhere in B∗. This allows for a
slightly broader class of predictors. For example, let ω = p1b1p2b2p3b3 · · · where pi

is some prefix machine that outputs at least one bit and bi is the first bit of that
output. Now there exists a computable f such that f(p1b1 · · · pi−1bi−1pi) = bi for all
i and f(ω<n) = ϵ whenever ωn ̸= bi for some i (f only tries to predict the outputs).
By Theorem 11, Mnorm will correctly predict bi.

The proof of Theorem 11 is almost identical to that of Theorem 10, but with
one additional subtlety.
Proof sketch. The proof follows that of Theorem 10 until the construction of L.
This breaks down because step 3 is no longer computable since f may not halt on
some string that is not a prefix of ω. The modification is to run steps 2-4 in parallel
for all t and only adding (p, y1:i) to L once it has been proven that f(y<i) ̸= yi and
f(y<k) halts for all k < i, and either chooses not to predict (outputs ϵ), or predicts
correctly. Since f halts on all prefixes of ω, this does not change L for any programs
we care about and the remainder of the proof goes through identically.

It should be noted that this new class of predictors is still less general than allow-
ing f to an arbitrary partial recursive predictor. For example, a partial recursive f
can predict the ones of the halting sequence, while choosing not to predict the zeros
(the non-halting programs). It is clear this cannot be modified into a computable
f predicting both ones and zeros, or predicting ones and outputting ϵ rather than
zero, as this would solve the halting problem.

4 M Fails to Predict Selected Bits

The following theorem is the corresponding negative result that while the conditional
distribution of Mnorm converges to 1 on recursive sub-patterns, M can fail to do so.

Theorem 12. Let f : B∗ → B ∪ {ϵ} be the total recursive function defined by,

f(z) :=

{
zℓ(z) if ℓ(z) odd

ϵ otherwise

9

There exists an infinite string ω ∈ B∞ with ω2n = f(ω<2n) ≡ ω2n−1 for all n ∈ N
such that

lim inf
n→∞

M(ω2n|ω<2n) < 1.

The proof requires some lemmas.

Lemma 13. M(xy) can be bounded as follows.

2K(ℓ(x))M(y)
×
≥ M(xy)

×
≥ M(y)2−K(x). (7)

Proof. Both inequalities are proven relatively easily by normal methods as used in
[LV08] and elsewhere. Nevertheless we present them as a warm-up to the slightly
more subtle proof later.

Now construct monotone machine L, which we should think of as taking two
programs as input. The first, a prefix program p, the output of which we view
as a natural number n. The second, a monotone program. We then simulate the
monotone machine and strip the first n bits of its output. L is formally defined as
follows.

1. L := ∅, t := 1

2. Let (p, n), (q, y) be the tth pair of program/outputs in UP × UM , which is
enumerable.

3. If ℓ(y) ≥ n then add (pq, yn+1:ℓ(y)) to L

4. t := t+ 1 and go to step 2

By construction, L is enumerable and is a monotone machine. Note that if xy ∈
UM(q) and ℓ(x) ∈ UP (p) then y ∈ L(pq). Now,

M(y)
×
≥ ML(y) ≡

∑
r:y∈L(r)

2−ℓ(r) ≥
∑

q,p:xy∈UM (q),ℓ(x)∈UP (p)

2−ℓ(pq) (8)

=
∑

q:xy∈UM (q)

2−ℓ(q)
∑

p:ℓ(x)∈UP (p)

2−ℓ(p) ≡ M(xy)m(ℓ(x)) (9)

×
= M(xy)2−K(ℓ(x)) (10)

where Equation (8) follows by Theorem 6, definitions and because if xy ∈ UM(q)
and ℓ(x) ∈ UP (p) then y ∈ L(pq). Equation (9) by algebra, definitions. Equation
(10) by Theorem 8.

The second inequality is proved similarly. We define a machine L as follows,

1. L = ∅, t := 1

2. Let (q, x), (r, y) be the tth element in UP × UM , which is enumerable.

10

3. Add (qr, xy) to L

4. t := t+ 1 and go to step 2

It is easy to show that L is monotone by using the properties of UP and UM . Now,

M(xy)
×
≥ ML(xy) ≡

∑
p:xy∈L(p)

2−ℓ(p) ≥
∑

q,r:x∈UP (q),y∈UM (r)

2−ℓ(qr)

=
∑

q:x∈UP (q)

2−ℓ(q)
∑

r:y∈UM (r)

2−ℓ(r) ≡ m(x)M(y)
×
= 2−K(x)M(y).

