
Context Tree Switching

Joel Veness† Kee Siong Ng‡ Marcus Hutter‡ Michael Bowling†

†University of Alberta, Edmonton, Canada
‡Australian National University, Canberra, Australia

Abstract

This paper describes the Context Tree Switching technique, a modification of Context Tree
Weighting for the prediction of binary, stationary, n-Markov sources. By modifying Context
Tree Weighting’s recursive weighting scheme, it is possible to mix over a strictly larger class of
models without increasing the asymptotic time or space complexity of the original algorithm.
We prove that this generalization preserves the desirable theoretical properties of Context Tree
Weighting on stationary n-Markov sources, and show empirically that this new technique leads
to consistent improvements over Context Tree Weighting as measured on the Calgary Corpus.

1 Introduction
Context Tree Weighting [Willems et al., 1995] is a well-known, universal lossless compression al-

gorithm for binary, stationary, n-Markov sources. It provides a striking example of a technique that
works well both in theory and practice. Similar to Prediction by Partial Matching [Cleary et al., 1984],
Context Tree Weighting (CTW) uses a context tree data structure to store statistics about the current
data source. These statistics are recursively combined by weighting, which leads to an elegant algo-
rithm whose worst-case performance can be characterized by an analytic regret bound that holds for
any finite length data sequence, as well as asymptotically achieving (in expectation) the lower bound
of Rissanen [1984] for the class of binary, stationary n-Markov sources.

This paper explores an alternative recursive weighting procedure for CTW, which weights over a
strictly larger class of models without increasing the asymptotic time or space complexity of the orig-
inal algorithm. We call this new procedure the Context Tree Switching (CTS) algorithm, which we
investigate both theoretically and empirically.

2 Background
We begin with some notation and definitions for binary data generating sources. Our binary alphabet

is denoted by X := {0, 1}. A binary string x1x2 . . . xn ∈ X n of length n is denoted by x1:n. The
prefix x1:j of x1:n, j ≤ n, is denoted by x≤j or x<j+1. The empty string is denoted by ϵ. The
concatenation of two strings s and r is denoted by sr. If S is a set of strings and r ∈ {0, 1}, then
S × r := {sr : s ∈ S}. We will also use l(s) to denote the length of a string s.

1

2.1 Probabilistic Binary Sources
We define a probabilistic data generating source ρ to be a set of functions ρn : X n → [0, 1], for

n ∈ N, satisfying the constraint that ρn(x1:n) =
∑

y∈X ρn+1(x1:ny) for all x1:n ∈ X n, with base
case ρ0(ϵ) = 1. As the meaning is always clear from the argument to ρ, we drop the subscripts on ρ
from here onwards. Under this definition, the conditional probability of a symbol xn given previous
data x<n is defined as ρ(xn|x<n) := ρ(x1:n)/ρ(x<n) if ρ(x<n) > 0, with the familiar chain rule
ρ(x1:n) =

∏n
i=1 ρ(xi|x<i) now following.

2.2 Coding and Redundancy
A source code c : X ∗ → X ∗ assigns to each possible data sequence x1:n a binary codeword c(x1:n)

of length lc(x1:n). The typical goal when constructing a source code is to minimize the lengths of
each codeword while ensuring that the original data sequence x1:n is always recoverable from c(x1:n).
Given a data generating source µ, we know from Shannon’s Source Coding Theorem that the optimal
(in terms of expected code length) source code c uses codewords of length − log2 µ(x1:n) bits for all
x1:n. This motivates the notion of the redundancy of a source code c given a sequence x1:n, which is
defined as rc(x1:n) := lc(x1:n) + log2 µ(x1:n). Provided the data generating source is known, near
optimal redundancy can essentially be achieved by using arithmetic encoding [Witten et al., 1987].
More precisely, using aµ to denote the source code obtained by arithmetic coding using probabilistic
model µ, the resultant code lengths are known to satisfy

laµ(x1:n) < ⌈− log2 µ(x1:n)⌉+ 2, (1)
which implies that raµ(x1:n) < 2 for all x1:n. Typically however, the true data generating source µ is
unknown. The data can still be coded using arithmetic encoding with an alternate model ρ, however
now we expect to use an extra Eµ [log2 µ(x1:n)/ρ(x1:n)] bits to code the random sequence x1:n ∼ µ.

2.3 Weighting and Switching
This section describes the two fundamental techniques, weighting and switching, that are the key

building blocks of Context Tree Weighting and the new Context Tree Switching algorithm.

2.3.1 Weighting
Suppose we have a finite setM := {ρ1, ρ2, . . . , ρN}, for some N ∈ N, of candidate data generating

sources. Consider now a source coding distribution ξ defined as

ξ(x1:n) :=
∑
ρ∈M

wρ
0ρ(x1:n) (2)

formed by weighting each model by a real number wρ
0 > 0 such that

∑
ρ∈Mwρ

0 = 1. Notice that if
some model ρ∗ ∈ M is a good source coding distribution for a data sequence x1:n, then provided n is
sufficiently large, ξ will be a good coding distribution, since

− log2 ξ(x1:n) = − log2
∑
ρ∈M

wρ
0ρ(x1:n) ≤ − log2 w

ρ
0ρ(x1:n) = − log2w

ρ
0 − log2 ρ(x1:n) (3)

holds for all ρ ∈ M. Therefore, we would only need at most an extra − log2 w
ρ∗

0 bits, an amount
independent of n, to transmit x1:n using ξ instead of the best model ρ∗ inM. An important special
case of this result is when |M| = 2 and wρ1

0 = wρ2
0 = 1

2
, when only 1 extra bit is required.

