
Reinforcement Learning with Corrupted Reward Channel

Tom Everitt1, Victoria Krakovna2, Laurent Orseau2, Marcus Hutter1, and Shane Legg2

1Australian National University
2DeepMind

May 24, 2017

Abstract

No real-world reward function is perfect. Sensory errors and software bugs may result in RL agents
observing higher (or lower) rewards than they should. For example, a reinforcement learning agent may
prefer states where a sensory error gives it the maximum reward, but where the true reward is actually
small. We formalise this problem as a generalised Markov Decision Problem called Corrupt Reward MDP.
Traditional RL methods fare poorly in CRMDPs, even under strong simplifying assumptions and when
trying to compensate for the possibly corrupt rewards. Two ways around the problem are investigated.
First, by giving the agent richer data, such as in inverse reinforcement learning and semi-supervised
reinforcement learning, reward corruption stemming from systematic sensory errors may sometimes be
completely managed. Second, by using randomisation to blunt the agent’s optimisation, reward corruption
can be partially managed under some assumptions.

Contents

1 Introduction 2

2 Formalisation 3

3 The Corrupt Reward Problem 4
3.1 No Free Lunch Theorem . 5
3.2 Simplifying Assumptions . 6
3.3 Bayesian RL Agents . 7

4 Decoupled Reinforcement Learning 8
4.1 Alternative Value Learning Methods . 9
4.2 Overcoming Sensory Corruption . 9
4.3 Implications . 11

5 Quantilisation: Randomness Increases Robustness 13
5.1 Simple Case . 13
5.2 General Quantilisation Agent . 15

6 Experimental Results 17

7 Conclusions 20

0A shorter version of this report was accepted to IJCAI 2017 AI and Autonomy track

1

1 Introduction

In many application domains, artificial agents need to learn their objectives, rather than have them explicitly
specified. For example, we may want a house cleaning robot to keep the house clean, but it is hard to measure
and quantify “cleanliness” in an objective manner. Instead, machine learning techniques may be used to
teach the robot the concept of cleanliness, and how to assess it from sensory data.

Reinforcement learning (RL) [Sutton and Barto, 1998] is one popular way to teach agents what to do.
Here, a reward is given if the agent does something well (and no reward otherwise), and the agent strives to
optimise the total amount of reward it receives over its lifetime. Depending on context, the reward may either
be given manually by a human supervisor, or by an automatic computer program that evaluates the agent’s
performance based on some data. In the related framework of inverse RL (IRL) [Ng and Russell, 2000], the
agent first infers a reward function from observing a human supervisor act, and then tries to optimise the
cumulative reward from the inferred reward function.

None of these approaches are safe from error, however. A program that evaluates agent performance may
contain bugs or misjudgements; a supervisor may be deceived or inappropriately influenced, or the channel
transmitting the evaluation hijacked. In IRL, some supervisor actions may be misinterpreted.

Example 1 (Reward misspecification). Amodei and Clark [2016] trained an RL agent on a boat racing
game. The agent found a way to get high observed reward by repeatedly going in a circle in a small lagoon
and hitting the same targets, while losing every race. ♦

Example 2 (Sensory error). A house robot discovers that standing in the shower short-circuits its reward
sensor and/or causes a buffer overflow that gives it maximum observed reward. ♦

Example 3 (Wireheading). An intelligent RL agent hijacks its reward channel and gives itself maximum
reward. ♦

Example 4 (IRL misinterpretation). An IRL agent systematically misinterprets the supervisor’s action in a
certain state as the supervisor preferring to stay in this state, and concludes that the state is much more
desirable than it actually is. ♦

The goal of this paper is to unify these types of errors as reward corruption problems, and to assess how
vulnerable different agents and approaches are to this problem.

Definition 5 (Reward corruption problem). Learning to (approximately) optimise the true reward function
in spite of potentially corrupt reward data.

Most RL methods allow for a stochastic or noisy reward channel. The reward corruption problem is
harder, because the observed reward may not be an unbiased estimate of the true reward. For example, in the
boat racing example above, the agent consistently obtains high observed reward from its circling behaviour,
while the true reward corresponding to the designers’ intent is very low, since the agent makes no progress
along the track and loses the race.

Previous related works have mainly focused on the wireheading case of Example 3 [Bostrom, 2014;
Yampolskiy, 2014], also known as self-delusion [Ring and Orseau, 2011], and reward hacking [Hutter, 2005,
p. 239]. A notable exception is Amodei et al. [2016], who argue that corrupt reward is not limited to
wireheading and is likely to be a problem for much more limited systems than highly capable RL agents (cf.
above examples).

The main contributions of this paper are as follows:

• The corrupt reward problem is formalised in a natural extension of the MDP framework, and a
performance measure based on worst-case regret is defined (Section 2).

• The difficulty of the problem is established by a No Free Lunch theorem, and by a result showing that
despite strong simplifying assumptions, Bayesian RL agents trying to compensate for the corrupt reward
may still suffer near-maximal regret (Section 3).

2

• We evaluate how alternative value learning frameworks such as IRL, learning values from stories (LVFS),
and semi-supervised RL (SSRL) handle reward corruption (Section 4), and conclude that LVFS and
SSRL are the safest due to the structure of their feedback loops. We develop an abstract framework
called decoupled RL that generalises all of these alternative frameworks.

We also show that an agent based on quantilisation [Taylor, 2016] may be more robust to reward corruption
when high reward states are much more numerous than corrupt states (Section 5). Finally, the results are
illustrated with some simple experiments (Section 6). Section 7 concludes with takeaways and open questions.

2 Formalisation

We begin by defining a natural extension of the MDP framework [Sutton and Barto, 1998] that models the
possibility of reward corruption. To clearly distinguish between true and corrupted signals, we introduce the
following notation.

Definition 6 (Dot and hat notation). We will let a dot indicate the true signal, and let a hat indicate the
observed (possibly corrupt) counterpart. The reward sets are represented with Ṙ = R̂ = R. For clarity, we
use Ṙ when referring to true rewards and R̂ when referring to possibly corrupt, observed rewards. Similarly,
we use ṙ for true reward, and r̂ for (possibly corrupt) observed reward.

Definition 7 (CRMDP). A corrupt reward MDP (CRMDP) is a tuple µ = 〈S,A,R, T, Ṙ, C〉 with

• 〈S,A,R, T, Ṙ〉 an MDP with1 a finite set of states S, a finite set of actions A, a finite set of rewards
R = Ṙ = R̂ ⊂ [0, 1], a transition function T (s′|s, a), and a (true) reward function Ṙ : S→Ṙ; and

• a reward corruption function C : S × Ṙ → R̂.

The state dependency of the corruption function will be written as a subscript, so Cs(ṙ) := C(s, ṙ).

Definition 8 (Observed reward). Given a true reward function Ṙ and a corruption function C, we define
the observed reward function2 R̂ : S → R̂ as R̂(s) := Cs(Ṙ(s)).

A CRMDP µ induces an observed MDP µ̂ = 〈S,A,R, T, R̂〉, but it is not R̂ that we want the agent to
optimise.

The corruption function C represents how rewards are affected by corruption in different states. For
example, if in Example 2 the agent has found a state s (e.g., the shower) where it always gets full observed
reward R̂(s) = 1, then this can be modelled with a corruption function Cs : ṙ 7→ 1 that maps any true reward
ṙ to 1 in the shower state s. If in some other state s′ the observed reward matches the true reward, then this
is modelled by an identity corruption function Cs′ : r 7→ r.

loop useful trajectories

0

0.5

1

S

re
w

ar
d

ṙ
r̂ Figure 1: Illustration of true reward ṙ and observed

reward r̂ in the boat racing example. On most trajec-
tories ṙ = r̂, except in the loop where the observed
reward high while the true reward is 0.

Let us also see how CRMDPs model some of the other examples in the introduction:

1 We let rewards depend only on the state s, rather than on state-action pairs s, a, or state-action-state transitions s, a, s′, as
is also common in the literature. Formally it makes little difference, since MDPs with rewards depending only on s can model
the other two cases by means of a larger state space.

2 A CRMDP could equivalently have been defined as a tuple 〈S,A,R, T, Ṙ, R̂〉 with a true and an observed reward function,

with the corruption function C implicitly defined as the difference between Ṙ and R̂.

3

• In the boat racing game, the true reward may be a function of the agent’s final position in the race or
the time it takes to complete the race, depending on the designers’ intentions. The reward corruption
function C increases the observed reward on the loop the agent found. Figure 1 has a schematic
illustration.

• In the wireheading example, the agent finds a way to hijack the reward channel. This corresponds to
some set of states where the observed reward is (very) different from the true reward, as given by the
corruption function C.

