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Abstract. Common Structure from Motion (SfM) tasks require reliable
point correspondences in images taken from different views to subse-
quently estimate model parameters which describe the 3D scene geom-
etry. For example when estimating the fundamental matrix from point
correspondences using RANSAC. The amount of noise in the point cor-
respondences drastically affect the estimation algorithm and the number
of iterations needed for convergence grows exponentially with the level
of noise. In scenes dominated by highly reflective and largely homoge-
neous surfaces such as vehicle panels and buildings with a lot of glass,
existing approaches give a very high proportion of spurious point corre-
spondences. As a result the number of iterations required for subsequent
model estimation algorithms become intractable. We propose a novel
method that uses descriptors evaluated along points in image edges to
obtain a sufficiently high proportion of correct point correspondences.
We show experimentally that our method gives better results in recover-
ing the epipolar geometry in scenes dominated by highly reflective and
homogeneous surfaces compared to common baseline methods on stereo
images taken from considerably wide baselines.

1 Introduction

Structure from Motion (SfM) tasks that recover geometric scene information
from a set of images obtained from different views typically require reliable
point correspondences across the images (or tracks in the case of videos) as
a prerequisite. Such SfM tasks range from complete 3D scene reconstruction
to stereo matching performed on uncalibrated images. Typically keypoints in
images are detected and matched in order to obtain point correspondences. Much
research has been done in this area and popular applications which use feature
correspondences include aligning tourist photos from the Internet [1].

Motivation. Scenes dominated by highly reflective and largely homogeneous
surfaces such as the body of a car [3, 4, 5], buildings with a lot of glass panes
(e.g. failure case of [6] in Figure 7 (g) and (i)), medical images [7, 8, 9] etc. tend
to generate unreliable point correspondences. The number of iterations required
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Fig. 1. Best point correspondences obtained from naive SIFT [2] matching do
not give a sufficient spatial spread to recover the epipolar geometry. The reliable
matches are concentrated around relatively non-reflective areas. Best viewed in
color. Images may be cropped for clarity.

for convergence of subsequent model fitting algorithms such as estimating the
fundamental matrix using RANSAC increase exponentially and the task becomes
intractable as the level of noise in the point correspondence grows. Typically
noise ratios of more than 50% tend to be impractical [10]. The high amount
of noise in point correspondences obtained from scenes dominated by highly
reflective and largely homogeneous surfaces can be due to the following reasons.

1. Reflections in common reflective surfaces do not represent a physical artifact
in 3D space. Therefore in general they do not conform to the EPG (Epipolar
Geometry) of the 3D scene. A special case is for rectilinear camera motion
[11] where the epipolar deviations of specularities on surfaces that are convex
and not highly undulating are usually quite small. Additionally ideal planar
reflective surfaces are a limiting case where there is no epipolar deviation.

2. Parts of the same reflection may not appear the same in all images taken from
different views. They are often distorted, broken up or missing in the other
images. Therefore keypoints on reflections in the image tend to introduce
spurious matches.

3. Large homogeneous surfaces such as the panel of a car are in general tex-
ture impoverished. Therefore descriptors evaluated on such surfaces are not
sufficiently discriminate. On the other hand, textured non-reflective areas of
the scene which need not necessarily be spatially well distributed across the
images may generate more descriptive keypoints and therefore stronger point
matches. An example is shown in Fig. 1 where SIFT keypoints were matched
using SIFT descriptors with SIFT matching (nearest neighbor / ratio test
[2]). The strongest matches are localized to a corner of the image containing
the wheel of the car which is comparatively less reflective and better tex-
tured. Since the matches are not spatially well distributed such matches can
produce degenerate configurations in subsequent SfM tasks such as estimat-
ing the fundamental matrix.