2.3.2 Switching
While weighting provides an easy way to combine models, as an ensemble method it is somewhat

limited in that it only guarantees performance in terms of the best single model in M. It is easy to

2

imagine situations where this would be insufficient in practice. Instead, one could consider weighting
over sequences of models chosen from a fixed base classM. Variants of this fundamental idea have
been considered by authors from quite different research communities. Within the data compression
community, there is the Switching Method and the Snake algorithm [Volf and Willems, 1998]. Sim-
ilar approaches were also considered in the online learning community, in particular the Fixed-Share
[Herbster and Warmuth, 1998] algorithm for tracking the best expert over time. From the machine
learning community, related ideas were investigated in the context of Bayesian model selection, giving
rise to the Switch Distribution [van Erven et al., 2007]. The setup we use draws most heavily on [van
Erven et al., 2007], though there appears to be considerable overlap amongst the approaches.

Definition 1. Given a finite model class M = {ρ1, . . . , ρN} with N > 1, for all n ∈ N, for all
x1:n ∈ X n, the Switch Distribution with respect toM is defined as

τα(x1:n) :=
∑

i1:n∈In(M)

w(i1:n)
n∏

k=1

ρik(xk|x<k) (4)

where the prior over model sequences is recursively defined by

w(i1:n) :=


1 if i1:n = ϵ
1
N if n = 1

w(i<n)×
(
(1− αn)I[in = in−1] +

αn
|M|−1I[in ̸= in−1]

)
otherwise,

with each switch rate αk ∈ [0, 1] for 1 < k ≤ n, and In(M) :=
{
x ∈ {1, 2, . . . , N}n

}
.

Now, using the same argument to bound − log2 τα(x1:n) as we did with − log2 ξ(x1:n) in Section
1, we see that the inequality

− log2 τα(x1:n) ≤ − log2 w(i1:n)− log2 ρi1:n(x1:n) (5)
holds for any sequence of models i1:n ∈ In(M), with ρi1:n(x1:n) :=

∏n
k=1 ρik(xk|x<k). By itself,

Equation 5 provides little reassurance since the − log2 w(i1:n) term might be large. However, by
decaying the switch rate over time, a meaningful upper bound on − log2w(i1:n) that holds for any
sequence of model indices i1:n ∈ In(M) can be derived.

Lemma 1. Given a base model classM and a decaying switch rate αt :=
1
t

for t ∈ N,
− log2 w(i1:n) ≤ (m(i1:n) + 1) (log2 |M|+ log2 n) ,

for all i1:n ∈ In(M), where m(i1:n) :=
∑n

k=2 I[ik ̸= ik−1] denotes the number of switches in i1:n.

Proof. See Appendix B.

Now by combining Equation 5 with Lemma 1 and taking the minimum over In(M) we get the
following upper bound on − log2 τα(x1:n).

Theorem 1. Given a base model classM and switch rate αt :=
1
t

for t ∈ N, for all n ∈ N,

− log2 τα(x1:n) ≤ min
i1:n∈In(M)

{
(m(i1:n) + 1) [log2 |M|+ log2 n]− log2 ρi1:n(x1:n)

}
.

Thus if there exists a good coding distribution ρi1:n such that m(i1:n) ≪ n then τα will also be
a good coding distribution. Additionally, it is natural to compare the performance of switching to
weighting in the case where the best performing sequence of models satisfies m(i1:n) = 0. Here an
extra cost of O(log n) bits is incurred, which is a small price to pay for a significantly larger class of
models.

3

Algorithm A direct computation of Equation 4 is intractable. For example, given a data sequence x1:n

and a model classM, the sum in Equation 4 would require |M|n additions. Fortunately, the structured
nature of the model sequence weights w(i1:n) can be exploited to derive Algorithm 1, whose proof of
correctness can be found in Appendix A. Assuming that every conditional probability can be computed
in constant time, Algorithm 1 runs in Θ(n|M|) time and uses only Θ(|M|) space. Furthermore, only
Θ(|M|) work is required to process each new symbol.

Algorithm 1 SWITCH DISTRIBUTION - τα(x1:n)
Require: A finite model classM = {ρ1, . . . , ρN} such that N > 1
Require: A weight vector (w1, . . . , wN) ∈ RN , with wi =

1
N for 1 ≤ i ≤ N

Require: A sequence of switching rates {α2, α3, . . . , αn}

1: r ← 1
2: for i = 1 to n do

3: r ←
N∑
j=1

wjρj(xi|x<i)

