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Abstract

Reinforcement Learning formalises an embodied agent’s in-
teraction with the environment through observations, rewards
and actions. But where do the actions come from? Actions
are often considered to represent something external, such as
the movement of a limb, a chess piece, or more generally, the
output of an actuator. In this work we explore and formalize
a contrasting view, namely that actions are best thought of as
the output of a sequence of internal choices with respect to an
action model. This view is particularly well-suited for lever-
aging the recent advances in large sequence models as prior
knowledge for multi-task reinforcement learning problems.
Our main contribution in this work is to show how to aug-
ment the standard MDP formalism with a sequential notion
of internal action using information-theoretic techniques, and
that this leads to self-consistent definitions of both internal
and external action value functions.
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1 Introduction

It is hard to speak of embodied agents these days without
mentioning or appealing to some notion of Reinforcement
Learning. This particular mathematical formalism has been
so successful of late that the validity of its various mod-
elling assumptions rarely gets called into question. Yet re-
cently we have seen a step-change in the capabilities of gen-
erative modelling, with the most striking example being in
multi-modal language applications; the acquisition of gigan-
tic multi-task datasets via internet scraping and scalable ap-
proaches to training has led to a renewed excitement for
building next generation question-answering systems, chat
bots, productivity tools, sentiment analysis, and in some cir-
cles, has even produced a newfound sense of optimism that
the original goals of Artificial Intelligence may well be ob-
tainable within our lifetimes.

Yet what does this mean for Reinforcement Learning?
While its success in restricted domains is no longer in doubt,
questions remain about its long-term viability as a foun-
dational paradigm for Artificial Intelligence. For example,
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Figure 1: Agent-environment loop with internal actions.

effective exploration, even in restricted settings such as fi-
nite MDPs, is problematic in large unstructured state spaces,
with various lower bounds demonstrating polynomial de-
pendence on the size of the state space, e.g. (Strehl, Li,
and Littman 2009). While there are some noteworthy recent
examples of hard exploration problems being overcome by
clever heuristics (Ecoffet et al. 2021), the situation in gen-
eral looks challenging, if not dire. On the other hand, recent
advances in sequence modelling combined with the acqui-
sition of gigantic datasets via internet scraping has led to a
seeming step-change (Brown et al. 2020) in the ability of
various types of probabilistic models to generate plausible
continuations. Is there a way to leverage this, while keep-
ing the basic reinforcement learning formalism and derived
notions such as value functions, policies, return, etc intact?

Our proposal argues for rethinking the fundamental no-
tion of action in reinforcement learning. Actions are of-
ten considered to represent something external, such as the
movement of a limb, a chess piece, or more generally, the
output of an actuator. In this work however, we develop
a generic notion of internal action, which is implied by a
choice of action model ρ. The key technical insight we lever-
age is the well-known duality between optimal lossless cod-
ing strategies and probabilities from information theory. At
a high level, instead of an agent directly picking an action
from the action space A, instead it will pick a sequence of
internal actions from an internal action set B which will de-



code to an external action from A. Figure 1 depicts this in-
teraction graphically.

So what do we gain by introducing this particular layer
of indirection in the agent’s choice of action? Breaking up
an action into a series of internal actions seems like a rea-
sonable approach to dealing with large action spaces, and
indeed has been used in other planning settings, but it im-
mediately throws up a number of questions. How do we de-
compose an arbitrary action space? Is there a universal, or in
some sense optimal decomposition? When should the agent
stop generating internal actions and communicate an exter-
nal action to the environment? Does this even make sense in
a reinforcement learning setting? How do we leverage prior
knowledge in the form of a default policy? Are there ramifi-
cations for multi-task RL? Can we efficiently compute or
sample good actions? This paper will argue that our par-
ticular information-theoretic decomposition using an arith-
metic decoder coupled with a coding distribution implied
by a choice of action model naturally addresses all these
questions, and opens up the possibly of leveraging recent ad-
vances in meta-learning and large-scale language/sequence
models to deal with large problems using existing RL tech-
niques.

Content. The paper is structured as follows: Section 2 re-
views some background material and establishes some no-
tation; Section 3 introduces internal actions, with Section 4
formally establishing the connection between internal/exter-
nal agents and environments; Section 5 shows how the in-
ternal action framework naturally accommodates multi-task
reinforcement learning settings with different action spaces.
We conclude with an extended discussion in Section 6 and
cover related and future work in Sections 7 and 8.

2 Preliminaries

We now briefly review the necessary background material
required to describe our internal action agent-environment
interaction loop.