Contributions. We propose a method to obtain reliable point correspon-
dences in scenes dominated by highly reflective and largely homogeneous sur-
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faces. The noise level in correspondences obtained from our method are suffi-
ciently low to perform subsequent SfM tasks such as recovering the epipolar
geometry. Our method is able to obtain a sufficient amount of representative
matches (inliers) which can be used to recover the epipolar geometry of the
scene from images where baseline methods fail (Sec. 4). Unlike existing meth-
ods [12, 13] our method does not place any restrictions on the camera (e.g. affine
camera, small motions). Moreover, it works on scenes with highly specular and
reflective surfaces of vehicles, glass paneled buildings etc., which create a lot of
inter-object reflections. Instead of detecting keypoints, we propose to consider
all points along image edges. Most of such edge points are usually disregarded in
conventional keypoint detection and matching methods which are known to give
good results in non-reflective and well textured scenes. We match all edge points
employing a dense descriptor, DAISY [14], which can be computed quickly at all
pixels in the image and therefore at all edge points. Additionally, a spatial con-
straint is enforced by dividing the image into a grid of buckets and selecting only
the best k putative matches from each bucket, to ensure better spatial distribu-
tion of the point matches. Although it is possible to use SIFT to densely compute
descriptors for all pixels, dense SIFT (DSIFT [15]) needs to be computed at a
predetermined scale since there is no keypoint detection step to determine the
scale. Using a hand tuned fixed scale will calculate feature descriptors that do
not properly describe point features that are of a different scale, resulting in
low matching scores for potential inlier point matches. Alternatively, computing
dense SIFT descriptors at a range of scales for all edge points and perform-
ing subsequent matching would make the computation complexity prohibitively
high and we have not attempted this in our investigation. On the other hand
the DAISY descriptor naturally incorporates gradient histograms computed at
a range of scales for each pixel at locations radially distributed around the in-
terest point. DAISY has been shown to be more computationally efficient [14]
than SIFT. Hence we used DAISY descriptors for our method.

2 Related work

Most SfM and multi-view stereo algorithms which work on images of several
views of a 3D scene require finding some form of correspondences between the
views. Much work has been done on detecting and identifying correspondences
between multiple views of a 3D scene. However, much of this work is targeted
towards images of non-reflective and well textured objects and scenes.

For example, work which has received much attention include Photo Tourism [1],
which employs the SIFT [2] key point detection and matching algorithm to
find point correspondences. This work was originally intended for tourist images
commonly found on the Internet which include outdoor landscapes and historic
buildings. As such it does not work well with images of highly reflective objects
containing largely homogeneous regions.

It is worth noting at this point that feature detection and description are
two separate tasks although some algorithms such as SIFT [2], SURF [16] and
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BRISK [17] tend to do both. Other methods such as the key point and edge
detector by Harris et al. [18] focus only on the detection aspect. Some common
feature descriptors include the use of a histogram of oriented gradients (HoG)
and Phog/Phow descriptors [19] which are commonly used in image classification
and recognition.

Detecting regions covariant with a certain class of transformations can be use-
ful in finding correspondences between views and [20] compares some common
affine region detectors including MSER, IBR, EBR, Hessian-Affine and Harris-
Affine. Wide-baseline correspondences have been found by [21] using MSER,
[22] using edge descriptors and more recently by [14] using DAISY descriptors.
However, these methods by themselves are not well suited for images of highly
reflective objects with largely homogeneous regions such as cars, reflective build-
ings etc..

Recent work by Lin et al. [23] finds correspondences and camera pose using
motion coherence on scenes which were previously regarded as feature impover-
ished SfM scenes; containing largely edge cues but few corners. However, their
method seems to be intended primarily for scenes consisting of long edges and
few corners such as images of buildings and cupboards. Edge based features have
also been used by [24] for shape recognition. However, their work seems to be
focused on simple shapes such as bicycles and tennis rackets, where edges tend
to give strong cues in otherwise poorly textured scenes. Our car images on the
other hand, do not guarantee reliable edges that can be matched across images
as edges since the edges are often fragmented and noisy.

Although we do not directly match edges, our proposed methodology matches
points along image edges. Shape contexts [25] use points along object edges for
matching shapes and object recognition but not for obtaining point correspon-
dences, which is the focus of our work. Since we match all image edge points,
we need a dense descriptor which can be quickly evaluated over all edge points.
Although dense implementations of SIFT [2] and SURF [16] exist, we prefer to
use the DAISY [14] descriptor which is faster and also better suited for wide-
baseline images. Faster rotation invariant GPU implementations of the DAISY
also exist [26], although we have not used it in our work.

