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Abstract

The progression of theories suggested for our world, from ego- to geo- to
helio-centric models to universe and multiverse theories and beyond, shows
one tendency: The size of the described worlds increases, with humans being
expelled from their center to ever more remote and random locations. If
pushed too far, a potential theory of everything (TOE) is actually more a
theories of nothing (TON). Indeed such theories have already been developed.
I show that including observer localization into such theories is necessary and
sufficient to avoid this problem. I develop a quantitative recipe to identify
TOEs and distinguish them from TONs and theories in-between. This
precisely shows what the problem is with some recently suggested universal
TOEs.
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1 Introduction

A number of models have been suggested for our world. They range from generally
accepted to increasingly speculative to apparently bogus. For the purpose of this
work it doesn’t matter where you personally draw the line. Many now generally
accepted theories have once been regarded as insane, so using the scientific commu-
nity or general public as a judge is problematic and can lead to endless discussions:
for instance, the historic geo↔heliocentric battle; and the ongoing discussion of
whether string theory is a theory of everything or more a theory of nothing. In a
sense this paper is about a formal rational criterion to determine whether a model
makes sense or not. In order to make the main point of this paper clear, below
I will briefly traverse a number of models [Har00, BDH04, Hut09]. The presented
bogus models help to make clear the necessity of observer localization and hence the
relevance of this work.

Egocentric to Geocentric model. A young child believes it is the center of the
world. Localization is trivial. It is always at “coordinate” (0,0,0). Later it learns
that it is just one among a few billion other people and as little or much special as
any other person thinks of themself. In a sense we replace our egocentric coordinate
system by one with origin (0,0,0) in the center of Earth. The move away from an
egocentric world view has many social advantages, but dis-answers one question:
Why am I this particular person and not any other?

Geocentric to Heliocentric model. While being expelled from the center of
the world as an individual, in the geocentric model, at least the human race as
a whole remains in the center of the world, with the remaining (dead?) universe
revolving around us. The heliocentric model puts Sun at (0,0,0) and degrades Earth
to planet number 3 out of 8. The astronomic advantages are clear, but dis-answers
one question: Why this planet and not one of the others? Typically we are muzzled
by semi-convincing anthropic arguments [Bos02, Smo04].

Heliocentric to cosmological model. The next coup of astronomers was to
degrade our Sun to one star among billions of stars in our milky way, and our milky
way to one galaxy out of billions of others, according to current textbooks. Again,
it is generally accepted that the question why we are in this particular galaxy in
this particular solar system is essentially unanswerable.

Multiverses. Many modern more speculative cosmological models (can be ar-
gued to) imply a multitude of essentially disconnected universes (in the conven-
tional sense), often each with its own (quite different) characteristic: Examples are
Wheeler’s oscillating universe, Smolin’s baby universe theory, Everett’s many-worlds
interpretation of quantum mechanics, and the different compactifications of string
theory [Teg04]. They “explain” why a universe with our properties exist, since the
multiverse includes universes with all kinds of properties, but they cannot predict
these properties. A multiverse theory plus a theory predicting in which universe
we happen to live would determine the value of the inter-universe variables for our
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universe, and hence have much more predictive power. Again, anthropic arguments
are sometimes evoked but are usually vague and unconvincing.

Universal TOE (UTOE). Taking the multiverse theory to the extreme, Schmid-
huber [Sch00] postulates a universal multiverse, which consists of every computable
universe. Clearly, if our universe is computable (and there is no proof of the op-
posite [Sch00]), the multiverse generated by UTOE contains and hence perfectly
describes our own universe, so we have a Theory of Everything (TOE) already in
our hands. Unfortunately it is of little use, since we can’t use UTOE for prediction.
If we knew our “position” in this multiverse, we would know in which (sub)universe
we are. This is equivalent to knowing the program that generates our universe. This
program may be close to any of the conventional cosmological models, which indeed
have a lot of predictive power. Since locating ourselves in UTOE is equivalent and
hence as hard as finding a conventional TOE of our universe, we have not gained
much.

All-a-Carte models. Champernowne’s normal number glues the natural numbers,
for our purpose written in binary format, 1,10,11,100,101,110,111,1000,1001,... to
one long string.

1101110010111011110001001...