Sequential Prediction. A finite alphabet X is a set of
symbols. A string of symbols x1x2 . . . xn ∈ Xn of length
n is denoted by x1:n. The prefix x1:j of x1:n, j ≤ n, is de-
noted by x≤j or x<j+1. The empty string is denoted by ǫ.
The set of strings whose symbols come from the alphabet X
with length at most n is defined by X≤n := {ǫ} ∪

⋃n
i=1 X

i.
The set of strings of symbols from alphabet X with finite
length is denoted by X ∗ := {ǫ} ∪

⋃∞
i=1 X

i. The concatena-
tion of two strings x and y is denoted by xy. The length of a
string x will be denoted by |x|. We will use y ∈ x to denote
that the symbol y is in the string x.

A (coding) distribution ρ is a sequence of probability mass
functions ρn : Xn → [0, 1], which for all n ∈ N satisfy
the constraint that ρn(x1:n) =

∑

y∈X ρn+1(x1:ny) for all

x1:n ∈ Xn, with the base case ρ0(ǫ) := 1. From here on-
wards, whenever the meaning is clear from the argument to
ρ, the subscript on ρ will be dropped. Under this definition,
the conditional probability of a symbol xn given previous
data x<n is defined as ρ(xn|x<n) := ρ(x1:n)/ρ(x<n) pro-
vided ρ(x<n) > 0, with the familiar chain rules ρ(x1:n) =

∏n
i=1 ρ(xi|x<i) and ρ(xj:k |x<j) =

∏k
i=j ρ(xi|x<i) now

following. We will use ∆(X ) to denote the space of proba-
bility distributions over X .

Arithmetic Encoding / Decoding. A fundamental tech-
nique known as arithmetic encoding (Rissanen and Lang-
don 1979; Witten, Neal, and Cleary 1987) makes explicit the
connection between coding distributions and source codes.
Binary arithmetic encoding is a general purpose parameter-
ized technique that takes in a distribution ρ (known as a
coding distribution) and some data x1:n ∈ Xn, and pro-
duces a uniquely decodable binary codeword Cρ(x1:n) ∈
{0, 1}∗, whose length is essentially ⌈− log2 ρ(x1:n)⌉, which
is optimal in terms of expected length if the data is sam-
pled from ρ. In essence, shorter binary codewords are as-
signed to data which has a higher chance of occurring un-
der ρ, and longer binary codewords are assigned to the less
probable data items. Arithmetic decoding is the reverse of
this procedure; it takes a coding distribution ρ, a binary
code word y1:k = Cρ(x1:n), and returns the original data
Dρ(y1:k) = x1:n. We will also use the shorthand notation
Dρ(y1:k | s) := Dρ(·|s)(y1:k) to denote decoding with re-
spect to a coding distribution conditioned on the string s.
We refer the reader to the standard text of (Cover 1999) for
further information.

Markov Decision Processes. A Markov Decision Pro-
cess (MDP) is a type of probabilistic model widely used
within reinforcement learning (Sutton and Barto 2018;
Szepesvári 2010) and control (Bertsekas and Tsitsiklis
1996). In this work, we limit our attention to finite horizon,
time-homogeneous MDPs whose action and state spaces are
finite. Formally, an MDP is a quadruplet (S,A,R, µ), where
S is a finite, non-empty set of states, A is a finite, non-empty
set of actions, R ⊂ R is the reward space, and µ is the tran-
sition probability kernel that assigns to each state-action pair
(s, a) ∈ S ×A a probability measure µ(· | s, a) over S ×R.
S and A are known as the state space and action space
respectively. The transition probability kernel gives rise to
the state transition kernel P(s′|s, a) := µ({s′} × R | s, a),
which gives the probability of transitioning from state s to
state s′ if action a is taken in s.

An agent’s behavior is determined by a policy that de-
fines, for each state s ∈ S and time t ∈ N, a probability
measure over A denoted by πt(· | s). A stationary policy is
a policy which is independent of time, which we will de-
note by π(· | s) where appropriate. At each time t, the agent
communicates an action At ∼ πt(· |St−1) to the system in
state St−1 ∈ S . The system then responds with a state-
reward pair (St, Rt) ∼ µ(· |St−1, At). Here we will as-
sume that each reward is bounded between [rmin, rmax] ⊂ R

and that the system starts in a state s0 and executes for
an infinite number of steps. Thus the execution of the sys-
tem can be described by a sequence of random variables
S0, A1, S1, R1, A2, S2, R2, ....