Reflections are not necessarily harmful for the recovery of the epipolar ge-
ometry (EPG) between two images. Work done by Saminathan et al. [11] shows
that the epipolar deviations of specularities on convex surfaces which are not
highly undulating are usually quite small.

Prior work by [12] estimates the EPG using apparent contours for the limited
case of affine and circular motions. [13] use straight line edges for EPG and point
matching. Our method does not place such restrictions on the camera motion or
type, nor on the type of edges.

3 Problem formulation and proposed solution

Our goal is to obtain point correspondences from two images of an object with
highly reflective and largely homogeneous regions. The obtained correspondences



Reliable Point Correspondences . . . 5

should be good enough for SfM tasks such as recovering the epipolar geometry
of the scene or estimating a homography transform for near planar objects in
the scene. Our proposed method for obtaining reliable point correspondences is
as follows.

3.1 Putative point matches

Given two images I and I ′ with point sets P and P ′, we wish to find the cor-
rect mapping m(p) = p′ for points p = (u, v) ∈ P = {p1,p2, ...,pn1} and
p′ = (u′, v′) ∈ P ′ = {p1′,p2′, ...,pn2

′}. Suppose we have a feature descriptor
φ(p) evaluated on point p and a suitable distance measure d(.) to compare two
descriptors. An optimal assignment for p ∈ P would be

m(p) = argmin
p′∈P ′

d (φ(p),φ(p′)) (1)

Selecting candidate points. It is common practice [10] to use salient fea-
ture points (key-points) in the image as candidate points p,p′ to perform match-
ing. Commonly used methods to obtain key-points are as follows.

Harris corner points [18] are obtained in a gray-scale image I by considering
the sum of squared differences (SSD) of a 2D patch at location (u, v) and shifting
it by (x, y). Let Ix and Iy be the partial derivatives of I such that

I(u+ x, v + y) ≈ I(u, v) + Ix(u, v)x+ Iy(u, v)y (2)

The weighted SSD between these two patches is given by

S(x, y) =
∑
u

∑
v

w(u, v) (I(u+ x, v + y)− I(u, v))
2

(3)

A corner (or an interest point) is characterized by a large variation of S in all
directions of the vector (x, y). The Harris matrix is defined as

A =
∑
u

∑
v

w(u, v)

[
I2x IxIy
IxIy I2y

]
=

[
〈I2x〉 〈IxIy〉
〈IxIy〉 〈I2y 〉

]
(4)

where angle brackets denote averaging (i.e. summation over (u, v)). The Harris
matrix A should have two “large” eigenvalues to be an interest point. Since
computing eigenvalues is computationally expensive, interest points are obtained
using

Mc = λ1λ2 − κ (λ1 + λ2)2 = det(A)− κ trace2(A) (5)

where κ is a tunable sensitivity parameter.
The SIFT [2] keypoint detector efficiently searches over different scales and

image locations using a difference-of-Gaussian function. At each candidate loca-
tion, key-points are detected based on measures of their stability. Thereby, after
the detection step, the scale is known for each key-point. The SIFT descriptor
φ(p) is obtained at key-point p using local image gradients measured at the scale
obtained from the key-point detection step.
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We show experimentally in Sec. 4 that key-points from the above methods
do not in general result in reliable point correspondences across photographs
dominated by large reflective and homogeneous regions. Fig. 1 shows an example
where SIFT [2] key-points and SIFT nearest neighbor matching [2] result in
point matches which are concentrated towards a corner of the image which has
relatively non-reflective regions. Such point matches are unsuitable to recover the
epipolar geometry of the scene as it is not spatially well distributed to describe
the 3D scene. Often strong key-points in reflective homogeneous surfaces are
caused by reflections which are may not be present in the other view and hence
cannot be matched. On the other hand, the homogeneous surface itself does not
have strong features that can be detected as key-points, apart from points along
edges of the surface. Hence it makes sense to simply focus on points along image
edges.