Obviously it contains every finite substring by construction. The digits of many
irrational numbers like

√
2, π, and e are conjectured to also contain every finite

substring. If our space-time universe is finite, we can capture a snapshot of it in
a truly gargantuan string u. Since Champernowne’s number contains every finite
string, it also contains u and hence perfectly describes our universe. Probably even√
2 is a perfect TOE. Unfortunately, if and only if we can localize ourselves, we can

actually use it for predictions. (For instance, if we knew we were in the center of
universe 001011011 we could predict that we will ‘see’ 0010 when ‘looking’ to the left
and 1011 when looking to the right.) Locating ourselves means to (at least) locate u
in the multiverse. We know that u is the u’s number in Champernowne’s sequence
(interpreting u as a binary number), hence locating u is equivalent to specifying u.
So a TOE based on normal numbers is only useful if accompanied by the gargantuan
snapshot u of our universe. In light of this, such an “All-a-Carte” TOE (without
knowing u) is rather a theory of nothing than a theory of everything.

Localization within our universe. The loss of predictive power when enlarging
a universe to a multiverse model has nothing to do with multiverses per se. Indeed,
the distinction between a universe and a multiverse is not absolute. For instance,
Champernowne’s number could also be interpreted as a single universe, rather than a
multiverse. It could be regarded as an extreme form of the infinite fantasia land from
the NeverEnding Story, where everything happens somewhere. Champernowne’s
number constitutes a perfect map of the All-a-Carte universe, but the map is useless
unless you know where you are. Similarly but less extreme, cosmological inflation
models produce a universe that is vastly larger than its visible part, and different
regions may have different properties.
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Predictive power. The exemplary discussion above has hopefully convinced the
reader that we indeed lose something (some predictive power) when progressing to
too large universe and multiverse models. Historically, the higher predictive power
of the large-universe models (in which we are seemingly randomly placed) overshad-
owed the few extra questions they raised compared to the smaller ego/geo/helio-
centric models. But the discussion of the (physical, universal, and all-a-carte) mul-
tiverse theories has shown that pushing this progression too far will at some point
harm predictive power. We saw that this has to do with the increasing difficulty to
localize the observer.

Contents. Classical models in physics are essentially differential equations describ-
ing the time-evolution of some aspects of the world. A Theory of Everything (TOE)
models the whole universe or multiverse, which should include initial conditions.
As argued above, it can be crucial to also localize the observer. I call a TOE with
observer localization, a Complete TOE (CTOE). Section 2 gives an informal intro-
duction to the necessary ingredients for CTOEs, and how to evaluate and compare
them using a quantified instantiation of Ockham’s razor. Section 3 gives a formal
definition of what accounts for a CTOE, introduces more realistic observers with lim-
ited perception ability, and formalizes the CTOE selection principle. The Universal
TOE is a sanity critical point in the development of TOEs, and will be investigated
in more detail in Section 4. Important extensions listed in Section 5 are detailed in
[Hut09].

2 Complete TOEs (CTOEs)

A TOE by definition is a perfect model of the universe. It should allow to predict all
phenomena. Most TOEs require a specification of some initial conditions, e.g. the
state at the big bang, and how the state evolves in time (the equations of motion).
In general, a TOE is a program that in principle can “simulate” the whole universe.
An All-a-Carte universe perfectly satisfies this condition but apparently is rather a
theory of nothing than a theory of everything. So meeting the simulation condition
is not sufficient for qualifying as a Complete TOE. We have seen that (objective)
TOEs can be completed by specifying the location of the observer. This allows
us to make useful predictions from our (subjective) viewpoint. We call a TOE
plus observer localization a Complete TOE. If we allow for stochastic (quantum)
universes we also need to include the noise. If we consider (human) observers with
limited perception ability we need to take that into account too. So

A complete TOE needs specification of

(i) initial conditions
(e) state evolution
(l) localization of observer
(n) random noise
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(o) perception ability of observer

We deal with limited perception ability (o) in Section 3. Space prevents discussing
stochastic theories (n); they are dealt with in [Hut09]. Next we need a way to
compare TOEs.

Predictive power and elegance. Clearly we can never be sure whether a given
TOE makes correct predictions in the future. After all we cannot rule out that
the world suddenly changes tomorrow in a totally unexpected way. We have to
compare theories based on their predictive success in the past. It is also clear that
this is not enough: For every model we can construct an alternative model that
behaves identically in the past but makes different predictions from, say, year 3000
on. Popper’s falsifiability dogma is little helpful. Beyond postdictive success, the
guiding principle in designing and selecting theories, especially in physics, is elegance
(and mathematical consistency). The predictive power of the first heliocentric model
was not superior to the geocentric one, but it was much simpler. In more profane
terms, it has significantly less parameters that need to be specified.

Ockham’s razor suitably interpreted tells us to choose the simpler among two
or more otherwise equally good theories. For justifications of Ockham’s razor, see
[LV08]. Some even argue that by definition, science is about applying Ockham’s
razor, see [Hut05]. For a discussion in the context of theories in physics, see [GM94].
It is beyond the scope of this paper to repeat these considerations. In [Hut09] I prove
that Ockham’s razor is suitable for finding TOEs.