The IRL example will be explored in further detail in Section 4.

CRMDP classes. Typically, T , Ṙ, and C will be fixed but unknown to the agent. To make this formal,
we introduce classes of CRMDPs. Agent uncertainty can then be modelled by letting the agent know only
which class of CRMDPs it may encounter, but not which element in the class.

Definition 9 (CRMDP class). For given sets T , Ṙ, and C of transition, reward, and corruption functions,
letM = 〈S,A,R,T , Ṙ,C〉 be the class of CRMDPs containing 〈S,A,R, T, Ṙ, C〉 for (T, Ṙ, C) ∈ T × Ṙ×C.

Agents. Following the POMDP [Kaelbling et al., 1998] and general reinforcement learning [Hutter, 2005]
literature, we define an agent as a policy π : S × R̂ × (A× S × R̂)∗ → A that selects a next action based

on the observed history ĥn = s0r̂0a1s1r̂1 . . . ansnr̂n. Here X∗ denotes the set of finite sequences that can be
formed with elements of a set X. The policy π specifies how the agent will learn and react to any possible
experience. Two concrete definitions of agents are given in Section 3.3 below.

When an agent π interacts with a CRMDP µ, the result can be described by a (possibly non-Markov)
stochastic process Pπµ over X = (s, a, ṙ, r̂), formally defined as:

Pπµ (hn) = Pπµ (s0ṙ0r̂0a1s1ṙ1r̂1 . . . ansnṙnr̂n) :=

n∏
i=1

P (π(ĥi−1) = ai)T (si | si−1, ai)P (Ṙ(si) = ṙi, R̂(si) = r̂i).

(1)
Let Eπµ denote the expectation with respect to Pπµ .

Regret. A standard way of measuring the performance of an agent is regret [Berry and Fristedt, 1985].
Essentially, the regret of an agent π is how much less true reward π gets compared to an optimal agent that
knows which µ ∈M it is interacting with.

Definition 10 (Regret). For a CRMDP µ, let Ġt(µ, π, s0) =Eπµ
[∑t

k=0 Ṙ(sk)
]

be the expected cumulative

true reward until time t of a policy π starting in s0. The regret of π is

Reg(µ, π, s0, t) = max
π′

[
Ġt(µ, π

′, s0)− Ġt(µ, π, s0)
]
,

and the worst-case regret for a class M is Reg(M, π, s0, t) = maxµ∈MReg(µ, π, s0, t), i.e. the difference in
expected cumulative true reward between π and an optimal (in hindsight) policy π∗µ that knows µ.

3 The Corrupt Reward Problem

In this section, the difficulty of the corrupt reward problem is established with two negative results. First, a
No Free Lunch theorem shows that in general classes of CRMDPs, the true reward function is unlearnable
(Theorem 11). Second, Theorem 16 shows that even under strong simplifying assumptions, Bayesian RL
agents trying to compensate for the corrupt reward still fail badly.

4

3.1 No Free Lunch Theorem

Similar to the No Free Lunch theorems for optimisation [Wolpert and Macready, 1997], the following theorem
for CRMDPs says that without some assumption about what the reward corruption can look like, all agents
are essentially lost.

Theorem 11 (CRMDP No Free Lunch Theorem). Let R = {r1, . . . , rn} ⊂ [0, 1] be a uniform discretisation
of [0, 1], 0 = r1 < r2 < · · · < rn = 1. If the hypothesis classes Ṙ and C contain all functions Ṙ : S → Ṙ and
C : S × Ṙ → R̂, then for any π, s0, t,

Reg(M, π, s0, t) ≥
1

2
max
π̌

Reg(M, π̌, s0, t). (2)

That is, the worst-case regret of any policy π is at most a factor 2 better than the maximum worst-case regret.

Proof. Recall that a policy is a function π : S × R̂ × (A× S × R̂)∗ → A. For any Ṙ, C in Ṙ and C, the
functions Ṙ−(s) := 1 − Ṙ(s) and C−s (x) := Cs(1 − x) are also in Ṙ and C. If µ = 〈S,A,R, T, Ṙ, C〉,
then let µ− = 〈S,A,R, T, Ṙ−, C−〉. Both (Ṙ, C) and (Ṙ−, C−) induce the same observed reward function
R̂(s) = Cs(Ṙ(s)) = C−s (1 − Ṙ(s)) = C−s (Ṙ−(s)), and therefore induce the same measure Pπµ = Pπµ− over

histories (see Eq. (1)). This gives that for any µ, π, s0, t,

Gt(µ, π, s0) +Gt(µ
−, π, s0) = t (3)

since

Gt(µ, π, s0) = Eπµ

[
t∑

k=1

Ṙ(sk)

]
= Eπµ

[
t∑

k=1

1− Ṙ−(sk)

]

= t− Eπµ

[
t∑

k=1

Ṙ−(sk)

]
= t−Gt(µ−, π, s0).

The maximum return for all µ, π is M = maxµ,π′ Gt(µ, π
′, s0) and the minimum return is m =

minµ,π̌ Gt(µ, π̌, s0). Let µ∗, π̃ be a CRMDP and policy that maximises Gt(·, ·, s0). Since π̃ maximises
Gt(µ∗, ·, s0), it follows from (3) that π̃ minimises Gt(µ

−
∗ , ·, s0). Therefore, M = Gt(µ∗, π̃, s0) and m =

Gt(µ
−
∗ , π̃, s0), which gives that the maximum worst-case regret is maxπ̌ Reg(M, π̌, s0, t) = M −m, and that

M +m = t.
To complete the proof, recall from Definition 10 that the worst-case regret of an arbitrary policy π is:

Reg(M, π, s0, t)

= max
µ,π′

(Gt(µ, π
′, s0)−Gt(µ, π, s0))

≥ max{M −Gt(µ∗, π, s0),M −Gt(µ−∗ , π, s0)}

≥ 1

2

(
M −Gt(µ∗, π, s0) +M −Gt(µ−∗ , π, s0)

)
=

1

2

(
2M − t) =

1

2

(
2M − (M +m))

=
1

2
(M −m) =

1

2
max
π̌

Reg(M, π̌, s0, t).

For the robot in the shower from Example 2, the result means that if it tries to optimise observed reward
by standing in the shower, then it performs poorly according to the hypothesis that “shower-induced” reward
is corrupt and bad. But if instead the robot tries to optimise reward in some other way, say baking cakes,
then (from the robot’s perspective) there is also the possibility that “cake-reward” is corrupt and bad and
the “shower-reward” is actually correct. Without additional information, the robot has no way of knowing
what to do.

5

The result is not surprising, since if all corruption functions are allowed in the class C, then there is
effectively no connection between observed reward R̂ and true reward Ṙ. The result therefore encourages
us to make precise in which way the observed reward is related to the true reward, and to investigate how
agents might handle possible differences between true and observed reward.

3.2 Simplifying Assumptions

Theorem 11 shows that general classes of CRMDPs are not learnable. We therefore suggest some natural
simplifying assumptions.

Limited reward corruption. The following assumption will be the basis for all positive results in this
paper. The first part says that there may be some set of states that the designers have ensured to be
non-corrupt. The second part puts an upper bound on how many of the other states can be corrupt.

Assumption 12 (Limited reward corruption). A CRMDP has reward corruption limited by Ssafe ⊆ S and
q ∈ N if

(i) all states s in Ssafe are non-corrupt, and
(ii) at most q of the non-safe states Srisky = S \ Ssafe are corrupt.

Formally, Cs : r 7→ r for all s ∈ Ssafe and for at least |Srisky| − q states s ∈ Srisky for all C ∈ C.

For example, Ssafe may be states where the agent is back in the lab where it has been made (virtually)
certain that no reward corruption occurs, and q a small fraction of |Srisky|. Both parts of Assumption 12 can
be made vacuous by choosing Ssafe = ∅ or q = |S|. Conversely, they completely rule out reward corruption
with Ssafe = S or q = 0. But as illustrated by the examples in the introduction, no reward corruption is often
not a valid assumption.

An alternative simplifying assumption would have been that the true reward differs by at most ε > 0
from the observed reward. However, while seemingly natural, this assumption is violated in all the examples
given in the introduction. Corrupt states may have high observed reward and 0 or small true reward.

Easy environments. To be able to establish stronger negative results, we also add the following assumption
on the agent’s manoeuvrability in the environment and the prevalence of high reward states. The assumption
makes the task easier because it prevents needle-in-a-haystack problems where all reachable states have true
and observed reward 0, except one state that has high true reward but is impossible to find because it is
corrupt and has observed reward 0.