Lemma 14. There exists an ω ∈ B∞ such that

lim inf
n→∞

[M(0|ω<n) +M(1|ω<n)] = 0.

Proof. First we show that for each δ > 0 there exists a z ∈ B∗ such that M(0|z) +
M(1|z) < δ. This result is already known and is left as an exercise (4.5.6) with a
proof sketch in [LV08]. For completeness, we include a proof. Recall that M(·, t) is
the function approximating M(·) from below. Fixing an n, define z ∈ B∗ inductively
as follows.

1. z := ϵ

2. Let t be the first natural number such that M(zb, t) > 2−n for some b ∈ B.

3. If t exists then z := z¬b and repeat step 2. If t does not exist then z is left
unchanged (forever).

Note that z must be finite since each time it is extended, M(zb, t) > 2−n. Therefore
M(z¬b, t) < M(z, t) − 2−n and so each time z is extended, the value of M(z, t)
decreases by at least 2−n so eventually M(zb, t) < 2−n for all b ∈ B. Now once the
z is no longer being extended (t does not exist in step 3 above) we have

M(z0) +M(z1) ≤ 21−n. (11)

However we can also show that M(z)
×
≥ 2−K(n). The intuitive idea is that the

process above requires only the value of n, which can be encoded in K(n) bits.
More formally, let p be such that n ∈ UP (p) and note that the following set is
recursively enumerable (but not recursive) by the process above.

Lp := (p, ϵ), (p, z1:1), (p, z1:2), (p, z1:3), · · · , (p, z1:ℓ(z)−1), (p, z1:ℓ(z)).

11

Now take the union of all such sets, which is a) recursively enumerable since UP is,
and b) a monotone machine because UP is a prefix machine.

L :=
∪

(p,n)∈UP

Lp.

Therefore

M(z)
×
≥ ML(z) ≥ 2−K(n) (12)

where the first inequality is from Theorem 6 and the second follows since if n∗ is
the program of length K(n) with UP (n

∗) = n then (n∗, z1:ℓ(z)) ∈ L. Combining
Equations (11) and (12) gives

M(0|z) +M(1|z)
×
≤ 21−n+K(n).

Since this tends to zero as n goes to infinity,5 for each δ > 0 we can construct a
z ∈ B∗ satisfying M(0|z) + M(1|z) < δ, as required. For the second part of the
proof, we construct ω by concatenation.

ω := z1z2z3 · · ·

where zn ∈ B∗ is chosen such that,

M(0|zn) +M(1|zn) < δn (13)

with δn to be chosen later. Now,

M(b|z1 · · · zn) ≡ M(z1 · · · znb)
M(z1 · · · zn)

(14)

×
≤

[
2K(ℓ(z1···zn−1))+K(z1···zn−1)

] M(znb)

M(zn)
(15)

≡
[
2K(ℓ(z1···zn−1))+K(z1···zn−1)

]
M(b|zn) (16)

where Equation (14) is the definition of conditional probability. Equation (15) fol-
lows by applying Lemma 13 with x = z1z2 · · · zn−1 and y = zn or znb. Equation
(16) is again the definition of conditional probability. Now let

δn =
2−n

2K(ℓ(z1···zn−1))+K(z1···zn−1)
.

Combining this with Equations (13) and (16) gives

M(0|z1 · · · zn) +M(1|z1 · · · zn)
×
≤ 2−n.

5An integer n can easily be encoded in 2 logn bits, so K(n) ≤ 2 log n + c for some c > 0
independent of n.

12

Therefore,

lim inf
n→∞

[M(0|ω<n) +M(1|ω<n)] = 0

as required.

Proof of Theorem 12. Let ω̄ ∈ B∞ be defined by ω̄2n := ω̄2n−1 := ωn where ω is the
string defined in the previous lemma. Recall UM := {(p1, y1), (p2, y2), · · · } is the
universal monotone machine. Define monotone machine L by the following process,

1. L = ∅, t = 1

2. Let (p, y) be the tth element in the enumeration of UM

3. Add (p, y1y3y5y7 · · ·) to L

4. t := t+ 1 and go to step 2.