Complexity of a TOE. In order to apply Ockham’s razor in a non-heuristic way,
we need to quantify simplicity or complexity. Roughly, the complexity of a theory
can be defined as the number of symbols one needs to write the theory down. More
precisely, write down a program for the state evolution together with the initial
conditions, and define the complexity of the theory as the size in bits of the file that
contains the program. This quantification is consistent with our intuition, since
an elegant theory will have a shorter program than an inelegant one, and extra
parameters need extra space to code, resulting in longer programs.

Standard model versus string theory. To give an example, let us pretend that
the standard model of particle physics + gravity (P) and string theory (S) both qual-
ify as TOEs. P is a mixture of a few relatively elegant theories, but contains about
20 unexplained parameters that need to be specified (although some regularities can
be explained [BH97]). String theory is truly elegant, but ensuring that it reduces
to P needs sophisticated extra assumptions (e.g. the right compactification). It
would require a major effort to quantify which theory is the simpler one in the sense
defined above, but I think it would be worth the effort. It is a quantitative objective
way to decide between theories that are (so far) predictively indistinguishable.

CTOE selection principle. It is trivial to write down a program for an All-a-
Carte multiverse A. It is also not too hard to write a program for the universal

5



multiverse U, see Section 4. Lengthwise A easily wins over U, and U easily wins
over P and S, but as discussed A and U have serious defects. Given all of the above,
it now nearly suggests itself that we should include the description length of the
observer location in our TOE evaluation measure. That is,

among two CTOEs, select the one that has shorter overall length

Length(i) + Length(e) + Length(l) (1)

For an All-a-Carte multiverse, the last term contains the gargantuan string u, cat-
apulting it from the shortest TOE to the longest CTOE.

TOE versus UTOE. Consider any (C)TOE and its program q, e.g. P or S. Since
U runs all programs including q, specifying q means localizing (C)TOE q in U. So
U+q is a CTOE whose length is just some constant bits (the simulation part of U)
more than that of (C)TOE q. So whatever (C)TOE physicists come up with, U is
nearly as good as this theory. This essentially clarifies the paradoxical status of U.
Naked, U is a theory of nothing, but in combination with another TOE it excels to
a good CTOE, albeit slightly longer=worse than the latter.

Localization within our universe. So far we have only localized our universe
in the multiverse, but not ourselves in the universe. Assume the about 1011 ×
1011 stars in our universe are somehow indexed. In order to localize our Sun we
only need its index, which can be coded in about log2(10

11 × 1011) ≈ 73 bits.
To localize earth among the 8 planets needs 3 bits. To localize yourself among 7
billion humans needs 33 bits. These localization penalties are tiny compared to
the difference in predictive power (to be quantified later) of the various theories
(ego/geo/helio/cosmo). This explains and justifies theories of large universes in
which we occupy a random location.

3 Complete TOE - Formalization

Objective TOE. Since we essentially identify a TOEs with a program generating
a universe, we need to fix some general purpose programming language on a general
purpose computer. In theoretical computer science, the standard model is a so-
called Universal Turing Machine (UTM) [LV08]. It takes a program coded as a
finite binary string q ∈ {0, 1}∗, executes it and outputs a finite or infinite binary
string u ∈ {0, 1}∗∪{0, 1}∞. The details do not matter to us, since drawn conclusion
are typically independent of them. In this section we only consider q with infinite
output

UTM(q) = uq
1u

q
2u

q
3 ... =: uq

1:∞

In our case, uq
1:∞ will be the universe (or multiverse) generated by TOE candidate

q. So q incorporates items (i) and (e) of Section 2. Surely our universe doesn’t look
like a bit string, but can be coded as one as explained in [Hut09]. We have some
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simple coding in mind, e.g. uq
1:N being the (fictitious) binary data file of a high-

resolution 3D movie of the whole universe from big bang to big crunch, augmented
by uq

N+1:∞ ≡ 0 if the universe is finite. Again, the details do not matter.

Observational process and subjective complete TOE. As we have demon-
strated it is also important to localize the observer. In order to avoid potential
qualms with modeling human observers, consider as a surrogate a (normal not extra
cosmic) video camera filming=observing parts of the world. The camera may be
fixed on Earth or installed on an autonomous robot. It records part of the universe
u denoted by o = o1:∞. (If the lifetime of the observer is finite, we append zeros to
the finite observation o1:N).

In a computable universe, the observational process within it, is obviously also
computable, i.e. there exists a program s ∈ {0, 1}∗ that extracts observations o from
universe u. Formally

UTM(s, uq
1:∞) = osq1:∞ (2)

where we have extended the definition of UTM to allow access to an extra infinite
input stream uq

1:∞. So osq1:∞ is the sequence observed by subject s in universe uq
1:∞

generated by q. Program s contains all information about the location and orienta-
tion and perception abilities of the observer/camera, hence specifies not only item
(l) but also item (o) of Section 2.