Definition 13 (Communicating CRMDP). Let time(s′ | s, π) be a random variable for the time it takes a sta-
tionary policy π : S → A to reach s′ from s. The diameter of a CRMDP is D := maxs,s′ minπ:S→A E[time(s′ |
s, π)]. A CRMDP with finite diameter D <∞ is called communicating.

Assumption 14 (Easy Environment). A CRMDP is easy if

(i) it is communicating, and in each state s there is an action astay
s ∈ A such that T (s | s, astay

s) = 1, and
(ii) for every δ ∈ [0, 1], minṘ∈Ṙ |{s ∈ Srisky : Ṙ(s) > δ}| ≥ (1− δ)|Srisky|, where Srisky = S \ Ssafe.

Assumption 14.(i) means that the agent can never get stuck in a trap, and can always choose to stay
in a state if it wants to. Except in bandits and toy problems, it is typically not satisfied in practice. We
introduce it because it is theoretically convenient, makes the negative results stronger, and enables an easy
explanation of quantilisation (Section 5). Assumption 14.(ii) says that, for example, at least 1/2 of the states
need to have true reward ≥ 1/2, and at least 1/3 of the states need to have true reward ≥ 2/3. Many other
formalisations of this assumption would have been possible. While rewards in practice are often sparse, there
are usually numerous ways of getting reward. Some weaker version of Assumption 14.(ii) may therefore be
satisfied in many practical situations.

6

2 4 6 8 10
0

0.5

1

S

re
w

ar
d

ṙ
r̂

Figure 2: Illustration of Theorem 16. Without addi-
tional information, state 6 looks like the best state to
both the RL and the CR agent.

3.3 Bayesian RL Agents

Having established that the general problem is unsolvable in Theorem 11, we proceed by investigating how
two natural Bayesian RL agents fare under the simplifying Assumptions 12 and 14.

Definition 15 (Agents). Given a class M of CRMDPs and a belief distribution b over M, we define:

• The CR agent πCR
b,t =arg maxπ

∑
µ∈Mb(µ)Ġt(µ, π, s0) maximises expected true reward.

• The traditional RL agent πRL
b,t = arg maxπ

∑
µ∈M b(µ)Ĝt(µ, π, s0) maximises expected observed reward,

where Ĝ is the expected cumulative observed reward Ĝt(µ, π, s0)=Eπµ
[∑t

k=0 R̂(sk)
]
.

To get an intuitive idea of these agents, we observe that for large t, good strategies typically first focus on
learning about the true environment µ ∈M, and then exploit that knowledge to optimise behaviour with
respect to the remaining possibilities. Thus, both the CR and the RL agent will first typically strive to learn
about the environment. They will then use this knowledge in slightly different ways. While the RL agent will
use the knowledge to optimise for observed reward, the CR agent will use the knowledge to optimise true
reward. For example, if the CR agent has learned that a high reward state s is likely corrupt with low true
reward, then it will not try to reach that state. One might therefore expect that at least the CR agent will
do well under the simplifying assumptions Assumptions 12 and 14. Theorem 16 below shows that this is not
the case.

In most practical settings it is often computationally infeasible to compute πRL
b,t and πCR

b,t exactly. However,
many practical algorithms converge to the optimal policy in the limit, at least in simple settings. For
example, tabular Q-learning converges to πRL

b,t in the limit [Jaakkola et al., 1994]. The more recently proposed
(cooperative) IRL framework may be seen as an approach to build CR agents [Hadfield-Menell et al., 2016,
2017]. The CR and RL agents thus provide useful idealisations of more practical algorithms.

Theorem 16 (High regret with simplifying assumptions). For any |Srisky| ≥ q > 1 there exists a CRMDP
class M that satisfies Assumptions 12 and 14 such that πRL

b,t and πCR
b,t suffer near worst possible time-averaged

regret

lim
t→∞

1

t
Reg(M, πRL

b,t , s0, t) = lim
t→∞

1

t
Reg(M, πCR

b,t , s0, t) = 1− 1/|S|.

For πCR
b,t , the prior b must be such that for some µ ∈M and s ∈ S, Eb[Ṙ(s) | hµ] > Eb[Ṙ(s′) | hµ] for all s′,

where Eb is the expectation with respect to b, and hµ is a history containing µ-observed rewards for all states.3

The result is illustrated in Figure 2. The reason for the result for πRL
b,t is the following. The RL agent πRL

b,t

always prefers to maximise observed reward r̂. Sometimes r̂ is most easily maximised by reward corruption,
in which case the true reward may be small. Compare the examples in the introduction, where the house
robot preferred the corrupt reward in the shower, and the boat racing agent preferred going in circles, both
obtaining zero true reward.

3 The last condition essentially says that the prior b must make some state s∗ have strictly higher b-expected true reward
than all other states after all states have been visited in some µ ∈ M. In the space of all possible priors b, the priors satisfying
the condition have Lebesgue measure 1 for non-trivial classes M. Some highly uniform priors may fail the condition.

7

That the CR agent πCR
b,t suffers the same high regret as the RL agent may be surprising. Intuitively, the

CR agent only uses the observed reward as evidence about the true reward, and will not try to optimise the
observed reward through reward corruption. However, when the πCR

b,t agent has no way to learn which states
are corrupt and not, it typically ends up with a preference for a particular value r̂∗ of the observed reward
signal (the value that, from the agent’s perspective, best corresponds to high true reward). More abstractly,
a Bayesian agent cannot learn without sufficient data. Thus, CR agents that use the observed reward as
evidence about a true signal are not fail-safe solutions to the reward corruption problem.

Proof of Theorem 16. Let Srisky = {s1, . . . , sn} for some n ≥ 2, and let S = Ssafe
⋃̇
Srisky for arbitrary Ssafe

disjoint from Srisky. Let A = {a1, . . . , an} with the transition function T (si | sj , ak) = 1 if i = k and 0
otherwise, for 1 ≤ i, j, k ≤ n. Thus Assumption 14.(i) is satisfied.

Let R = {r1, . . . , rn} ⊂ [0, 1] be uniformly distributed between4 rmin = 1/|Srisky| = r1 < · · · < rn = 1.
Let Ṙ be the class of functions S → Ṙ that satisfy Assumption 14.(ii) and are constant and equal to ṙmin on
Ssafe. Let C be the class of corruption functions that corrupt at most two states (q = 2).

Let M be the class of CRMDPs induced by T = {T}, Ṙ, and C with the following constraints. The
observed reward function R̂ should satisfy Assumption 14.(ii): For all δ ∈ [0, 1], |{s ∈ Srisky : R̂(s) > δ}| ≥
(1− δ)|Srisky|. Further, R̂(s′) = rmin for some state s′ ∈ Srisky.

Let us start with the CR agent πCR
b,t . Assume µ ∈M is an element where there is a single preferred state

s∗ after all states have been explored. For sufficiently large t, πCR
b,t will then always choose a∗ to go to s∗

after some initial exploration. If another element µ′ ∈M has the same observed reward function as µ, then
πCR
b,t will take the same actions in µ′ as in µ. To finish the proof for the πCR

b,t agent, we just need to show that
M contains such a µ′ where s∗ has true reward rmin. We construct µ′ as follows.

• Case 1: If the lowest observed reward is in s∗, then let Ṙ(s∗) = rmin, and the corruption function be
the identity function.

• Case 2: Otherwise, let s′ 6= s∗ be a state with R̂(s′) = mins∈Srisky{R̂(s)}. Further, let Ṙ(s′) = 1, and
Ṙ(s∗) = rmin. The corruption function C accounts for differences between true and observed rewards in
s∗ and s′, and is otherwise the identity function.

To verify that Ṙ and C defines a µ′ ∈M, we check that C satisfies Assumption 12.(ii) with q = 2 and that Ṙ
has enough high utility states (Assumption 14.(ii)). In Case 1, this is true since C is the identity function
and since R̂ satisfies Assumption 14.(ii). In Case 2, C only corrupts at most two states. Further, Ṙ satisfies
Assumption 14.(ii), since compared to R̂, the states s∗ and s′ have swapped places, and then the reward of s′

has been increased to 1.
From this construction it follows that πCR

b,t will suffer maximum asymptotic regret. In the CRMDP µ′

given by C and Ṙ, the πCR
b,t agent will always visit s∗ after some initial exploration. The state s∗ has true

reward rmin. Meanwhile, a policy that knows µ′ can obtain true reward 1 in state s′. This means that πCR
b,t

will suffer maximum regret in M:

lim
t→∞

1

t
Reg(M, πCR

b,t , s0, t) ≥ lim
t→∞

1

t
Reg(µ′, πCR

b,t , s0, t) = 1− rmin = 1− 1/|Srisky|.