Therefore if ω̄<2n ∈ UM(p) then ω1:n ∈ L(p). By identical reasoning as elsewhere,

M(ω1:n)
×
≥ M(ω̄<2n). (17)

In fact, M(ω1:n)
×
= M(ω̄<2n), but this is unnecessary. Let P :=

{p : ∃b ∈ B s.t ω1:nb ∈ UM(p)} and Q := {p : ω1:n ∈ UM(p)} ⊃ P . Therefore

1−M(0|ω1:n)−M(1|ω1:n) = 1−
∑

p∈P 2−ℓ(p)∑
q∈Q 2−ℓ(q)

=

∑
p∈Q−P 2−ℓ(p)∑
q∈Q 2−ℓ(q)

.

Now let P̄ := {p : ∃b ∈ B s.t ω̄<2nb ∈ UM(p)} and Q̄ := {p : ω̄<2n ∈ UM(p)} ⊃ P̄ .
Define monotone machine L by the following process

1. L = ∅, t := 1

2. Let (p, y) be the tth program/output pair in UM

3. Add (p, y1y1y2y2 · · · yℓ(y)−1yℓ(y)−1yℓ(y)) to L

4. t := t+ 1 and go to step 2.

Let p ∈ Q−P . Therefore ω1:n ∈ UM(p) and ω1:nb /∈ UM(p) for any b ∈ B. Therefore
ω̄<2n ∈ L(p) while ω̄<2nb /∈ L(p) for any b ∈ B. Now there exists an i such that L is
the ith machine in the enumeration of monotone machines, Li.

13

Therefore, by the definition of the universal monotone machine UM we have
that ω̄<2nb /∈ UM(i′p) = Li(p) = L(p) ∋ ω̄<2n and UM(i′p) = L(p) for any b ∈ B.
Therefore i′p ∈ Q̄− P̄ and so,∑

q∈Q̄−P̄

2−ℓ(q) ≥
∑

p:i′p∈Q̄−P̄

2−ℓ(i′p) ≥
∑

p∈Q−P

2−ℓ(i′p) ×
=

∑
p∈Q−P

2−ℓ(p). (18)

Therefore

1−M(0|ω̄<2n)−M(1|ω̄<2n) ≡
∑

p∈Q̄−P̄ 2−ℓ(p)

M(ω̄<2n)
(19)

×
≥

∑
p∈Q−P 2−ℓ(p)

M(ω1:n)
(20)

≡ 1−M(0|ω1:n)−M(1|ω1:n) (21)

where Equation (19) follows from the definition of P̄ , Q̄ and M. Equation (20) by
(18) and (17). Equation (21) by the definition of P,Q and M. Therefore by Lemma
14 we have

lim sup
n→∞

[1−M(0|ω̄<2n)−M(1|ω̄<2n)]
×
≥ lim sup

n→∞
[1−M(0|ω1:n)−M(1|ω1:n)] = 1.

Therefore lim infn→∞M(ω̄2n|ω̄<2n) < 1 as required.

Note that limn→∞M(ω̄2n|ω̄<2n) ̸= 0 in fact, one can show that there exists a
c > 0 such that M(ω̄2n|ω̄<2n) > c for all n ∈ N. In this sense M can still be used to
predict in the same way as Mnorm, but it will never converge as in Equation (1).

5 Discussion

Summary. Theorem 10 shows that if an infinite sequence contains a computable
sub-pattern then the normalised universal semi-measure Mnorm will eventually pre-
dict it. This means that Solomonoff’s normalised version of induction is effective in
the classification example given in the introduction. Note that we have only proven
the binary case, but expect the proof will go through identically for arbitrary finite
alphabet.

On the other hand, Theorem 12 shows that plain M can fail to predict such
structure in the sense that the conditional distribution need not converge to 1 on
the true sequence. This is because it is not a proper measure, and does not converge
to one. These results are surprising since (all?) other predictive results, including
Equation (1) and many others in [Hut04, Hut07, LV08, Sol64a], do not rely on
normalisation.

Consequences. We have shown that Mnorm can predict recursive structure in
infinite strings that are incomputable (even stochastically so). These results give

14

hope that a Solomonoff inspired algorithm may be effective at online classification,
even when the training data is given in a completely unstructured way. Note that
while M is enumerable and Mnorm is only approximable,6 both the conditional
distributions are only approximable, which means it is no harder to predict using
Mnorm than M.

Open Questions. A number of open questions were encountered in writing this
paper.