Image edges have been known to be helpful when working with feature im-
poverished imagery. For example, [27] have used edge features to improve the
performance of visual tracking in the presence of motion blur, in a simultaneous
localization and mapping (SLAM) application using video sequence of mostly
non-reflective scenes. Also, [22] have used an edge based descriptor to obtain
wide baseline correspondences to perform structure from motion (SfM) on im-
agery of scenes mostly dominated by straight line edges. In a similar spirit, we
found that the quality of the obtained point correspondences and the structural
information obtained subsequently can be greatly improved by restricting the
candidate points to points lying along image edges. Therefore, we select image
point sets P and P ′ such that the points lie on edges in the image which are
defined as follows.

Edges in the image. We define image edges as sharp changes in contrast
occurring in an image which could be caused due to a genuine artifacts on
the surface of an object or due to reflections caused from surrounding objects
(Fig. 2).

Fig. 2. Various edges in the car door image include edges caused by reflections
(red), edges caused by the surface of the car body (blue) and other edges (green).
Best viewed in color.
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Let the set ei = {pj ,pk, . . .} be an image edge segment in image I containing

a set of edge points. We obtain the set of all edge points E =
⋃
i

ei in image I and

similarly E′ in I ′. Our goal then, is to find point matches as per Eq. 1 considering
only points which lie on image edges such that p ∈ E and p′ ∈ E′. We used
the popular Canny [28] edge detector which has been shown to perform well
experimentally [29] with parameters adopted to the data. We used the MATLAB
Canny implementation which uses a standard deviation σ =

√
2 and computes

the two hysteresis thresholds relative to the highest gradient magnitude in the
image.

Matching edge points require feature descriptors to be evaluated at each edge
point rather than on sparse key-points. It is convenient to use a dense feature
descriptor to this end. Owing to its speed and use with wide baseline stereo
images, we chose the DAISY [14] feature descriptor for our work.

DAISY descriptor. Inspired by SIFT and GLOH, the DAISY [14] descrip-
tor uses histograms of gradients. However, rather than a Difference of Gaussian
(DOG), DAISY uses a Gaussian weighting and a circularly symmetric kernel,
making it much faster to compute densely. Gradients are calculated at loca-
tions radially distributed around each pixel with larger regions and increasing
levels of smoothing as the radial distance increases as shown in Fig. 3. For a

  

X 

Fig. 3. DAISY [30, 14] descriptor orientation map regions (circles) about pixel
‘X’ for H = 8

given image I, an H number of orientation maps Go(u, v) for 1 ≤ o ≤ H
are computed where G0 is the image gradient norm at location (u, v) in di-
rection o such that Go = max

(
∂I
∂o , 0

)
. Each orientation map is convoluted

several times with Gaussian kernels GΣ of different standard deviations Σ to
obtain convoluted orientation maps for different sized regions GΣo = GΣ ∗ Go.
The size of the region is controlled by Σ. As convolutions with a large Gaus-
sian kernel can be obtained by consecutive convolutions with smaller Gaussian
kernels, orientation maps at different scales can be obtained very efficiently as
GΣ2
o = GΣ2 ∗G0 = GΣ ∗GΣ1 ∗Go = GΣ ∗GΣ1

o where Σ =
√
Σ2

2 = Σ2
1 .

Sift on edge points. As SIFT [2] is limited to key-points, we considered
Dense SIFT (DSIFT [15]) on edge points. However, the scale which is computed
automatically during key-point detection in SIFT [2], needs to given explicitly
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with DSIFT. On the contrary, the DAISY descriptor, which is also a dense
descriptor, incorporates a range of scales by definition. Additionally, as per the
computation complexity evaluation in [30, 14], DAISY is also a lot faster than
SIFT. Hence we used DAISY.

Edge feature ambiguities. Indeed edge points on their own are not as
discriminative as corners and blobs. However, images of highly reflective objects
with large homogeneous regions lack discriminative corners/blobs with sufficient
spatial distribution to recover the EPG. For such images, DAISY descriptors
evaluated over edge points give better results (Sec. 4). The spatial constraint
Sec. 3.2 also reduces the ambiguity of edge point matches. Sophisticated tech-
niques such as graphical models [31] could also be utilized to employ smoothness
constraints enforcing points on the same edge in I to match to points on a sin-
gle edge in I ′. In practice however, detected edges are often noisy and tend to
fragment in an unpredictable manner. Hence, we found the simple greedy match-
ing in Eq. 1 to be more effective. Next we describe estimating the EPG using
putative point correspondences.