4: k ← (1− αi+1)N − 1

5: for j = 1 to N do
6: wj ← 1

N−1 [αi+1r + kwjρj(xi|x<i)]
7: end for
8: end for
9: return r

Discussion The above switching technique can be used in a variety of ways. For example, drawing
inspiration from Volf and Willems [1998], multiple probabilistic models (such as PPM and CTW)
could be combined with this technique, with the conditional probability τα(xn|x<n) of each symbol
xn given by the ratio τα(x1:n)/τα(x<n). This seems to be a direct improvement over the Switching
Method [Volf and Willems, 1998], since similar theoretical guarantees are obtained, while additionally
reducing the time and space required to process each new symbol xn from O(n) to O(|M|). This,
however, is not the focus of our paper. Rather, the improved computational properties of Algorithm
1 motivated us to investigate whether the Switch Distribution can be used as a replacement for the
recursive weighting operation inside CTW. It is worth pointing out that the idea of using a switching
method recursively inside a context tree had been discussed before in Appendix A of [Volf, 2002]. This
discussion focused on some of the challenges that would need to be overcome in order to produce a
“Context Tree Switching” algorithm that would be competitive with CTW. The main contribution of
this paper is to describe an algorithm that achieves these goals both in theory and practice.

2.4 Context Tree Weighting
As our new Context Tree Switching approach extends Context Tree Weighting, we must first review

some of CTW’s technical details. We recommend [Willems et al., 1995, 1997] for more information.

2.4.1 Overview
Context Tree Weighting is a binary sequence prediction technique that works well both in theory

and practice. It is a variable order Markov modeling technique that works by computing a “double
mixture” over the space of all Prediction Suffix Trees (PSTs) of bounded depth D ∈ N. This involves
weighting (see Section 2.3.1) over all PST structures, as well as integrating over all possible parameter
values for each PST structure. We now review this process, beginning by describing how an unknown,
memoryless, stationary binary sources is handled, before moving on to describe how memory can be

4

added through the use of a Prediction Suffix Tree, and then finishing by showing how to efficiently
weight over all PST structures.

2.4.2 Memoryless, Stationary, Binary Sources
Consider a sequence x1:n generated by successive Bernoulli trials. If a and b denote the number of

zeroes and ones in x1:n respectively, and θ ∈ [0, 1] ⊂ R denotes the probability of observing a 1 on
any given trial, then Pr(x1:n | θ) = θb(1 − θ)a. One way to construct a distribution over x1:n, in the
case where θ is unknown, is to weight over the possible values of θ. A good choice of weighting can be
obtained via an objective Bayesian analysis, which suggests using the weighting w(θ) := Beta(1

2
,1
2
) =

π−1θ−1/2(1 − θ)−1/2. The resultant estimator is known as the Krichevsky-Trofimov (KT) estimator
[Krichevsky and Trofimov, 1981]. The KT probability of a binary data sequence x1:n is defined as

ξKT (x1:n) :=

∫ 1

0

θb(1− θ)a w(θ) dθ, (6)

for all n ∈ N. Furthermore, ξKT (x1:n) can be efficiently computed online using the identities

ξKT (xn = 0 | x<n) =
a+ 1/2

a+ b+ 1
, ξKT (xn = 1 | x<n) =

b+ 1/2

a+ b+ 1
(7)

in combination with the chain rule ξKT (x1:n) = ξKT (xn|x<n)× ξKT (x<n).

Parameter Redundancy The parameter redundancy of the KT estimator can be bounded uniformly.
Restating a result from Willems et al. [1995], one can show that for all n ∈ N, for all x1:n ∈ X n, for
all θ ∈ [0, 1],

log2
θb(1− θ)a

ξKT (x1:n)
≤ 1

2
log2(n) + 1. (8)

This result plays an important role in the analysis of both CTW and CTS.

2.4.3 Variable-length Markov, Stationary, Binary Sources
A richer class of data generating sources can be defined if we let the source model use memory.

A finite, variable order, binary Markov model [Begleiter et al., 2004] is one such model. This can
equivalently be described by a binary Prediction Suffix Tree (PST). A PST is formed from two main
components: a structure, which is a binary tree where all the left edges are labeled 1 and all the right
edges are labeled 0; and a set of real-valued parameters within [0, 1], with one parameter for every leaf
node in the PST structure. This is now formalized.

Definition 2. A suffix set S is a collection of binary strings. S is said to be proper if no string in S is
a suffix of any other string in S . S is complete if every semi-infinite binary string · · ·xn−2xn−1xn has
a suffix in S . S is of bounded depth D ∈ N if l(s) ≤ D for all s ∈ S .

A binary Prediction Suffix Tree structure is uniquely described by a complete and proper suffix set.
For example, the suffix set associated with the PST in Figure 1 is S := {1, 10, 00}, with each suffix
s ∈ S describing a path from a leaf node to the root.

Definition 3. A PST is a pair (S,ΘS), where S is a suffix set and ΘS := {θs : θs ∈ [0, 1]}s∈S . The
depth of a suffix set S is defined as d(S) := maxs∈S l(s). The context with respect to a suffix set S of
a binary sequence x1:n ∈ X n is defined as ϕS(x1:n) := xk:n, where k is the unique integer such that
xk:n ∈ S .

Notice that ϕS(x1:n) may be undefined when n < d(S). To avoid this problem, from here onwards
we adopt the convention that the first d(S) bits of any sequence are held back and coded separately.
By denoting these bits as xD−1 . . . x−1x0, our previous definition of ϕS(x1:n) is always well defined.