1. Extend Theorem 10 to the stochastic case where a sub-pattern is generated
stochastically from a computable distribution rather than merely a computable
function. It seems likely that a different approach will be required to solve this
problem.

2. Another interesting question is to strengthen the result by proving a conver-
gence rate. It may be possible to prove that under the same conditions as

Theorem 10 that
∑∞

i=1 [1−Mnorm(ωni
|ω<ni

)]
×
≤ K(f) where K(f) is the (pre-

fix) complexity of the predicting function f . Again, if this is even possible, it
will likely require a different approach.

3. Prove or disprove the validity of Theorem 10 when the totally recursive pre-
diction function f (or the modified predictor of Theorem 11) is replaced by a
partially recursive function.

Acknowledgements. We thank Wen Shao and reviewers for valuable feedback
on earlier drafts and the Australian Research Council for support under grant
DP0988049.

6A function f is approximable if there exists a computable function f(·, t) with limt→∞ f(·, t) =
f(·). Convergence need not be monotonic.

15

References

[Gác83] Peter Gács. On the relation between descriptional complexity and algorithmic
probability. Theoretical Computer Science, 22(1-2):71 – 93, 1983.

[Gác08] Peter Gács. Expanded and improved proof of the relation between description
complexity and algorithmic probability. Unpublished, 2008.

[HM07] Marcus Hutter and Andrej A. Muchnik. On semimeasures predicting Martin-Löf
random sequences. Theoretical Computer Science, 382(3):247–261, 2007.

[Hut04] Marcus Hutter. Universal Artificial Intelligence: Sequential Decisions based on
Algorithmic Probability. Springer, Berlin, 2004.

[Hut07] Marcus Hutter. On universal prediction and Bayesian confirmation. Theoretical
Computer Science, 384(1):33–48, 2007.

[Hut09] Marcus Hutter. Open problems in universal induction & intelligence. Algorithms,
3(2):879–906, 2009.

[LMNT10] Steffen Lempp, Joseph Miller, Selwyn Ng, and Dan Turetsky. Complexity
inequality. Unpublished, private communication, 2010.

[LS06] Philip Long and Rocco Servedio. Discriminative learning can succeed where gen-
erative learning fails. In Gabor Lugosi and Hans Simon, editors, Learning The-
ory, volume 4005 of Lecture Notes in Computer Science, pages 319–334. Springer
Berlin / Heidelberg, 2006.

[LV08] Ming Li and Paul Vitanyi. An Introduction to Kolmogorov Complexity and Its
Applications. Springer, Verlag, 3rd edition, 2008.

[Sol64a] Ray Solomonoff. A formal theory of inductive inference, Part I. Information and
Control, 7(1):1–22, 1964.

[Sol64b] Ray Solomonoff. A formal theory of inductive inference, Part II. Information
and Control, 7(2):224–254, 1964.

[ZL70] Alexander K. Zvonkin and Leonid A. Levin. The complexity of finite objects and
the development of the concepts of information and randomness by means of the
theory of algorithms. Russian Mathematical Surveys, 25(6):83, 1970.

16

A Table of Notation

Symbol Description
B Binary symbols, 0 and 1
Q Rational numbers
N Natural numbers
B∗ The set of all finite binary strings
B∞ The set of all infinite binary strings
x, y, z Finite binary strings
ω An infinite binary string
ω̄ An infinite binary string with even bits equal to preceding odd bits
ℓ(x) The length of binary string x
¬b The negation of binary symbol b. ¬b = 0 if b = 1 and ¬b = 1 if b = 0
p, q Programs
µ An enumerable semi-measure
M The universal enumerable semi-measure
Mnorm The normalised version of the universal enumerable semi-measure
m The universal enumerable semi-distribution
K(f) The prefix Kolmogorov complexity of a function f
L An enumeration of program/output pairs defining a machine
UM The universal monotone machine
UP The universal prefix machine
×
≥ f(x)

×
≥ g(x) if there exists a c > 0 such that f(x) > c · g(x) for all x

×
≤ f(x)

×
≤ g(x) if there exists a c > 0 such that f(x) < c · g(x) for all x

×
= f(x)

×
= g(x) if f(x)

×
≥ g(x) and f(x)

×
≤ g(x)

x @ y x is a prefix of y and ℓ(x) < ℓ(y)
x ⊑ y x is a prefix of y

17