A Complete TOE (CTOE) consists of a specification of a (TOE,subject) pair
(q, s). Since it includes s it is a Subjective TOE.

CTOE selection principle. So far, s and q were fictitious subjects and universe
programs. Let otrue1:t be the past observations of some concrete observer in our uni-
verse, e.g. your own personal experience of the world from birth till today. The future
observations otruet+1:∞ are of course unknown. By definition, o1:t contains all available
experience of the observer, including e.g. outcomes of scientific experiments, school
education, read books, etc.

The observation sequence osq1:∞ generated by a correct CTOE must be consistent
with the true observations otrue1:t . If osq1:t would differ from otrue1:t (in a single bit) the
subject would have ‘experimental’ evidence that (q, s) is not a perfect CTOE. We
can now formalize the CTOE selection principle as follows

Among a given set of perfect (osq1:t = otrue1:t ) CTOEs {(q, s)}
select the one of smallest length Length(q) + Length(s) (3)

Minimizing length is motivated by Ockham’s razor. Inclusion of s is necessary to
avoid degenerate TOEs like U and A. The selected CTOE (q∗, s∗) can and should
then be used for forecasting future observations via ...oforecastt+1:∞ = UTM(s∗, uq∗

1:∞).

4 Universal TOE - Formalization

Definition of Universal TOE. The Universal TOE generates all computable uni-
verses. The generated multiverse can be depicted as an infinite matrix in which each
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row corresponds to one universe.

q UTM(q)
ϵ uϵ

1 uϵ
2 u

ϵ
3 u

ϵ
4 u

ϵ
5 · · ·

0 u0
1 u0

2 u
0
3 u

0
4 · · ·· · ·

1 u1
1 u1

2 u
1
3 · · ·· · ·

00 u00
1 u00

2 · · ·· · ·
...

...
...

...

To fit this into our framework we need to define a single program q̆ that generates a
single string corresponding to this matrix. The standard way to linearize an infinite
matrix is to dovetail in diagonal serpentines though the matrix:

ŭ1:∞ := uϵ
1u

0
1u

ϵ
2u

ϵ
3u

0
2u

1
1u

00
1 u1

2u
0
3u

ϵ
4u

ϵ
5u

0
4u

1
3u

00
2 ...

Formally, define a bijection i = ⟨q, k⟩ between a (program, location) pair (q, k) and
the natural numbers IN ∋ i, and define ŭi := uq

k. It is not hard to construct an
explicit program q̆ for UTM that computes ŭ1:∞ = uq̆

1:∞ = UTM(q̆).

Remarks. Cutting the universes in bits and interweaving them into one string
might appear messy, but is unproblematic for two reasons: First, the bijection
i = ⟨q, k⟩ is very simple, so any particular universe string uq can easily be recovered
from ŭ. Second, such an extraction will be included in the localization/ observational
process s, i.e. s will contain a specification of the relevant universe q and which bits
k are to be observed.

TOE versus UTOE. We can formalize the argument in the last section of simu-
lating TOE by UTOE as follows: If (q, s) is a CTOE, then (q̆, s̃) based on UTOE
q̆ and observer s̃ := rqs, where program r extracts uq from ŭ and then osq from uq,
is an equivalent but slightly larger CTOE, since UTM(s̃, ŭ) = oqs = UTM(s, uq) by
definition of s̃ and Length(q̆) + Length(s̃) = Length(q) + Length(s) +O(1).

The best CTOE. Finally, one may define the best CTOE (of an observer with
experience otrue1:t ) as

UCTOE := argmin
q,s

{Length(q) + Length(s) : osq1:t = otrue1:t }

where osq1:∞ = UTM(s,UTM(q)). This may be regarded as a formalization of the
holy grail in physics; of finding such a TOE.

5 Conclusions

Respectable researchers, including Nobel Laureates, have dismissed and embraced
each single model of the world mentioned in the introduction, at different times
in history and concurrently. (Excluding All-a-Carte TOEs which I haven’t seen
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discussed before.) As I have shown, Universal TOE is the sanity critical point.
The most popular (pseudo) justifications of which theories are (in)sane have been
references to the dogmatic Bible and Popper’s limited falsifiability principle. This
paper contained a more serious treatment of world model selection. I introduced and
discussed the usefulness of a theory in terms of predictive power based on model
and observer localization complexity. Extensions to more practical and realistic
(partial, approximate, probabilistic) theories (rather than TOEs), more motivation
and examples, and a proof that Ockham’s razor is suitable for finding TOEs can be
found in [Hut09].
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