5

θ1=0.1

#
1

����
��

�� 0

��?
??

??

θ10=0.3

#
1

����
��

�� 0

��?
??

??

θ00=0.5

Figure 1: An example prediction suffix tree

Semantics A PST (S,ΘS) maps each binary string x1:n with n ≥ d(S) to a parameter value θϕS(x1:n),
with the intended meaning that Pr(xn+1 = 1 | x1:n) = θϕS(x1:n). For example, the PST in Figure 1
maps the string 1110 to θϕS(1110) = θ10 = 0.3, which means the next bit after 1110 takes on a value of
1 with probability 0.3, and a value of 0 with probability 0.7. If we let bs and as denote the number of
times a 1 and 0 is seen in context s respectively, this gives

Pr(x1:n | S,ΘS) :=
∏
s∈S

θbs(1− θs)
as . (9)

Unknown Parameters Given a PST with known structure S but unknown parameters ΘS , a good
coding distribution can be obtained by replacing each unknown parameter value θs ∈ ΘS with a KT
estimator. If we let xs

1:n denote the (possibly non-contiguous) subsequence of data x1:n that matches
context s ∈ S , this gives

Pr(x1:n | S) :=
∏
s∈S

ξKT (x
s
1:n). (10)

This choice is justified by the analysis of Willems et al. [1995]. If we let

γ(k) :=

{
k if 0 ≤ k < 1
1
2
log2(k) + 1 if k ≥ 1,

the parameter redundancy of a PST with known structure S can be bounded by

log2
Pr(x1:n | S, ΘS)

Pr(x1:n | S)
≤ |S|γ(n

|S|). (11)

2.4.4 Weighting Over Prediction Suffix Trees
The Context Tree Weighting algorithm combines the data partitioning properties of a PST, a carefully

chosen weighting scheme, and the distributive law to efficiently weight over the space of PST structures
of bounded depth D ∈ N. We now introduce some notation to make this process explicit.

Definition 4. The set of all complete and proper suffix sets of bounded depth D is denoted by CD, and
is given by the recurrence

CD :=

{ {
{ϵ}
}

if D = 0{
{ϵ}
}
∪ {S1 × 1 ∪ S2 × 0 : S1,S2 ∈ CD−1} if D > 0.

(12)

Notice that |CD| grows roughly double exponentially in D. For example, |C0| = 1, |C1| = 2, |C2| =
5, |C3| = 26, |C4| = 677, |C5| = 458330, which means that some ingenuity is required to weight over
all CD for any reasonably sized D. This comes in the form of a weighting scheme that is derived from a
natural prefix coding of the structure of a PST. It works as follows: given a PST structure with depth no
more than D, a pre-order traversal of the tree is performed. Each time an internal node is encountered
for the first time, a 1 is written down. Each time a leaf node is encountered, a 0 is written if the depth
of the leaf node is less than D, otherwise nothing is written. For example, if D = 3, the code for the

6

model shown in Figure 1 is 10100; if D = 2, the code for the same model is 101. We now define the
cost ΓD(S) of a suffix set S to be the length of its code. One can show that

∑
S∈CD

2−ΓD(S) = 1; i.e.
the prefix code is complete. Thus we can now define

CTWD(x1:n) :=
∑
S∈CD

2−ΓD(S)
∏
s∈S

ξKT (x
s
1:n). (13)

Notice also that this choice of weighting imposes an Ockham-like penalty on large PST structures.

Recursive Decomposition If we let KD := {0, 1}∗ denote the set of all possible contexts for class
CD, xc

1:n denote the subsequence of data x1:n that matches context c ∈ KD, and define CTWϵ
D(x1:n) :=

CTWD(x1:n), we can decompose Equation 13 into (see [Willems et al., 1995])

CTWc
D(x1:n) =

1
2
ξKT (x

c
1:n) +

1
2

CTW0c
D−1(x1:n) CTW1c

D−1(x1:n), (14)

for D > 0. In the base case of a single node (i.e. weighting over C0) we have CTWc
0(x1:n) = ξKT (x

c
1:n).

Computational Properties The efficiency of CTW derives from Equation 14, since the double mix-
ture can be maintained incrementally by applying itD+1 times to process each new symbol. Therefore,
using the Context Tree Weighting algorithm, only O(nD) time is required to compute CTWD(x1:n).
Furthermore, only O(D) work is required to compute CTWD(x1:n+1) from CTWD(x1:n).

Theoretical Properties Using Equation 3, the model redundancy can be bounded by

− log2 CTWD(x1:n) = − log2

(∑
S∈CD

2−ΓD(S)
∏
s∈S

ξKT (x
s
1:n)

)
< ΓD(S)− log2

∏
s∈S

ξKT (x
s
1:n).

This can be combined with the parameter redundancy specified by Equation 11 to give

− log2 CTWD(x1:n) < ΓD(S) + |S|γ
(

n
|S|

)
− log2 Pr(x1:n | S,ΘS) (15)

for any S ∈ CD. Finally, combining Equation 15 with the coding redundancy bound given in Equation
1 leads to the main theoretical result for CTW.