3.2 Recovery of the epipolar geometry (EPG)

Given two images that describe a 3D scene, its epipolar geometry (EPG) gives
information about the camera setup in a projective sense. The EPG can be used
to infer knowledge about the 3D scene via triangulation or stereo matching. In
the case of an uncalibrated and unknown camera setup, image rectification may
be performed prior to stereo matching.

A given point in one image will lie on its epipolar line in the second image,
which is actually the projection of the back projected ray from the first image
on to the second image. The epipolar geometry is described algebraically by the
Fundamental Matrix F [10], which is based on this relationship. To be more
specific, suppose two corresponding points p,p′ ∈ R2 on I and I ′ have homoge-
neous coordinates x,x′ ∈ P2 and F is the 3 × 3 fundamental matrix of rank 2,
then x′TFx = 0 for all correct point correspondences x↔ x′.

RANSAC. Given a set of noisy point correspondences, the EPG may be
robustly found using RANdom SAmple Consensus (RANSAC) [32] based meth-
ods. The essence of these methods is to find a fundamental matrix F such that
x′TFx = 0 for a random subset of the given points such that it agrees with the
largest number of the remaining points. This is repeated for a given number of
iterations and the best solution is selected. The RANSAC approach is robust in
the presence of noisy outliers with considerable errors.

PROSAC has been shown to perform better than RANSAC by assuming that
putative matches with higher quality (i.e with a lower matching distance d(.))
are more likely to be inliers [33]. In our case however, inter object reflections on
the reflective surfaces (e.g. reflections of trees on vehicle panels and glass) may
generate high quality matches which are outliers to the EPG of the main scene.
Therefore we do not consider the matching distance in the RANSAC step.

We use the normalized 8pt algorithm for model fitting in each RANSAC iter-
ation and a distance threshold of 0.01 to filter outliers [10]. We use M-estimator
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SAmple Consensus (MSAC) [34] as it is known to converge faster than stan-
dard RANSAC. However, the number of samples required to ensure with a given
probability, that at least one sample has no outliers for a given sample size,
increase exponentially as shown by [10]. This makes images with highly reflec-
tive and homogeneous regions which give very noisy point correspondences, very
challenging to work with. Selecting points along edges in the image gives more
reliable matches for images with largely homogeneous regions and reflections.

Spatial Constraint. To obtain an EPG which is representative of the actual
3D scene, it is important to have matching inlier points which are spatially
well distributed across the images. However, naive feature matching of reflective
images tend to concentrate correct point matches over areas which are relatively
less reflective as shown in Fig. 1. To avoid this problem, we enforce a spatial
constraint inspired by [35, 36, 37]. The complete matching algorithm with the
spatial constraint for obtaining putative point correspondences is given in Alg. 1.

Input : Images I and I ′

Output: Putative point correspondences
1) Find the set of edge points E in image I and E′ in image I ′

2) Match edge points (asymmetric): For each edge point pi ∈ E find
the matched edge point pj

′ ∈ E′ as
p′ = m(p) = argminp′∈E′ d (φ(p),φ(p′))
3) Enforce spatial constraint: Consider a rectangular grid of bW × bH
spatial buckets over I. Pick the best k matches with the lowest d(.) from
each bucket

Algorithm 1: Matching algorithm with the spatial constraint

We are not limited to small camera motions or scale changes as we match
edge points asymmetrically from I to I ′ and only consider buckets over I. As an
extreme case, consider the bucket at the top-left corner of the bucketed image
I. We may well pick a matching point from the bottom-right corner in the other
image I ′ (which is not bucketed) as long as the matching distance is within the
lowest k distance values for the bucket.

We present next, an experimental evaluation of our method along with base-
line comparisons.