The finite m-horizon return from time t is defined as
Zt :=

∑t+m−1
i=t Ri. The expected m-horizon return from

time t, also known as the value function, is denoted by
V π
µ (st) := E[Zt+1 |St = st]. The return space Z is the

set of all possible returns. The action-value function is de-



fined by Qπ
µ(st, at+1) := E[Zt+1 |St = st, At+1 = at+1].

An optimal policy, denoted by π∗
µ, is a policy that maximizes

the expected return E [Zt+1 |St] for all t.

3 Information-Theoretic Actuation –

Internal Actions

We now describe in detail how to combine the aforemen-
tioned building blocks into the internal reinforcement learn-
ing framework described in Figure 1, and discuss its ram-
ifications. Compared with the standard agent-environment
loop, there are two additional components with this setup: a
choice of action model ρ, and an associated arithmetic de-
coder Dρ that uses ρ as a coding distribution. The internal
action space B is defined by the associated decoding alpha-
bet used by Dρ; for example, using a binary arithmetic de-
coder would lead to an internal action space of B = {0, 1}.
For pedagogical purposes, we will restrict our attention to
this case in the rest of the paper, but remark that any finite
decoding alphabet can in principle be used with our con-
struction.

We first introduce our notion of internal action. At a high-
level, one should think of a single internal action as a bit-
commitment towards a particular choice of external action,
with particular sequences of these corresponding to external
actions. In a sense, internal actions correspond to a period
of private deliberation by the agent, which upon conclusion
produces a string describing the desired actuation in com-
pressed form; in essence, the arithmetic decoder functions
as a universal actuator, whose behavior can be completely
configured by a choice of action model.

Reshaping of the action space. As alluded to before, the
effect of the action model is to reshape the action space,
which the following example will make clear. Figure 2
shows an illustrative example of the behavior of a binary
arithmetic decoder equipped with an action model based
on a GLN-based context mixing language model (Veness
et al. 2019) that has been pre-trained on 9MB of grandmas-
ter games in PGN (Portable Game Notation) format. On the
left hand side of the table, we have the input to the decoder,
and on the righthand side we have the decoded output; if we
consider the first row, the LHS corresponds to the bitstring
10 = Cρ(a6) and the RHS corresponds to Dρ(10), with ρ
here denoting our pre-trained language model. The LHS of
the first 4 rows shows the encoding of a natural sequence
of continuing moves (known as the Morphy Defense), while
the last four rows show an illogical continuation of moves
which ignore development, lose castling rights, and even
hang the queen. One can see that much shorter codes are
assigned to the more logical sequence of moves. This shows
the effect of the action model as providing a type of induc-
tive bias, which we will discuss in greater depth later.

In contrast, one could also consider the effect of a
completely uninformative action model, ρUNIFORM(a|s) :=
1 / |A|, which assigns uniform probability mass to each pos-
sible external action in every state. Here every single ac-
tion would have the same codelength of ⌈log |A|⌉, which
would correspond to a naive binarization of the external ac-
tion space.

Input bits Decoded Output

10 a6

10010 a6 Ba4

100100 a6 Ba4 Nf6

1001010111 a6 Ba4 Nf6 O-O

010010101010011 Nh6

0100101010101000110000010 Nh6 Kf1

01001010101010001100000110010010101 Nh6 Kf1 Qg5

01001010101010001100000110010010101010010010001 Nh6 Kf1 Qg5 Na3

Figure 2: Arithmetic decoding example. Some example de-
coded outputs from a pre-trained model on chess, with the
model’s context set to the Ruy Lopez opening, namely: e4
e5 Nf3 Nc6 Bb5.

When to stop decoding. Figure 2 also highlights a techni-
cal issue which we need to resolve, namely, how and when
is a decoded action to be transmitted to the external envi-
ronment? For example, if we wanted a chess-playing agent
whose action space was the space of single moves, we need
some way to know when our decoded output should be
communicated to the environment as an external action. Al-
though other solutions are possible, in this work we adopt
the convention that every external action can be described
as a string formed by the concatenation of atomic symbols
from a common alphabet. More formally, we assume that
the action space A ⊆ A

≤k, where A denotes the sub-action
alphabet, and k is a positive constant. We assume that the
sub-action alphabet always contains a privileged termina-
tion symbol ⊤ ∈ A, which has the semantics that when it
is decoded it causes an external action to be communicated
to the environment. Note that in finite action/state MDPs,
this modification does not impose any restrictions nor add
further expressive power. Returning to the example shown
in Figure 2, by identifying the space character with ⊤, we
would know when to transmit an external action. This is im-
plemented formally via a function τ : A

≤k → A which
takes actions and returns the action component up to but not
including the first ⊤, for example τ(a6⊤) = a6. This impor-
tantly handles the case of multiple ⊤ symbols, for example
τ(a6⊤Ba4⊤) = a6.