Theorem 2 (Willems et al. [1995]). For all n ∈ N, given a data sequence x1:n ∈ X n generated by a
binary PST source (S,ΘS) with S ∈ CD and ΘS := {θs : θs ∈ [0, 1]}s∈S , the redundancy of CTW
using context depth D ∈ N is upper bounded by ΓD(S) + |S|γ

(
n
|S|

)
+ 2.

3 Context Tree Switching
Context Tree Switching is a natural combination of CTW and switching. To see this, first note that

Equation 14 allows us to interpret CTW as a recursive application of the weighting method of Section
2.3.1. Recalling Theorem 1, we know that a careful application of switching essentially preserves the
good properties of weighting, and may even work better provided some rarely changing sequence of
models predicts the data well. Using a class of PST models, it seems reasonable to suspect that the
best model may change over time; for example, a large PST model might work well given sufficient
data, but before then a smaller model might be more accurate due to its smaller parameter redundancy.
The main insight behind CTS is to weight over all sequences of bounded depth PST structures by
recursively using the efficient switching technique of Section 2.3.2 as a replacement for Equation 14.
This gives, for all n ∈ N, for all x1:n ∈ X n, the following recursion for D > 0,

CTScD(x1:n) :=
∑

i1:nc∈{0,1}nc

wc(i1:nc)

nc∏
k=1

[
I[ik=0]

ξKT ([x
c
1:n]1:k)

ξKT ([xc
1:n]<k)

+ I[ik=1]
CTS0cD−1(x1:tc(k))

CTS0cD−1(x<tc(k))

CTS1cD−1(x1:tc(k))

CTS1cD−1(x<tc(k))

]
(16)

7

for c ∈ KD, where nc := l(xc
1:n) and tc(k) is the smallest integer such that l(xc

1:tc(k)
) = k. In the base

cases we have CTSc0(x1:n) := ξKT (x
c
1:n) and CTScD(ϵ) := 1 for any D ∈ N, c ∈ KD.

We now specify the CTS algorithm, which involves describing how to maintain Equation 16 effi-
ciently at each internal node of the context tree data structure, as well as how to select an appropriate
sequence of switching rates (which defines wc(i1:nc)) for each context. Also, from now onwards, we
will use CTSD(x1:n) to denote the top-level mixture CTSϵD(x1:n).

3.1 Algorithm
CTS repeatedly applies Algorithm 1 to efficiently maintain Equation 16 at each distinct context.

This requires maintaining a context tree, where each node representing context c contains six entries:
ξKT (x

c
1:n) and associated ac, bc counts, CTScD(x1:n) and two weight terms kc and sc which we define

later. Initially the context tree data structure is empty. Now, given a new symbol xn, having previously
seen the data sequence x<n, the context tree is traversed from root to leaf by following the path defined
by the current context ϕD(x<n) := xn−1xn−2 . . . xn−D. If, during this process, a prefix c of ϕD(x<n)
is found to not have a node representing it within the context tree, a new node is created with kc := 1/2,
sc := 1/2, ac = 0, and bc = 0. Next, the symbol xn is processed, by applying in order, for all nodes
corresponding to contexts c ∈ {ϕD(x1:n), . . . , ϕ1(x1:n), ϵ}, the following update equations

CTScD(x1:n) ← kc ξKT (x
c
n|xc

<n) + sc z
c
D(xn|x<n)

kc ← αc
n+1 CTScD(x1:n) + (1− 2αc

n+1) kc ξKT (x
c
n | xc

<n)

sc ← αc
n+1 CTScD(x1:n) + (1− 2αc

n+1) sc z
c
D(xn | x<n),

for D > 0, where ξKT (x
c
n|xc

<n) := ξKT (x
c
1:n)/ξKT (x

c
<n) and

zcD(xn|x<n) :=
[

CTS0cD−1(x1:n)/CTS0cD−1(x<n)
] [

CTS1cD−1(x1:n)/CTS1cD−1(x<n)
]
,

proceeding from the leaf node back to the root. In the base case we have CTSc0(x1:n) := ξKT (x
c
1:n).

In addition, for each relevant context, ξKT (x
c
1:n) is updated by applying Equation 7 and incrementing

either ac or bc by 1. As CTS is identical to CTW except for its constant time recursive updating scheme,
its asymptotic time and space complexity is the same as for CTW.

Setting the Switching Rate The only part of Equation 16 we have not yet specified is how to set
the switching rate αc

n. With Theorem 1 in mind, our first thought was to use αc
n = n−1

c . However
this choice gave poor empirical performance. Furthermore, with this choice we were unable to find a
redundancy bound competitive with Equation 15. Instead, a much better alternative was to set αc

n =
n−1 for any sub-context. The next result justifies this choice.

Theorem 3. For all n ∈ N, for all x1:n ∈ X n, for all D ∈ N, we have
− log2 CTSD(x1:n) < ΓD(S) + [d(S) + 1] log2 n+ |S|γ(n

|S|)− log2 Pr(x1:n | S,ΘS), (17)

for any pair (S,Θ) where S ∈ CD and ΘS := {θs : θs ∈ [0, 1]}s∈S .

Proof. See Appendix C.

This is a very strong result, since it holds for all binary PST models of maximum depth D, and all
possible data sequences, without making any assumptions (probabilistic or otherwise) on how the data
is generated. Additionally, Theorem 3 lets us state a redundancy bound for CTS when it is combined
with an arithmetic encoder to compress data generated by a binary, n-Markov, stationary source.