4 Experiments

We compare our method quantitatively and qualitatively against baseline meth-
ods. Experiments were done on the standard DAISY dataset [30, 14] and our
own car dataset of over 70 images of highly reflective car images. We experimen-
tally found that for the spatial constraint parameters in Alg. 1, bW = IW /16,
bH = IH/16 and k = 2 gave good results for image pairs of size IW × IH pixels
each.
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Table 1. Description of methods

Method Description

deg DAISY descriptors on edge points - with spatial constraint (ours)
de DAISY descriptors on edge points - no spatial constraint (ours)
dhg DAISY descriptors on Harris corner points - with spatial constraint
dh DAISY descriptors on Harris corner points - no spatial constraint
dsg DAISY descriptors on SIFT key-points - with spatial constraint
ds DAISY descriptors on SIFT key-points - no spatial constraint
sg SIFT descriptors on SIFT key-points and SIFT matching - with spatial constraint
s SIFT descriptors on SIFT key-points and SIFT matching - no spatial constraint

0

5

10

15

20

25

30

35

40

deg de s sg ds dsg dh dhg

A
vg

 D
is

ta
nc

e 
(p

x)

Fig. 4. The box plots show the comparison measure of Zhang [36] for our method
de and baseline methods s,ds and dh with g at the end indicating tests where
the spatial constraint was enforced. We used the DAISY dataset [30, 14]. A
lower comparison measure indicates better performance. Our method deg has
the lowest median and inter quartile range (IQR) for the comparison measure.

4.1 Quantitative results and comparison with baseline methods

We quantitatively evaluate the quality of the EPG recovered from our method
and baseline methods as follows. We use the method adopted by [36] to mea-
sure the similarity between the recovered EPG and the ground truth EPG. The
method gives a measure of comparison between the recovered fundamental ma-
trix F and the ground truth fundamental matrix Fgt. As described in [36], the
measure is obtained by considering the perpendicular distances between points
and corresponding epipolar lines obtained using both fundamental matrices in
a symmetric manner. Simillar fundamental matrices give a lower value for the
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measure. In our experiments, the better method should recover an EPG closer
to the ground truth EPG and therefore give a lower comparison measure. We
use the wide baseline fountain and herzjesu images with ground truth camera
calibration information from the DAISY dataset [30, 14]. We use the provided
ground truth projection matrices to compute a ground truth fundamental matrix
Fgt for a given image pair.

Fig. 4 shows box plots of the comparison measure using the method by [36]
explained above. A summary of the methods evaluated in this paper along with
acronyms used are given in Tbl. 1. All images in the datasets have the same
dimentions. Although the comparison measure evaluated using only the inlier
point correspondences is in the order of sub pixels, we evaluate the compari-
son measure [36] over all point correspondences when comparing methods in
Fig. 4. This is because even an incorrectly estimated epipolar geometry will still
give a very low comparison measure for degenerate cases since the inlier point
matches satisfy the incorrectly estimated fundamental matrix (e.g. coplanar in-
lier points). We see in Fig. 4 that our method with the spatial constraint deg
gives the lowest median comparison measure (indicated by the horizontal line in
the middle of each box) and also has the lowest dispersion or spread as seen by
the interquartile range indicated by the ends of each box. The baselines ds and
dh improve marginally with the spatial constraint (dsg and dhg). However, the
spatial constraint causes a significant performance drop with SIFT key-points
and SIFT matching (s vs sg). The SIFT distance ratio (nearest neighbor test) al-
ready filters out matches with features that are not very discriminative but could
have supported the correct EPG. Enforcing the spatial constraint in ( sg) further
reduces the number of matches which may support the correct EPG. Therefore,
enforcing the spatial constraint in sg yields poor quality matches which signifi-
cantly affects the EPG computation. The results in Fig. 4 show that our methods
deg and de continue to perform better than the baselines, even with the spatial
constraint. Qualitative results shown in Sec. 4.2 indicate the same.

Matching Distance. Putative matches were found using the SIFT distance
ratio (nearest neighbor test) [2] for baseline methods s and sg. Results on rel-
atively non-reflective images were comparable with our method deg (Fig. 4).
However, such matches are not very reliable with very reflective images (meth-
ods s and sg in Figs. 5 & 8). For matching DAISY descriptors in de, deg, ds,
dsg, dh and dhg, we used the L2 norm for d(.) in Eq. 1 as per [30, 14].