The argument for the RL agent is the same, except we additionally assume that only one state s∗ has
observed reward 1 in members of M. This automatically makes s∗ the preferred state, without assumptions
on the prior b.

4 Decoupled Reinforcement Learning

One problem hampering agents in the standard RL setup is that each state is self-observing, since the agent
only learns about the reward of state s when in s. Thereby, a “self-aggrandising” corrupt state where the

4Assumption 14.(ii) prevents any state from having true reward 0.

8

observed reward is much higher than the true reward will never have its false claim of high reward challenged.
However, several alternative value learning frameworks have a common property that the agent can learn the
reward of states other than the current state. We formalise this property in an extension of the CRMDP
model, and investigate when it solves reward corruption problems.

4.1 Alternative Value Learning Methods

Here are a few alternatives proposed in the literature to the RL value learning scheme:

• Inverse reinforcement learning (IRL) [Ng and Russell, 2000]. The agent observes the actions of an
expert or supervisor who knows the true reward function Ṙ. From the supervisor’s actions the agent
may infer Ṙ to the extent that different reward functions endorse different actions.

• Learning values from stories (LVFS) [Riedl and Harrison, 2016]. Stories in many different forms
(including news stories, fairy tales, novels, movies) convey cultural values in their description of events,
actions, and outcomes. If Ṙ is meant to represent human values (in some sense), stories may be a good
source of evidence.

• In (one version of) semi-supervised RL (SSRL) [Amodei et al., 2016], the agent will from time to time
receive a careful human evaluation of a given situation.

These alternatives to RL have one thing in common: they let the agent learn something about the value
of some states s′ different from the current state s. For example, in IRL the supervisor’s action informs the
agent not so much about the value of the current state s, as of the relative value of states reachable from s.
If the supervisor chooses an action a rather than a′ in s, then the states following a must have value higher
or equal than the states following a′. Similarly, stories describe the value of states other than the current one,
as does the supervisor in SSRL. We therefore argue that IRL, LVFS, and SSRL all share the same abstract
feature, which we call decoupled reinforcement learning :

Definition 17 (Decoupled RL). A CRMDP with decoupled feedback, is a tuple 〈S,A,R, T, Ṙ, {R̂s}s∈S〉,
where S,A,R, T, Ṙ have the same definition and interpretation as in Definition 7, and {R̂s}s∈S is a collection
of observed reward functions R̂s : S → R

⋃
{#}. When the agent is in state s, it sees a pair 〈s′, R̂s(s′)〉,

where s′ is a randomly sampled state that may differ from s, and R̂s(s
′) is the reward observation for s′ from

s. If the reward of s′ is not observable from s, then R̂s(s
′) = #.

The pair 〈s′, R̂s(s′)〉 is observed in s instead of R̂(s) in standard CRMDPs. The possibility for the agent
to observe the reward of a state s′ different from its current state s is the key feature of CRMDPs with
decoupled feedback. Since R̂s(s

′) may be blank (#), all states need not be observable from all other states.
Reward corruption is modelled by a mismatch between R̂s(s

′) and Ṙ(s′).
For example, in RL only the reward of s′ = s can be observed from s. Standard CRMDPs are thus the

special cases where R̂s(s
′) = # whenever s 6= s′. In contrast, in LVFS the reward of any “describable” state

s′ can be observed from any state s where it is possible to hear a story. In IRL, the (relative) reward of
states reachable from the current state may be inferred. One way to illustrate this is with observation graphs
(Figure 3).

4.2 Overcoming Sensory Corruption

What are some sources of reward corruption in IRL, LVFS, and SSRL? In IRL, the human’s actions may be
misinterpreted, which may lead the agent to make incorrect inferences about the human’s preferences (i.e.
about the true reward). Similarly, sensory corruption may garble the stories the agent receives in LVFS. A
“wireheading” LVFS agent may find a state where its story channel only conveys stories about the agent’s own
greatness. In SSRL, the supervisor’s evaluation may also be subject to sensory errors when being conveyed.
Other types of corruption are more subtle. In IRL, an irrational human may systematically take suboptimal

9

1

2
3

4
5

(a) Observation graph for RL. Only self-observations of
reward are available. This prevents effective strategies
against reward corruption.

1

2
3

4
5

(b) Observation graph for decoupled RL. The reward of
a node s′ can be observed from several nodes s, and thus
assessed under different conditions of sensory corruption.

Figure 3: Observation graphs, with an edge s→ s′ if the reward of s′ is observable from s, i.e. R̂s(s
′) 6= #.

actions in some situations [Evans et al., 2016]. Depending on how we select stories in LVFS and make
evaluations in SSRL, these may also be subject to systematic errors or biases.

The general impossibility result in Theorem 11 can be adapted to CRMDPs with decoupled feedback.
Without simplifying assumptions, the agent has no way of distinguishing between a situation where no state
is corrupt and a situation where all states are corrupt in a consistent manner. The following simplifying
assumption is an adaptation of Assumption 12 to the decoupled feedback case.

Assumption 12′ (Decoupled feedback with limited reward corruption). A CRMDP with decoupled feedback
has reward corruption limited by Ssafe ⊆ S and q ∈ N if

(i) R̂s(s
′) = Ṙ(s′) or # for all s′ ∈ S and s ∈ Ssafe, i.e. all states in Ssafe are non-corrupt, and

(ii) R̂s(s
′) = Ṙ(s′) or # for all s′ ∈ S for at least |Srisky| − q of the non-safe states Srisky = S \ Ssafe, i.e. at

most q states are corrupt.

This assumption is particularly natural for reward corruption stemming from sensory corruption. Since
sensory corruption only depends on the current state, not the state being observed, it is plausible that some
states can be made safe from corruption (part (i)), and that most states are completely non-corrupt (part
(ii)). Other sources of reward corruption, such as an irrational human in IRL or misevaluations in SSRL, are
likely better analysed under different assumptions. For these cases, we note that in standard CRMDPs the
source of the corruption is unimportant. Thus, techniques suitable for standard CRMDPs are still applicable
(such as quantilisation, described in Section 5 below).

How Assumption 12′ helps agents in CRMDPs with decoupled feedback is illustrated in the following
example, and stated more generally in Theorem 19 below.

Example 18 (Decoupled RL). Let S = {s1, s2} and let R = {0, 1}, and assume that all states can observe
the reward of each other, so R̂s(s

′) is never #. Assume that the agent knows that at most q = 1 state is
corrupt.

Any true reward function Ṙ can be represented by a pair (ṙ1, ṙ2) := (Ṙ(s1), Ṙ(s2)), and any collection of ob-
served reward functions {R̂s}s∈S by a list of pairs [(r̂11, r̂12), (r̂21, r̂22)] := [(R̂s1(s1), R̂s1(s2)), (R̂s2(s1), R̂s2(s2))],
where the ith pair represents the rewards the agent sees from state si. Assume that the agent observes
the same rewards from both states s1 and s2, so R̂ = [(0, 1), (0, 1)]. What can it say regarding different
hypotheses about the true reward Ṙ?

First note that an observed pair (r̂i1, r̂i2) differs from the true reward (ṙ1, ṙ2) if and only if the state si is
corrupt. Therefore, any hypothesis other than Ṙ = (0, 1) must imply that both states s1 and s2 are corrupt.
Since the agent knows that at most q = 1 states are corrupt, it can safely conclude that Ṙ = (0, 1), i.e. that
Ṙ(s1) = 0 and Ṙ(s2) = 1.

R̂s1 R̂s2 Ṙ possibilities
Decoupled RL (0, 1) (0, 1) (0, 1)
RL (0,#) (#, 1) (0, 0), (0, 1), (1, 1)

10

In contrast, an RL agent only sees the reward of the current state. In the list representation, this would
look like R̂ = [(0,#), (#, 1)]. If one state can be corrupt, this means that the RL agent can only rule out
Ṙ = (1, 0), since the hypotheses Ṙ = (0, 0) can be explained by s2 being corrupt and Ṙ = (1, 1) can be
explained by s1 being corrupt. ♦

Theorem 19 (Decoupled RL overcomes sensory corruption under simplifying assumptions). Let µ be a
communicating CRMDP with decoupled feedback where Assumption 12′ holds for some Ssafe and q. Let
Sobs
s′ = {s ∈ S : R̂s(s

′) 6= #} be the set of states from which the reward of s′ can be observed. If for each s′

either

• Sobs
s′
⋂
Ssafe 6= ∅ or

• |Sobs
s′ | > 2q,

then limt→∞
1
tReg(M, πCR

b,t , s0, t) = 0, i.e. πCR
b,t has sublinear regret.