Corollary 1. For all n ∈ N, given a data sequence x1:n ∈ X n generated by a binary PST source
(S,ΘS) with S ∈ CD and ΘS := {θs : θs ∈ [0, 1]}s∈S , the redundancy of CTS using a context depth
D ∈ N is upper bounded by ΓD(S) + [d(S) + 1] log2 n+ |S|γ(n

|S|) + 2.

8

bib book1 book2 geo news obj1 obj2 paper1 paper2 paper3 paper4 paper5 paper6 pic progc progl progp trans

CTW48 2.25 2.31 2.12 5.01 2.78 4.63 3.19 2.84 2.59 2.97 3.50 3.73 2.99 0.90 3.00 2.11 2.24 2.09
CTS48 2.23 2.32 2.10 5.05 2.77 4.70 3.16 2.78 2.56 2.95 3.48 3.70 2.93 0.91 2.94 2.05 2.12 1.95
CTW∗

48 1.83 2.18 1.89 4.53 2.35 3.72 2.40 2.29 2.23 2.5 2.82 2.93 2.37 0.80 2.33 1.65 1.68 1.44
CTS∗48 1.79 2.19 1.89 4.18 2.33 3.65 2.33 2.27 2.22 2.48 2.78 2.90 2.36 0.77 2.32 1.59 1.62 1.37
CTS∗160 1.77 2.18 1.86 4.17 2.31 3.64 2.30 2.26 2.21 2.48 2.78 2.90 2.35 0.77 2.30 1.54 1.56 1.31

Table 1: Performance (average bits per byte) of CTW and CTS with a fixed D on the Calgary Corpus

Comparing the redundancy bounds in Equation 17 with Equation 15, we see that CTS bound is
slightly looser, by an additive [d(S) + 1] log2 n term. However this is offset by the fact that CTS
weights over a much larger class than CTW. If the underlying data isn’t generated by a single binary
PST source, it seems reasonable to suspect that CTS may perform better than CTW. Notice too that as
n gets large, both methods have O(log2 n) redundancy behavior for stationary, D-Markov sources.

4 Experimental Results
We now investigate the performance of Context Tree Switching empirically. For this we measured

the performance of CTS on the well known Calgary Corpus - a collection of files widely used to
evaluate compression algorithms. The results (in average bits per byte) are shown in Table 1.

The results for CTW48, CTS48, CTS∗48 and CTS∗160 were generated from our own implementation1,
which used a standard binary arithmetic encoder to produce the compressed files. The CTW48, CTS48
methods refer to the base CTW and CTS algorithms using a context depth of D=48 (6 bytes). Both
methods used the KT estimator at leaf nodes, and contained no other enhancements. CTS∗48 and CTS∗160
referred to our enhanced versions of CTS. These used the binary decomposition method from [Willems
and Tjalkens, 1997] and a technique similar to count halving, which multiplied ac and bc by a factor of
0.98 during every update. Additionally, sc and kc were initialized to 0.925 and 0.075 respectively for
each c ∈ KD upon node creation. The remaining CTW∗

48 results are from a state-of-the-art CTW im-
plementation made public by algorithm’s original creators [Willems, 2011]. This version features im-
portant enhancements such as replacing the KT estimator with the Zero-Redundancy estimator, binary
decomposition for byte oriented data, weighting only at byte boundaries and count halving [Willems
and Tjalkens, 1997]. Various combinations of these CTW enhancements were also tried with CTS, but
were found to be slightly inferior to the CTS∗ method described above.

PPM∗ CTW PPMZ CTS∗ DEPLUMP

2.09 1.99 1.93 1.93 1.89
Table 2: Weighted (by filesize) Average Bits per Byte on the Calgary Corpus

The first two rows in Table 1 compare the performance of the base CTW and CTS algorithms. Here
we see that CTS generally outperforms CTW, in some cases producing files that are 7% smaller. In
the cases where it is worse, it is only by a margin of 1%. The third and fourth rows compare the
performance of the enhanced versions of CTW and CTS. Again we see similar results, with CTS
performing better by up to 8%; in the single case where it is worse, the margin is less than 1%. Finally,
Table 2 shows the performance of CTS (using D=160) relative to the results reported in [Gasthaus et al.,
2010]. Here we see that CTS’s performance is excellent, comparable with modern PPM techniques
such as PPMZ [Bloom, 1998] and only slightly inferior to the recent DEPLUMP algorithm.

1Available at: http://jveness.info/software/cts-v1.zip

9

5 Conclusion
This paper has introduced Context Tree Switching, a universal algorithm for the compression of

binary, stationary, n-Markov sources. Experimental results show that the technique gives a small but
consistent improvement over regular Context Tree Weighting, without sacrificing its theoretical guar-
antees. We feel our work is interesting since it demonstrates how a well-founded data compression
algorithm can be constructed from switching. Importantly, this let us narrow the performance gap
between methods with strong theoretical guarantees and those that work well in practice.