A terminal symbol is not the only way to know when
to stop decoding. Another approach could be to only allow
prefix-free codes. This will however run into it’s own prob-
lems, such as what prefix-free encoding to use, how to enu-
merate the elements of A so that the corresponding prefix
code can be found easily (and vice versa). Using an “op-
timal” prefix code would require the use of universal Tur-
ing machines and is beyond the scope of this paper. Another
choice to stop decoding is to consider the action before the
last ⊤ symbol, instead of before the first. In this case the
agent may take multiple actions without knowing the state
in between them.

Internal action loop. External action selection is deter-
mined by executing our internal policy π until the concate-
nation of these binary actions uniquely decodes into an ex-
ternal action. Once the action model and arithmetic decoder
have generated an external action, this external action will
be sent to the external environment. The external environ-
ment will then return an external observation/reward to the
action model and arithmetic decoder combination, and the



internal policy receives a reward rt from the external envi-
ronment. This interaction is displayed graphically in Figure
1 and described procedurally by Algorithm 1.

Algorithm 1: Internal Agent-Environment loop

Require: Internal policy π : S × B
∗ → ∆B

Require: External environment µ : S ×A → ∆(S ×R)
Require: Action model ρ : S → ∆A

≤k

for t = 1, 2, 3, . . . do
Observe st, rt ∼ µ(·, ·|st−1, at−1)
at, q = ǫ
while ⊤ /∈ at do
b ∼ π(·|st, q)
q = qb
at = Dρ(q|st)
rt = 0

end while
at = τ(at)
Act at

end for

Example. We conclude this section with an example exe-
cution in the context of our previous chess example. Here
the state space is the finite history of moves. At the first
time-step, the system receives an observation from the exter-
nal environment. This observation becomes the current state
s0 = e4 e5 Nf3 Nc6 Bb5. Then given this state the internal
policy takes internal binary actions one by one b0 = 1, b1 =
0. The internal policy continues to take internal binary ac-
tions until the sequence of internal binary actions uniquely
decodes into an external action at. A concatenation of char-
acters is an external action when it has a “terminal” symbol
⊤, a6 = Dρ(b0b1|s0). Now that we know the external ac-
tion, it is sent to the external environment µ, a1 = a6 . Then
we receive the next observation from µ,

o1 ∼ µ(·|s0a1) = µ(·|e4 e5 Nf3 Nc6 Bb5 a6)

and now s1 := s0a1o1 and the process repeats.

4 Connecting External to Internal Agents

and Environments
In this section, we will describe formally how to augment
an arbitrary external environment to an internal environment
that the internal action agent is able to interact with; addi-
tionally if the external environment is Markovian then the
internal environment will also be Markovian. Our approach
will be to construct an augmented environment ϑ, called the
internal environment, comprised of the true environment, the
action model and the arithmetic decoder. We will also show
how the internal action agent can be uplifted to an exter-
nal agent, and then show that both the internal environment
with an internal action agent and the external environment
with the uplifted policy are equivalent in the sense that they
achieve identical action-value functions. These results will
allow for easier analysis of the internal action agent setup,
as well as the ability to apply any result or algorithm spe-
cific to MDPs to the internal agent setup.

Internal Environment. The internal environment ϑ is a
stochastic function over internal states and internal actions
to internal states and rewards. The internal state space used
here will be I := S × B

≤n, the state from the external en-
vironment and previous internal actions taken by the inter-
nal agent, until they are decoded to an external action. We
consider the finite set B≤n over the infinite set B∗, as for
any external action a with ρ(a) > 0 there will always be
a finite number of binary actions needed to decode a; n is
the maximum of those finite numbers. We will use ⊤ to de-
note the “terminal” symbol, that is, the symbol that indicates
when the concatenation of internal actions corresponds to a
complete external action, and is sent to the external envi-
ronment. We will use the symbols s, s′ for elements of S ,
the first component of the internal state. We will use q, q′

for elements of B≤n, the second component of the internal
state, the internal agent’s previous internal actions. The sym-
bol b will be used for the internal agent’s internal action.
The symbol a will be used for a decoded external action,
e.g. Dρ(qb|s) = a. The true external environment will be
denoted by µ, which is a stochastic function from external
states and external actions to external states and rewards.
The external state space is S . The external action space is
A ⊆ A

≤k.