The proof is elementary, since for every state s′, either a safe (non-corrupt) state s or a majority vote
of more than 2q states is guaranteed to provide the true reward Ṙ(s′). A similar theorem can be proven
under slightly weaker conditions by letting the agent iteratively figure out which states are corrupt and then
exclude them from the analysis.

Proof. Under Assumption 12′, the true reward Ṙ(s′) for a state s′ can be determined if s′ observed from a
safe state s ∈ Ssafe, or if it is observed from more than 2q states. In the former case, the observed reward can
always be trusted, since it is known to be non-corrupt. In the second case, a majority vote must yield the
correct answer, since at most q of the observations can be wrong, and all correct observations must agree.
Since the CRMDP is communicating, an asymptotically optimal agent can traverse the state space until
it can determine Ṙ(s′) exactly for each state s′ ∈ S. The transition function T can also be inferred with
arbitrary precision. Once the true reward and transition is known, an optimal policy can be computed by
solving the system of Bellman equations [Sutton and Barto, 1998]. This shows that it is possible to learn an
optimal stationary policy. For sufficiently large t, the Bayes-optimal strategy πCR

b,t will therefore obtain the
same reward as an optimal stationary policy, and suffer 0 asymptotic average regret.

4.3 Implications

Theorem 19 gives an abstract condition for which decoupled RL settings enable agents to learn the true
reward function in spite of sensory corruption. For the concrete models it implies the following:

• RL. Due to the “self-observation” property of the RL observation graph Sobs
s′ = {s′}, the conditions can

only be satisfied when S = Ssafe or q = 0, i.e. when there is no reward corruption at all.

• IRL. The agent can only observe the supervisor action in the current state s, so the agent essentially
only gets reward information about states s′ reachable from s in a small number of steps. Thus, the
sets Sobs

s′ may be smaller than 2q in many settings. While the situation is better than for RL, sensory
corruption may still mislead IRL agents (see Example 20 below).

• LVFS. Stories may be available from a large number of states, and can describe any state. Thus, the
sets Sobs

s′ are realistically large, so the |Sobs
s′ | > 2q condition can be satisfied for all s′.

• SSRL. The supervisor’s evaluation of any state s′ may be available from safe states where the agent is
back in the lab. Thus, the Sobs

s′
⋂
Ssafe 6= ∅ condition can be satisfied for all s′.

Thus, we find that RL and IRL are unlikely to offer complete solutions to the sensory corruption problem,
but that both LVFS and SSRL do under reasonably realistic assumptions.

Agents drawing from multiple sources of evidence are likely to be the safest, as they will most easily satisfy
the conditions of Theorem 19. For example, humans simultaneously learn their values from pleasure/pain

11

stimuli (RL), watching other people act (IRL), listening to stories (LVFS), as well as (parental) evaluation of
different scenarios (SSRL). Combining sources of evidence may also go some way toward managing reward
corruption beyond sensory corruption. For the showering robot of Example 2, decoupled RL allows the robot
to infer the reward of the showering state when in other states. For example, the robot can ask a human in
the kitchen about the true reward of showering (SSRL), or infer it from human actions in different states
(IRL).

IRL sensory corruption. Whether IRL agents are vulnerable to reward corruption has generated some
discussion among AI safety researchers (based on informal discussion at conferences). Some argue that IRL
agents are not vulnerable, as they only use the sensory data as evidence about a true signal, and have no
interest in corrupting the evidence. Others argue that IRL agents only observe a function of the reward
function (the optimal policy or action), and are therefore equally susceptible to reward corruption as RL
agents.

Theorem 19 sheds some light on this issue, as it provides sufficient conditions for when the corrupt
reward problem can be avoided. The following example illustrates a situation where IRL does not satisfy the
conditions, and where an IRL agent therefore suffers significant regret due to reward corruption.

Example 20 (IRL sensory corruption). This example is based on the cooperative IRL setup [Hadfield-Menell
et al., 2016]. Here, an agent and a human both make actions in an MDP, with state transitions depending on
the joint agent-human action (a, aH). Both the human and the agent is trying to optimise a reward function
Ṙ, but the agent first needs to infer Ṙ from the human’s actions. In each transition the agent observes the
human action. Analogously to how the reward may be corrupt for RL agents, we assume that cooperative
IRL agents may systematically misperceive the human action in certain states. Let âH be the observed
human action, which may differ from the true human action ȧH .

In this example, there are two states s1 and s2. In each state, the agent can choose between the actions
a1, a2, and w, and the human can choose between the actions aH1 and aH2 . The agent action ai leads to state
si with certainty, i = 1, 2, regardless of the human’s action. Only if the agent chooses w does the human
action matter. Generally, aH1 is more likely to lead to s1 than aH2 . The exact transition probabilities are
determined by the unknown parameter p as displayed on the left:

s1 s2

1− p (w, aH1)
p

0.5− p
(w, aH2)

0.5 + p

(a2, ·)
(a1, ·)
(w, ·) (a2, ·)

(a1, ·) Hypo-
thesis

p
Best
state

s2

corrupt
H1 0.5 s1 Yes
H2 0 s2 No

The agent’s two hypotheses for p, the true reward/preferred state, and the corruptness of state s2 are
summarised to the right. In hypothesis H1, the human prefers s1, but can only reach s1 from s2 with 50%
reliability. In hypothesis H2, the human prefers s2, but can only remain in s2 with 50% probability. After
taking action w in s2, the agent always observes the human taking action âH2 . In H1, this is explained by s2

being corrupt, and the true human action being aH1 . In H2, this is explained by the human preferring s2.
The hypotheses H1 and H2 are empirically indistinguishable, as they both predict that the transition s1 → s2

will occur with 50% probability after the observed human action âH2 in s2.
Assuming that the agent considers non-corruption to be likelier than corruption, the best inference the

agent can make is that the human prefers s2 to s1 (i.e. H2). The optimal policy for the agent is then to
always choose a2 to stay in s2, which means the agent suffers maximum regret. ♦

Example 20 provides an example where an IRL agent “incorrectly” prefers a state due to sensory corruption.
The sensory corruption is analogous to reward corruption in RL, in the sense that it leads the agent to the
wrong conclusion about the true reward in the state. Thus, highly intelligent IRL agents may be prone to

12

2 4 6 8 10
0

0.5

1

S

re
w

ar
d

ṙ
r̂
δ

Figure 4: Illustration of quantilisation. By randomly
picking a state with reward above some threshold δ,
adversarially placed corrupt states are likely to be
avoided.

wireheading, as they may find (corrupt) states s where all evidence in s points to s having very high reward.5

In light of Theorem 19, it is not surprising that the IRL agent in Example 20 fails to avoid the corrupt reward
problem. Since the human is unable to affect the transition probability from s1 to s2, no evidence about
the relative reward between s1 and s2 is available from the non-corrupt state s1. Only observations from
the corrupt state s2 provide information about the reward. The observation graph for Example 20 therefore

looks like
s1 s2 , with no information being provided from s1.

5 Quantilisation: Randomness Increases Robustness

Not all contexts allow the agent to get sufficiently rich data to overcome the reward corruption problem via
Theorem 19. It is often much easier to construct RL agents than it is to construct IRL agents, which in turn
may often be more feasible than designing LVFS or SSRL agents. Is there anything we can do to increase
robustness without providing the agent additional sources of data?

Going back to the CR agents of Section 3, the problem was that they took a liking for a particular value
r̂∗ of the observed reward. If unlucky, r̂∗ was available in a corrupt state, in which case the CR agent may
get no true reward. In other words, there were adversarial inputs where the CR agent performed poorly. A
common way to protect against adversarial inputs, is to use a randomised algorithm. Applied to RL and
CRMDPs, this idea leads to quantilising agents [Taylor, 2016]. Rather than choosing the state with the
highest observed reward, these agents instead randomly choose a state from a top quantile of high-reward
states.

5.1 Simple Case

To keep the idea simple, a quantilisation agent is first defined for the simple case where the agent can stay in
any state of its liking (Assumption 14.(i)). Theorem 22 establishes a simple regret bound for this setting. A
more general quantilisation agent is developed in Section 5.2.

Definition 21 (Quantilising Agent). For δ < 1, the δ-quantilising agent πδ random walks until all states
have been visited at least once. Then it selects a state s̃ uniformly at random from Sδ = {s : R̂(s) ≥ δ}, the
top quantile of high observed reward states. Then πδ goes to s̃ (by random walking or otherwise) and stays
there.