A natural next step would be investigate whether CTS can be extended for binary, k-Markov, piece-
wise stationary sources. This seems possible with some simple modifications to the base algorithm. For
example, the KT estimator could be replaced with a technique that works for unknown, memoryless,
piecewise stationary sources, such as those discussed by Willems [1996], Willems and Krom [1997].
Theoretically characterizing the redundancy behavior of these combinations, or attempting to derive
a practical algorithm with provable redundancy behavior for k-Markov, piecewise stationary sources
seems an exciting area for future research.

References
Ron Begleiter, Ran El-Yaniv, and Golan Yona. On prediction using variable order markov models. Journal of Artificial

Intelligence Research, 22:385–421, 2004.
C. Bloom. Solving the problem of context modelling”. http://www.cbloom.com/papers/ppmz.pdf, 1998.
John G. Cleary, Ian, and Ian H. Witten. Data Compression Using Adaptive Coding and Partial String Matching. IEEE

Transactions on Communications, 32:396–402, 1984.
J. Gasthaus, F. Wood, and Y. W. Teh. Lossless compression based on the sequence memoizer. In Data Compression

Conference, 2010.
Mark Herbster and Manfred K. Warmuth. Tracking the best expert. Machine Learning, 32:151–178, August 1998.
R. Krichevsky and V. Trofimov. The performance of universal encoding. Information Theory, IEEE Transactions on,

27(2):199–207, 1981.
J. Rissanen. Universal coding, information, prediction, and estimation. Information Theory, IEEE Transactions on,

30(4):629 – 636, jul 1984. ISSN 0018-9448. doi: 10.1109/TIT.1984.1056936.
Tim van Erven, Peter Grünwald, and Steven de Rooij. Catching Up Faster in Bayesian Model Selection and Model

Averaging. Neural Information Processing Systems (NIPS), 2007.
P. Volf. Weighting techniques in data compression: Theory and algorithms. PhD thesis, Eindhoven University of

Technology, 2002.
Paul A. J. Volf and Frans M. J. Willems. Switching between two universal source coding algorithms. In In Data

Compression Conference, pages 491–500, 1998.
F. Willems and M. Krom. Live-and-die coding for binary piecewise i.i.d. sources. In Information Theory. 1997.

Proceedings., 1997 IEEE International Symposium on, page 68, jun-4 jul 1997. doi: 10.1109/ISIT.1997.612983.
F. Willems and T.J. Tjalkens. Complexity Reduction of the Context-Tree Weighting Algorithm: A Study for KPN

Research. Tech. Rep. EIDMA Report RS.97.01, 1997.
F. M. J. Willems. CTW website. http://www.ele.tue.nl/ctw/, 2011.
Frans Willems, Yuri Shtarkov, and Tjalling Tjalkens. Reflections on “The Context Tree Weighting Method: Basic

properties”. Newsletter of the IEEE Information Theory Society, 47(1), 1997.
Frans M. J. Willems. Coding for a binary independent piecewise-identically-distributed source. IEEE Transactions on

Information Theory, 42:2210–2217, 1996.
Frans M.J. Willems, Yuri M. Shtarkov, and Tjalling J. Tjalkens. The Context Tree Weighting Method: Basic Properties.

IEEE Transactions on Information Theory, 41:653–664, 1995.
Ian H. Witten, Radford M. Neal, and John G. Cleary. Arithmetic coding for data compression. Commun. ACM, 30:

520–540, June 1987. ISSN 0001-0782.

10

Appendix A. Correctness of Algorithm 1
This section proves the correctness of Algorithm 1. We begin by first proving a lemma.

Lemma 2. If wj,t denotes the weight wj at the beginning of iteration t in Algorithm 1, the identity

wj,t =
∑
i<t

w(i<tj)
t−1∏
k=1

ρik(xk | x<k),

holds for all t ∈ N.

Proof. We use induction on t. In the base case, we have

wj,1 =
∑
i<1

w(i<tj) = w(ϵj) = w(j) = 1
N ,

which is what is required. Letting rt denote the value assigned to r on iteration t, for the inductive case we have

wj,t+1 = 1
N−1 [αt+1rt + (N(1− αt+1)− 1)wj,t ρj(xt | x<t)]

=αt+1

N−1

N∑
j=1

∑
i<t

w(i<tj)

t−1∏
k=1

ρik(xk | x<k)

 pj(xt | x<t) +

N(1−αt+1)−1
N−1

[∑
i<t

w(i<tj)
t−1∏
k=1

ρik(xk | x<k)

]
ρj(xt | x<t)

=αt+1

N−1

∑
i1:t

w(i1:t)
t∏

k=1

ρik(xk | x<k) +
N(1−αt+1)−1

N−1

∑
i<t

w(i<tj)

[t−1∏
k=1

ρik(xk | x<k)

]
ρj(xt | x<t)

=
∑

i1:t|it ̸=j

w(i1:t)
αt+1

N−1

t∏
k=1

ρik(xk | x<k) +
∑

i1:t|it=j

w(i<tj)
αt+1

N−1

t∏
k=1

ρik(xk | x<k) +

∑
i1:t|it=j

w(i<tj)
N(1−αt+1)−1

N−1

t∏
k=1

ρik(xk | x<k)

=
∑

i1:t|it ̸=j

w(i1:t)
αt+1

N−1

t∏
k=1

ρik(xk | x<k) +
∑

i1:t|it=j

w(i<tj)(1− αt+1)

t∏
k=1

ρik(xk | x<k)

=
∑
i1:t

w(i1:tj)

t∏
k=1

ρik(xk | x<k).