Descriptor Scale. The scale was computed automatically from SIFT key-
point detection in baseline s. For the other methods, we used the DAISY descrip-
tor [30, 14] which has image differences obtained at radially distributed positions
about the initial point/pixel, computed by applying increasingly larger Gaussian
kernels when moving away from the point. We used R = 15, Q = 3, T = 8, H = 8
as per [30, 14] and Sec. 3.1.

4.2 Qualitative results

To get a sense of the recovered EPG we present some qualitative results. We
evaluated our method and baselines qualitatively on our car dataset containing
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over 70 image pairs. Results on the entire dataset are provided as supplementary
material. A typical result is shown in Fig. 5 and Fig. 6 with methods denoted as
per Tbl. 1. The recovered EPG from the baseline methods in Fig. 5 are clearly
wrong as the epipolar lines seem to indicate that the photographer has walked
towards the car where as in reality the photographer has moved side ways. As
the recovered epipoles are incorrectly located inside the images, uncalibrated
rectification [10] cannot be performed. On the other hand, our method deg in
Fig. 6(a) recovers a significantly better EPG in Fig. 6(b) for the same image
pair. The near horizontal direction of the epipolar lines correctly reflect the
movement of the camera. In fact, it is possible to perform uncalibrated stereo
rectification (Fig. 6(e)). Not enforcing the spatial constraint (de) gives poorer
results (Fig. 6(c) and Fig. 6(d)) in this instance, which are not suitable for stereo
rectification.

222 Putative Matches

10 inliers from 222 putative matches 

SIFT matches Grid Residual Error = 13133.955

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

(a) sg

254 Putative Matches

20 inliers from 254 putative matches 

Daisy on Harris kpts GRID Residual Error = 9328.8351

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

(b) dhg

224 Putative Matches

16 inliers from 224 putative matches 

Daisy on SIFT kpts GRID Residual Error = 12951.7648

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

(c) dsg

261 Putative Matches

13 inliers from 261 putative matches 

SIFT matches Residual Error = 12654.8688

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

(d) s

289 Putative Matches

21 inliers from 289 putative matches 

Daisy on Harris kpts Residual Error = 9982.5603

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
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(e) dh

261 Putative Matches

15 inliers from 261 putative matches 

Daisy on SIFT kpts Residual Error = 8660.8795
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Fig. 5. EPG and inliers for the baseline methods discussed in Sec. 4.2.
Notation c.f. Tbl. 1 and Sec. 4.1. Color code: cyan lines - epipolar lines, yellow
dots - matched points, magenta lines - point correspondences. Best viewed in
color. Images may be cropped for clarity.

Note that the uncalibrated rectification process introduces a projective dis-
tortion in the transformed images which is as expected [10]. Hence the apparent
disparities between the blue points in the rectified left image and the superim-
posed red points from the rectified right image (Fig. 6(e)) may not correctly
indicate inverse depth as with calibrated rectification. EPG and uncalibrated
rectification results on the image pair in Fig. 1 are shown in Fig. 7.

We further verify our method on a highly reflective image pair of a building
in Fig. 8. The camera motion between the two photographs is clearly horizontal.
Hence the recovered epipolar (EP) lines (shown in cyan) should be horizontal.
This is reflected correctly in our methods deg and de. However, the EPG re-
covered using the baseline methods do not indicate this and is clearly wrong.
Among the baselines, dhg performs better but EP lines (particularly at the top)
are not horizontal.
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367 Putative Matches

32 inliers from 367 putative matches 

Daisy on edges with spatial Residual Error = 1869.5131

Uncalibrated Stereo Rectification

(a) Putative matches with deg (with spa-
tial constraint)

367 Putative Matches

32 inliers from 367 putative matches 

Daisy on edges with spatial Residual Error = 1869.5131

Uncalibrated Stereo Rectification

(b) Plausible EPG and inliers from (a)

350 Putative Matches

68 inliers from 350 putative matches 

Daisy on edges without spatial Residual Error = 1.9383

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

(c) Putative matches with de (no spatial
constraint)

350 Putative Matches

68 inliers from 350 putative matches 

Daisy on edges without spatial Residual Error = 1.9383

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

(d) Incorrect EPG and inliers from (c)

367 Putative Matches

32 inliers from 367 putative matches 

Daisy on edges with spatial Residual Error = 1869.5131

Uncalibrated Stereo Rectification

(e) Uncalibrated stereo rectification using
EPG in (b). Left image has points from
right image superimpose in red.