For example, a quantilising robot in Example 2 would first try to find many ways in which it could get
high observed reward, and then randomly pick one of them. If there are many more high reward states than
corrupt states (e.g. the shower is the only place with inflated rewards), then this will yield a reasonable
amount of true reward with high probability.

Theorem 22 (Quantilisation). In any CRMDP satisfying Assumption 12.(ii) and Assumption 14, the
δ-quantilising agent πδ with δ = 1−

√
q/|S| suffers time-averaged regret at most

lim
t→∞

1

t
Reg(M, πδ, s0, t) ≤ 1−

(
1−

√
q/|S|

)2

. (4)

5The construction required in Example 20 to create a “wireheading state” s2 for IRL agents is substantially more involved
than for RL agents, so they may be less vulnerable to reward corruption than RL agents.

13

Proof. By Assumption 14.(i), πδ eventually visits all states when random walking, and can stay in any given
state s.

The observed reward R̂(s) in any state in state s ∈ Sδ is at least δ. By Assumption 12.(ii), at most q of
these states are corrupt; in the worst case their true reward is 0, and the other |Sδ| − q states (if any) have
true reward δ. Thus, with probability at least (|Sδ| − q)/|Sδ| = 1− q/|Sδ|, the δ-quantilising agent obtains
true reward at least δ at each time step, which gives

lim
t→∞

1

t
Reg(M, πδ, s0, t) ≤ 1− δ(1− q/|Sδ|). (5)

(If q > |Sδ|, the bound (5) is vacuous.)
Under Assumption 14.(ii), for any δ ∈ [0, 1], |Sδ| ≥ (1− δ)|S|. Substituting this into (5) gives:

lim
t→∞

1

t
Reg(M, πδ, s0, t) ≤ 1− δ

(
1− q

(1− δ)|S|

)
. (6)

Equation (6) is optimised by δ = 1−
√
q/|S|, which gives the stated regret bound.

The time-averaged regret gets close to zero when the fraction of corrupt states q/|S| is small. For example,
if at most 0.1% of the states are corrupt, then the time-averaged regret will be less than 1−(1−

√
0.001)2 ≈ 0.06.

Compared to the πRL
b,t and πCR

b,t agents that had regret close to 1 under the same conditions (Theorem 16),
this is a significant improvement.

If rewards are stochastic, then the quantilising agent may be modified to revisit all states many times,
until a confidence interval of length 2ε and confidence 1− ε can be established for the expected reward in each
state. Letting πδt be the quantilising agent with ε = 1/t gives the same regret bound (4) with πδ substituted
for πδt .

Interpretation. It may seem odd that randomisation improves worst-case regret. Indeed, if the corrupt
states were chosen randomly by the environment, then randomisation would achieve nothing. To illustrate how
randomness can increase robustness, we make an analogy to Quicksort, which has average time complexity
O(n log n), but worst-case complexity O(n2). When inputs are guaranteed to be random, Quicksort is a
simple and fast sorting algorithm. However, in many situations, it is not safe to assume that inputs are
random. Therefore, a variation of Quicksort that randomises the input before it sorts them is often more
robust. Similarly, in the examples mentioned in the introduction, the corrupt states precisely coincide with
the states the agent prefers; such situations would be highly unlikely if the corrupt states were randomly
distributed. Li [1992] develops an interesting formalisation of this idea.

Another way to justify quantilisation is by Goodhart’s law, which states that most measures of success
cease to be good measures when used as targets. Applied to rewards, the law would state that cumulative
reward is only a good measure of success when the agent is not trying to optimise reward. While a literal
interpretation of this would defeat the whole purpose of RL, a softer interpretation is also possible, allowing
reward to be a good measure of success as long as the agent does not try to optimise reward too hard.
Quantilisation may be viewed as a way to build agents that are more conservative in their optimisation efforts
[Taylor, 2016].

Alternative randomisation. Not all randomness is created equal. For example, the simple randomised
soft-max and ε-greedy policies do not offer regret bounds on par with πδ, as shown by the following example.
This motivates the more careful randomisation procedure used by the quantilising agents.

Example 23 (Soft-max and ε-greedy). Consider the following simple CRMDP with n > 2 actions a1, . . . , an:

s1 s2

r̂ = ṙ = 1− ε

ṙ = 0

r̂ = 1

a2, . . . , ana1

a2, . . . , an

a1

14

s1

s2

s3

s4

r̂ = 0

r̂ = 1

r̂ = 0

r̂ = 1

Sδi

Figure 5: Illustration of r̂-contribution and value support. As-
sume the policy πi randomly traverses a loop s1, s2, s3, s4 indefi-
nitely, with dπi(sj) = 1/4 for j = 1, . . . , 4. The r̂-contribution
vcπi is 0 in s1 and s3, and vcπi is 1/4 · 1 = 1/4 in s2 and s4. The
set Sδi = {s2, s4} is a δ-value supporting πi for δ = 1/2, since
vcπi(s2) = vcπi(s4) ≥ (1/2)/2 = 1/4.

State s1 is non-corrupt with R̂(s1) = Ṙ(s1) = 1− ε for small ε > 0, while s2 is corrupt with R̂(s2) = 1 and
Ṙ(s2) = 0. Soft-max and ε-greedy policy will assign higher value to actions a2, . . . , an than to a1. For large
n, there are many ways of getting to s2, so a random action leads to s2 with high probability. Thus, soft-max
and ε-greedy will spend the vast majority of the time in s2, regardless of randomisation rate and discount
parameters. This gives a regret close to 1− ε, compared to an informed policy always going to s1. Meanwhile,
a δ-quantilising agent with δ ≤ 1/2 will go to s1 and s2 with equal probability, which gives a more modest
regret of (1− ε)/2. ♦

5.2 General Quantilisation Agent

This section generalises the quantilising agent to RL problems not satisfying Assumption 14. This generalisation
is important, because it is usually not possible to remain in one state and get high reward. The most naive
generalisation would be to sample between high reward policies, instead of sampling from high reward states.
However, this will typically not provide good guarantees. To see why, consider a situation where there is
a single high reward corrupt state s, and there are many ways to reach and leave s. Then a wide range of
different policies all get high reward from s. Meanwhile, all policies getting reward from other states may
receive relatively little reward. In this situation, sampling from the most high reward policies is not going to
increase robustness, since the sampling will just be between different ways of getting reward from the same
corrupt state s.

For this reason, we must ensure that different “sampleable” policies get reward from different states. As a
first step, we make a couple of definitions to say which states provide reward to which policies. The concepts
of Definition 25 are illustrated in Figure 5.

Definition 24 (Unichain CRMDP [Puterman, 1994, p. 348]). A CRMDP µ is unichain if any stationary
policy π : S → ∆A induces a stationary distribution dπ on S that is independent of the initial state s0.

Definition 25 (Value support). In a unichain CRMDP, let the asymptotic r̂-contribution of s to π be
vcπ(s) = dπ(s)R̂(s). We say that a set Sδi is δ-value supporting a policy πi if

∀s ∈ Sδi : vcπi(s) ≥ δ/|Sδi |.

We are now ready to define a general δ-Quantilising agent. The definition is for theoretical purposes only.
It is unsuitable for practical implementation both because of the extreme data and memory requirements of
Step 1, and because of the computational complexity of Step 2. Finding a practical approximation is left for
future research.

Definition 26 (General δ-Quantilising Agent). In a unichain CRMDP, the generalised δ-quantilising agent
πδ performs the following steps. The input is a CRMDP µ and a parameter δ ∈ [0, 1].

1. Estimate the value of all stationary policies, including their value support.

2. Choose a collection of mutually disjoint sets Sδi , each δ-value supporting a stationary policy πi. If
multiple choices are possible, choose one maximising the cardinality of the union Sδ =

⋃
i Sδi . If no

such collection exists, return: “Failed because δ too high”.

15

3. Randomly sample a state s from Sδ =
⋃
i Sδi .

4. Follow the policy πi associated with the set Sδi containing s.

The general quantilising agent of Definition 26 is a generalisation of the simple quantilising agent of
Definition 21. In the special case where Assumption 14 holds, the general agent reduces to the simpler one by
using singleton sets Sδi = {si} for high reward states si, and by letting πi be the policy that always stays
in si. In situations where it is not possible to keep receiving high reward by remaining in one state, the
generalised Definition 26 allows policies to solicit rewards from a range of states. The intuitive reason for
choosing the policy πi with probability proportional to the value support in Steps 3–4 is that policies with
larger value support are better at avoiding corrupt states. For example, a policy only visiting one state may
have been unlucky and picked a corrupt state. In contrast, a policy obtaining reward from many states must
be “very unlucky” if all the reward states it visits should be corrupt.