Theorem 4. ∀n ∈ N, ∀x1:n ∈ Xn, Algorithm 1 computes τα(x1:n).

Proof. Letting wj,t denote the weight wj at the beginning of iteration t, Algorithm 1 returns

N∑
j=1

wj,tρj(xt | x<t) =
N∑
j=1

∑
i<t

w(i<tj)

[t−1∏
k=1

ρik(xk | x<k)

]
ρj(xt | x<t)

=
∑
i1:t

w(i1:t)
t∏

k=1

ρik(xk | x<k)

= τα(x1:t),

where the first equality follows from Lemma 2.

11

Appendix B. Proof of Lemma 1
Lemma 1. Given a base model classM and a decaying switch rate αt :=

1
t

for t ∈ N,

− log2 w(i1:n) ≤ (m(i1:n) + 1) (log2 |M|+ log2 n) ,

for all i1:n ∈ In(M), where m(i1:n) :=
∑n

k=2 I[ik ̸= ik−1] denotes the number of switches in i1:n.

Proof. Consider an arbitary i1:n ∈ In(M). Now, letting m denote m(i1:n), we have

− log2 w(i1:n) = log2 |M| − log2

n∏
t=2

αt

|M|−1
I[it ̸= it−1] + (1− αt)I[it = it−1]

≤ log2 |M| − log2

n∏
t=2

1
n(|M|−1)

I[it ̸= it−1] +
t−1
t
I[it = it−1]

≤ log2 |M| − log2

(
n−m(|M| − 1)−m

n−m∏
t=2

t−1
t

)
= log2 |M|+m log2 n+m log2(|M| − 1) + log2(n−m)

≤ (m+ 1)[log2 |M|+ log2 n].

12

Appendix C. Proof of Theorem 3
Theorem 3. For all n ∈ N, for all x1:n ∈ Xn, for all D ∈ N, we have

− log2 CTSD(x1:n) ≤ ΓD(S) + [d(S) + 1] log2 n+ |S|γ(n
|S|)− log2 Pr(x1:n | S,ΘS),

for any pair (S,Θ) where S ∈ CD and ΘS := {θs : θs ∈ [0, 1]}s∈S .

Proof. Consider an arbitrary S ∈ CD and ΘS = {θs : θs ∈ [0, 1]}s∈S . Now define S̃ ⊂ KD as the set of contexts
that index the internal nodes of PST structure S. Observe that, for all n ∈ N and for all x1:n ∈ Xn, by dropping the
sum in Equation 16 we can conclude

CTScD(x1:n) ≥


wc(11:nc

) CTS0cD−1(x1:n) CTS1cD−1(x1:n) if c /∈ S
wc(01:nc) ξKT (x

c
1:n) if c ∈ S and D > 0

ξKT (x
c
1:n) if D = 0,

(18)

for any sub-context c ∈ S ∪ S̃. Next define S ′ := {s ∈ S : l(s) < D}. Now, by repeatedly applying Equation 18,
starting with CTSD(x1:n) (which recall is defined as CTSϵD(x1:n)) and continuing until no more CTS(·) terms remain,
we can conclude

CTSD(x1:n) ≥

∏
c∈S̃

wc(11:nc)

(∏
s∈S′

ws(01:ns)

)(∏
s∈S

ξKT (x
s
1:n)

)

=

d(S)∏
k=0

∏
c∈S′∪S̃ : l(c)=k

wc(11:nc)

(∏
s∈S

ξKT (x
s
1:n)

)

≥

2−ΓD(S)

d(S)∏
k=0

∏
c∈S′∪S̃ : l(c)=k

wc(11:nc)

wc(11:min(nc,1))

(∏
s∈S

ξKT (x
s
1:n)

)

≥

2−ΓD(S)

d(S)∏
k=0

n∏
t=2

t− 1

t

(∏
s∈S

ξKT (x
s
1:n)

)

= 2−ΓD(S)n−(d(S)+1)

(∏
s∈S

ξKT (x
s
1:n)

)
.

The first equality follows by noting that Definition 1 implies wc(01:t) = wc(11:t) for all t ∈ N and rearranging. The
second inequality follows from |S ′ ∪ S̃| = ΓD(S), wc(1) =

1
2 and that either wc(11:nc) = wc(ϵ) = 1 if nc = 0 or

wc(11:nc) = 1
2 × . . . for nc > 0. The last inequality follows from the observation that the context associated with

each symbol in x1:n matches at most one context c ∈ S ′ ∪ S̃ of each specific length 0 ≤ k ≤ d(S). The final equality
follows upon simplification of the telescoping product. Hence,

− log2 CTS(x1:n) ≤ ΓD(S) + [d(S) + 1] log2 n− log2

(∏
s∈S

ξKT (x
s
1:n)

)
. (19)

Finally, the proof is completed by noting that Equation 11 implies

− log2

(∏
s∈S

ξKT (x
s
1:n)

)
≤ |S|γ(n

|S|)− log2 Pr(x1:n | S,ΘS),

and then combining the above with Equation 19.

13