Fig. 6. Results from our method discussed in Sec. 4.2 showing the effect of the
spatial constraint.
Notation c.f. Tbl. 1 and Sec. 4.1. Color code: cyan lines - epipolar lines, yellow
dots - matched points, magenta lines - point correspondences. Best viewed in
color. Images may be cropped for clarity.

36 inliers from Top 350 matches using F/MSAC

MATLAB estimateUncalibratedRectification()

(a) EPG and inliers

36 inliers from Top 350 matches using F/MSAC

MATLAB estimateUncalibratedRectification()

(b) Uncalibrated stereo rectification

Fig. 7. Results using our method deg on photographs of a very reflective car
door.
Notation c.f. Tbl. 1 and Sec. 4.1. Color code: cyan lines - epipolar lines, yellow
dots - matched points, magenta lines - point correspondences. Best viewed in
color. Images may be cropped for clarity.
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424 Putative Matches

227 inliers from 424 putative matches 

Daisy on edges with spatial Residual Error = 467.2925

Uncalibrated Stereo Rectification
(a) deg (ours)

350 Putative Matches

346 inliers from 350 putative matches 

Daisy on edges without spatial Residual Error = 0.02315

Uncalibrated Stereo Rectification
(b) de (ours)

173 Putative Matches

14 inliers from 173 putative matches 

SIFT matches Grid Residual Error = 3204.9338

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

(c) sg

181 Putative Matches

13 inliers from 181 putative matches 

SIFT matches Residual Error = 3689.7056

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

(d) s

190 Putative Matches

32 inliers from 190 putative matches 

Daisy on Harris kpts GRID Residual Error = 1337.3815

Uncalibrated Stereo Rectification
(e) dhg

197 Putative Matches

24 inliers from 197 putative matches 

Daisy on Harris kpts Residual Error = 1049.4432

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

(f) dh

173 Putative Matches

16 inliers from 173 putative matches 

Daisy on SIFT kpts GRID Residual Error = 1362.779

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5
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(g) dsg

181 Putative Matches

24 inliers from 181 putative matches 

Daisy on SIFT kpts Residual Error = 2009.7614

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
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(h) ds

Fig. 8. Recovered EPG and inlier point correspondences from a photograph of
a highly reflective building. Since the camera motion between the two images
is horizontal, the recovered epipolar lines should be horizontal. This is reflected
correctly in our methods deg and de, unlike with the baseline methods. The
upper EP lines with dhg are not horizontal. The spatial grid is overlaid on the
left image where the spatial constraint was enforced.
Notation c.f. Tbl. 1 and Sec. 4.1. Color code: cyan lines - epipolar lines, yellow
dots - matched points, magenta lines - point correspondences. Best viewed in
color. Images may be cropped for clarity.

5 Discussion

We present a method for finding reliable point correspondences in images of
scenes dominated by highly reflective and largely homogeneous surfaces. Con-
ventional methods for finding point correspondences are mainly designed for
textured and non-reflective surfaces. As such they generate a lot of spurious
matches from images with highly reflective and homogeneous surfaces and give
poor results when recovering the epipolar geometry of the scene. We have pro-
posed a novel method of combining established computer vision techniques by
matching points along image edges and enforcing a spatial constraint to ob-
tain reliable point correspondences from such images, resulting in sufficiently
low noise levels. In addition to providing theoretical intuition, we have exper-
imentally showed that our approach gives good results on images with highly
reflective and homogeneous surfaces where baseline methods fail. An interest-
ing future direction would be to explore QDEGSAC [38] to avoid potentially
degenerate configurations with unknown camera calibration. An interesting ap-
plication would be to detect the reflections in the images based on depth cues
after performing a 3D reconstruction of the scene based on the obtained point
correspondences and recovered EPG.
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