Theorem 27 (General quantilisation agent regret bound). In any unichain CRMDP µ, a general δ-
quantilising agent πδ suffers time-averaged regret at most

lim
t→∞

1

t
Reg(M, πδ, s0, t) ≤ 1− δ(1− q/|Sδ|) (7)

provided a non-empty collection {Sδi } of δ-value supporting sets exists.

Proof. We will use the notation from Definition 26.
Step 1 is well-defined since the CRMDP is unichain, which means that for all stationary policies π

the stationary distribution dπ and the value support vcπ are well-defined and may be estimated simply
by following the policy π. There is a finite (but large) number of stationary policies, so in principle their
stationary distributions and value support can be estimated.

To bound the regret, consider first the average reward of a policy πi with value support Sδi . The policy πi
must obtain asymptotic average observed reward at least:

lim
t→∞

1

t
Ĝt(µ, πi, s0)→

∑
s∈S

dπ(s)R̂(s) by definition of dπ and Ĝt

≥
∑
s∈Sδi

dπ(s)R̂(s) sum of positive terms

≥
∑
s∈Sδi

δ/|Sδi | Sδi is δ-value support for πi

= |Sδi | · δ/|Sδi |

If there are qi corrupt states in Sδi with true reward 0, then the average true reward must be at least

lim
t→∞

1

t
Ġt(µ, πi, s0) = (|Sδi | − qi) · δ/|Sδi | = (1− qi/|Sδi |) · δ (8)

since the true reward must correspond the observed reward in all the (|Sδi | − qi) non-corrupt states.
For any distribution q = q1 + · · ·+ qn of the corrupt states, the quantilising agent that selects πi with

probability P (πi) = |Sδi |/|Sδ| will obtain

lim
t→∞

1

t
Gt(µ, π

δ, s0) = lim
t→∞

1

t

∑
i

P (πi)Gt(µ, πi, s0)

≥
∑
i

P (πi)(1− qi/|Sδi |) · δ by equation (8)

= δ
∑
i

|Sδi |
|Sδ|

(1− qi/|Sδi |) by construction of P (πi)

16

=
δ

|Sδ|
∑
i

(|Sδi | − qi) elementary algebra

=
δ

|Sδ|
(|Sδ| − q) = δ(1− q/|S|) by summing |Sδi | and qi

The informed policy may get at most true reward 1 at each time step, which gives the claimed bound (7).

When Assumption 14 is satisfied, the bound is the same as for the simple quantilising agent in Section 5.1
for δ = 1−

√
q/|S|. In other cases, the bound may be much weaker. For example, in many environments it

is not possible to obtain reward by remaining in one state. The agent may have to spend significant time
“travelling” between high reward states. So typically only a small fraction of the time will be spent in high
reward states, which in turn makes the stationary distribution dπ is small. This puts a strong upper bound
on the value contribution vcπ, which means that the value supporting sets Sδi will be empty unless δ is close
to 0. While this makes the bound of Theorem 27 weak, it nonetheless bounds the regret away from 1 even
under weak assumptions, which is a significant improvement to the RL and CR agents in Theorem 16.

Examples. To make the discussion a bit more concrete, let us also speculate about the performance of a
quantilising agent in some of the examples in the introduction:

• In the boat racing example (Example 1), the circling strategy only got about 20% higher score than
a winning strategy [Amodei and Clark, 2016]. Therefore, a quantilising agent would likely only need
to sacrifice about 20% observed reward in order to be able to randomly select from a large range of
winning policies.

• In the wireheading example (Example 3), it is plausible that the agent gets significantly more reward
in wireheaded states compared to “normal” states. Wireheading policies may also be comparatively
rare, as wireheading may require very deliberate sequences of actions to override sensors. Under this
assumption, a quantilising agent may be less likely to wirehead. While it may need to sacrifice a large
amount of observed reward compared to an RL agent, its true reward may often be greater.

Summary. In summary, quantilisation offers a way to increase robustness via randomisation, using only
reward feedback. Unsurprisingly, the strength of the regret bounds heavily depends on the assumptions we
are willing to make, such as the prevalence of high reward states. Further research may investigate efficient
approximations and empirical performance of quantilising agents, as well as dynamic adjustments of the
threshold δ. Combinations with imperfect decoupled RL solutions (such as IRL), as well as extensions to
infinite state spaces could also offer fruitful directions for further theoretical investigation. Taylor [2016]
discusses some general open problems related to quantilisation.

6 Experimental Results

In this section the theoretical results are illustrated with some simple experiments. The setup is a gridworld
containing some true reward tiles (indicated by yellow circles) and some corrupt reward tiles (indicated by
blue squares). We use a setup with 1, 2 or 4 goal tiles with true reward 0.9 each, and one corrupt reward tile
with observed reward 1 and true reward 0 (Figure 6 shows the starting positions). Empty tiles have reward
0.1, and walking into a wall gives reward 0. The state is represented by the (x, y) coordinates of the agent.
The agent can move up, down, left, right, or stay put. The discounting factor is γ = 0.9. This is a continuing
task, so the environment does not reset when the agent visits the corrupt or goal tiles. This was implemented
in the AIXIjs framework for reinforcement learning [Aslanides et al., 2017].

We demonstrate that RL agents like Q-learning and softmax Q-learning cannot overcome corrupt reward
(as discussed in Section 3), while quantilisation helps overcome corrupt reward (as discussed in Section 5).
We run Q-learning with ε-greedy (ε = 0.1), softmax with temperature β = 2, and the quantilising agent with
δ = 0.2, 0.5, 0.8 (where 0.8 = 1−

√
q/|S| = 1−

√
1/25) for 100 runs with 1 million cycles. Average observed

17

(a) 1 goal tile (b) 2 goal tiles (c) 4 goal tiles

Figure 6: Starting positions: the blue square indicates corrupt reward, and the yellow circles indicate true
rewards.

goal tiles agent average observed reward average true reward

1

Q-learning 0.923± 0.0003 0.00852± 0.00004
Softmax Q-learning 0.671± 0.0005 0.0347± 0.00006

Quantilising (δ = 0.2) 0.838± 0.15 0.378± 0.35
Quantilising (δ = 0.5) 0.943± 0.12 0.133± 0.27
Quantilising (δ = 0.8) 0.979± 0.076 0.049± 0.18

2

Q-learning 0.921± 0.00062 0.0309± 0.0051
Softmax Q-learning 0.671± 0.0004 0.0738± 0.0005

Quantilising (δ = 0.2) 0.934± 0.047 0.594± 0.43
Quantilising (δ = 0.5) 0.931± 0.046 0.621± 0.42
Quantilising (δ = 0.8) 0.944± 0.05 0.504± 0.45

4

Q-learning 0.924± 0.0002 0.00919± 0.00014
Softmax Q-learning 0.657± 0.0004 0.111± 0.0006

Quantilising (δ = 0.2) 0.918± 0.038 0.738± 0.35
Quantilising (δ = 0.5) 0.926± 0.044 0.666± 0.39
Quantilising (δ = 0.8) 0.915± 0.036 0.765± 0.32

Table 1: Average true and observed rewards after 1 million cycles, showing mean ± standard deviation over
100 runs. Q-learning achieves high observed reward but low true reward, and softmax achieves medium
observed reward and a slightly higher true reward than Q-learning. The quantilising agent achieves similar
observed reward to Q-learning, but much higher true reward (with much more variance). Having more than 1
goal tile leads to a large improvement in true reward for the quantiliser, a small improvement for softmax,
and no improvement for Q-learning.

and true rewards after 1 million cycles are shown in Table 1, and reward trajectories are shown in Figure 7.
Q-learning gets stuck on the corrupt tile and spend almost all the time there (getting observed reward around
1 · (1− ε) = 0.9), softmax spends most of its time on the corrupt tile, while the quantilising agent often stays
on one of the goal tiles.

18

(a) Observed rewards for 1 goal tile (b) True rewards for 1 goal tile

(c) Observed rewards for 2 goal tiles (d) True rewards for 2 goal tiles

(e) Observed rewards for 4 goal tiles (f) True rewards for 4 goal tiles

Figure 7: Trajectories of average observed and true rewards for Q-learning, softmax and quantilising agents,
showing mean ± standard deviation over 100 runs. Q-learning and quantilising agents converge to a similar
observed reward, but very different true rewards (much higher for the quantiliser with high variance). The
value of δ that gives the highest true reward varies for different numbers of goal tiles.

19

7 Conclusions

This paper has studied the consequences of corrupt reward functions. Reward functions may be corrupt due
to bugs or misspecifications, sensory errors, or because the agent finds a way to inappropriately modify the
reward mechanism. Some examples were given in the introduction. As agents become more competent at
optimising their reward functions, they will likely also become more competent at (ab)using reward corruption
to gain higher reward. Reward corruption may impede the performance of a wide range of agents, and may
have disastrous consequences for highly intelligent agents [Bostrom, 2014].

To formalise the corrupt reward problem, we extended a Markov Decision Process (MDP) with a possibly
corrupt reward function, and defined a formal performance measure (regret). This enabled the derivation of
a number of formally precise results for how seriously different agents were affected by reward corruption
in different setups (Table 2). The results are all intuitively plausible, which provides some support for the
choice of formal model.

Assumption No assumptions
Assumption 12 or 12′, and . . .

no other assumptions Assumption 14 IRL SSRL/LVFS

Result all agents fail πδ weak bound
πRL
b,t , πCR

b,t fail

πδ succeeds
πCR
b,t fails πCR

b,t succeeds

Table 2: Main takeaways. Without additional assumptions, all agents fail (i.e., suffer high regret). Restricting
the reward corruption with Assumption 12 gives a weak bound for the quantilising agent. The πRL

b,t and πCR
b,t

agents still fail even if we additionally assume many high reward states and agent control (Assumption 14),
but the quantilising agent πδ does well. In most realistic contexts, the true reward is learnable in spite of
sensory corruption in SSRL and LVFS, but not in IRL.

The main takeaways from the results are:

• Without simplifying assumptions, no agent can avoid the corrupt reward problem (Theorem 11). This is
effectively a No Free Lunch result, showing that unless some assumption is made about the reward
corruption, no agent can outperform a random agent. Some natural simplifying assumptions to avoid
the No Free Lunch result were suggested in Section 2.

• Using the reward signal as evidence rather than optimisation target is no magic bullet, even under strong
simplifying assumptions (Theorem 16). Essentially, this is because the agent does not know the exact
relation between the observed reward (the “evidence”) and the true reward.6 However, when the data
enables sufficient crosschecking of rewards, agents can avoid the corrupt reward problem (Theorem 19).
For example, in SSRL and LVFS this type of crosschecking is possible under natural assumptions. In
RL, no crosschecking is possible, while IRL is a borderline case. Combining frameworks and providing
the agent with different sources of data may often be the safest option.

• In cases where sufficient crosschecking of rewards is not possible, quantilisation may improve robustness
(Theorems 22 and 27). Essentially, quantilisation prevents agents from overoptimising their objectives.
How well quantilisation works depends on how the number of corrupt solutions compares to the number
of good solutions.

The results indicate that while reward corruption constitutes a major problem for traditional RL algorithms,
there are promising ways around it, both within the RL framework, and in alternative frameworks such as
IRL, SSRL and LVFS.

6In situations where the exact relation is known, then a non-corrupt reward function can be defined. Our results are not
relevant for this case.

20

Future work. Finally, some interesting open questions are listed below:

• (Unobserved state) In both the RL and the decoupled RL models, the agent gets an accurate signal
about which state it is in. What if the state is hidden? What if the signal informing the agent about
its current state can be corrupt?

• (Non-stationary corruption function) In this work, we tacitly assumed that both the reward and the
corruption functions are stationary, and are always the same in the same state. What if the corruption
function is non-stationary, and influenceable by the agent’s actions? (such as if the agent builds a
delusion box around itself [Ring and Orseau, 2011])

• (Infinite state space) Many of the results and arguments relied on there being a finite number of states.
This makes learning easy, as the agent can visit every state. It also makes quantilisation easy, as there is
a finite set of states/strategies to randomly sample from. What if there is an infinite number of states,
and the agent has to generalise insights between states? What are the conditions on the observation
graph for Theorem 19? What is a good generalisation of the quantilising agent?

• (Concrete IRL condition) In Example 20, we only heuristically inferred the observation graph from the
IRL problem description. Is there a general way of doing this? Or is there a direct formulation of the
no-corruption condition in IRL, analogous to Theorem 19?

• (Practical quantilising agent) As formulated in Definition 21, the quantilising agent πδ is extremely
inefficient with respect to data, memory, and computation. Meanwhile, many practical RL algorithms
use randomness in various ways (e.g. ε-greedy [Sutton and Barto, 1998]). Is there a way to make an
efficient quantilisation agent that retains the robustness guarantees?

• (Dynamically adapting quantilising agent) In Definition 26, the threshold δ is given as a parameter.
Under what circumstances can we define a “parameter free” quantilising agent that adapts δ as it
interacts with the environment?

• (Decoupled RL quantilisation result) What if we use quantilisation in decoupled RL settings that nearly
meet the conditions of Theorem 19? Can we prove a stronger bound?

Acknowledgements

Thanks to Jan Leike, Badri Vellambi, and Arie Slobbe for proofreading and providing invaluable comments,
and to Jessica Taylor and Huon Porteous for good comments on quantilisation. This work was in parts
supported by ARC grant DP150104590.

References

Dario Amodei and Jack Clark. Faulty Reward Functions in the Wild. https://openai.com/blog/

faulty-reward-functions/, 2016. Accessed: 2017-02-18.

Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané. Concrete
Problems in AI Safety. CoRR, 1606.06565, 2016.

John Aslanides, Jan Leike, and Marcus Hutter. General reinforcement learning algorithms: Survey and
experiments. In IJCAI-17. AAAI Press, 2017.

Donald A Berry and Bert Fristedt. Bandit Problems: Sequential Allocation of Experiments. Springer, 1985.

Nick Bostrom. Superintelligence: Paths, Dangers, Strategies. Oxford University Press, 2014.

21

https://openai.com/blog/faulty-reward-functions/
https://openai.com/blog/faulty-reward-functions/

Owain Evans, Andreas Stuhlmuller, and Noah D Goodman. Learning the Preferences of Ignorant, Inconsistent
Agents. In AAAI-16, 2016.

Dylan Hadfield-Menell, Anca Dragan, Pieter Abbeel, and Stuart Russell. Cooperative Inverse Reinforcement
Learning. Advances in Neural Information Processing Systems (NIPS), 2016.

Dylan Hadfield-Menell, Anca Dragan, Pieter Abbeel, and Stuart Russell. The Off-Switch Game. In AAAI
Workshop on AI, Ethics and Society, 2017.

Marcus Hutter. Universal Artificial Intelligence: Sequential Decisions based on Algorithmic Probability.
Lecture Notes in Artificial Intelligence (LNAI 2167). Springer, 2005.

Tommi Jaakkola, Michael I Jordan, and Satinder P Singh. On the Convergence of Stochastic Iterative
Dynamic Programming Algorithms. Neural Computation, 6(6):1185–1201, 1994.

Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Planning and Acting in Partially
Observable Stochastic Domains. Artificial Intelligence, 101(1-2):99–134, 1998.

Ming Li. Average Case Complexity under the Universal Distribution Equals Worst Case Complexity.
Information Processing Letters, 42(3):145–149, 1992.

Andrew Ng and Stuart Russell. Algorithms for Inverse Reinforcement Learning. In Proceedings of the
Seventeenth International Conference on Machine Learning, pages 663–670, 2000.

M.L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley Series in
Probability and Statistics. Wiley, 1994.

Mark O Riedl and Brent Harrison. Using Stories to Teach Human Values to Artificial Agents. In AAAI
Workshop on AI, Ethics, and Society, 2016.

Mark Ring and Laurent Orseau. Delusion, Survival, and Intelligent Agents. In Artificial General Intelligence,
pages 11–20. Springer Berlin Heidelberg, 2011.

Richard S Sutton and Andrew G Barto. Reinforcement Learning: An Introduction. MIT Press, 1998.

Jessica Taylor. Quantilizers: A Safer Alternative to Maximizers for Limited Optimization. In AAAI Workshop
on AI, Ethics and Society, 2016.

David H Wolpert and William G Macready. No Free Lunch Theorems for Optimization. IEEE Transactions
on Evolutionary Computation, 1(1):270–283, 1997.

Roman V. Yampolskiy. Utility Function Security in Artificially Intelligent Agents. Journal of Experimental
& Theoretical Artificial Intelligence, pages 373–389, 2014.

22

	Introduction
	Formalisation
	The Corrupt Reward Problem
	No Free Lunch Theorem
	Simplifying Assumptions
	Bayesian RL Agents

	Decoupled Reinforcement Learning
	Alternative Value Learning Methods
	Overcoming Sensory Corruption
	Implications

	Quantilisation: Randomness Increases Robustness
	Simple Case
	General Quantilisation Agent

	Experimental Results
	Conclusions