Definition 1 (MDP (Internal) Environment ϑ). The in-
ternal policy π interacts with an internal environment ϑ :
I × B → ∆(I × R) which is defined by the action model
ρ (encoder/decoder Cρ/Dρ generated by ρ) and the true ex-
ternal environment µ as follows:

ϑ(s′q′r|sq, b) :=






µ(s′r|s, τ(a)) if q′ = ǫ ∧ (⊤ ∈ a),

1 if s′ = s ∧ q′ = qb ∧ r = 0 ∧ (⊤ /∈ a),

0 otherwise

where a := Dρ(qb|s), (s
′q′, r) ∈ I ×R, sq ∈ I and b ∈ B.

The definition of ϑ is split up into three cases: In the first
case the decoded qb contains the symbol ⊤, ⊤ ∈ a where
a := Dρ(qb|s), and the previous binary characters q′ resets
to being the empty string ǫ. In this case the τ of the de-
coded action Dρ(qb|s) is sent to the external environment
µ, and the next state s′, is the external state s′. The second
case of ϑ is when the internal agent is still decoding, that
is, ⊤ /∈ a and the next state s′q′ = sqb is updated by the
agent’s action b, and the internal reward r is 0. In the third
case, where neither set of above conditions is satisfied, the
probability of the state s′q′ and reward r is 0. In this way the
environment ϑ is deterministic during the decoding process,
and only stochastic when it sends the decoded action to the
external environment.

Given the internal agent’s policy π and the arithmetic de-
coder Dρ, we can construct an external policy Π which will
interact with the true external environment µ. The external
policy Π is a stochastic function from external states s ∈ S
to external actions a ∈ A. To construct Π, we consider all
possible binary strings q ∈ B

≤n such that the arithmetic de-
coder will decode q into a given s. For this we will need to



define a decodable subset of B≤n. We will use D to denote
the set of decodable binary strings. A string q is decodable if
⊤ is in the decoding of the string, and ⊤ is not in the decod-
ing of the first |q| − 1 elements of the string. Formally this
means

Ds :=
{

q ∈ B
≤n : ⊤ ∈ Dρ(q|s) ∧ ⊤ /∈ Dρ(q<|q||s)

}

.

We then consider the probability that π will output the inter-
nal binary actions that eventually construct q, which using
the chain rule we can write as the product of probabilities
that π will take the action of each element of q given the
previous elements of q. All together this is written as fol-
lows:

Π(a|s) :=
∑

q∈Ds:
a=τ(Dρ(q|s))

|q|
∏

i=1

π(qi|sq<i). (1)

It is important to note that there may be more than one binary
string q ∈ Ds such that a = τ(Dρ(q|s)); this comes from
how arithmetic decoders work. For example, consider a case
where

Dρ(10|s) = e, Dρ(100|s) = e4, Dρ(101|s) = e4

Dρ(1000|s) = e4 c5, Dρ(1001|s) = e4⊤

Dρ(1010|s) = e4⊤, Dρ(1011|s) = e4 e5

We have that both 1001 and 1010 are elements of Ds and
both τ(Dρ(1001|s)) = e4 and τ(Dρ(1010|s)) = e4, there-
fore Π(e4|s) would be a sum over 1001 and 1010.

Self-consistency of internal and external Q-values. We
can use the external agent Π to interact with the external
environment µ, just as any regular RL agent would.

Theorem 2 (Internal/External value equivalence). For all
states s ∈ S , previous internal actions q ∈ B

≤n, external
actions a ∈ A and internal actions b ∈ B, if τ(Dρ(qb|s)) =
a then

QΠ
µ (s, a) = Qπ

ϑ(sq, b). (2)

That is, the action-value function for the external policy Π
and external environment µ is equal to the action-value func-
tion for the internal policy π and the internal environment ϑ.

Proof. This proof comes from expanding the action-value
function using Equation 1 and Definition 1 to rearrange the
expanded action-value function. For the full proof see the
supplementary material.

Because of Equation 2 we are able to say that if an internal
agent π performs well, in the sense of a high action-value, in
the internal environment ϑ, then the uplifted version of the
agent Π, performs well in the true external environment µ.

5 A Universal Action Interface

for Multi-task RL

A key complication and limiting factor in the design of
any multi-task RL system is how to deal with the poten-
tially radically different action spaces required for each dis-
tinct task. While it is feasible to make a generic agent work
well across multiple similar domains e.g. Atari games (Mnih

et al. 2015), the situation becomes considerably more com-
plicated when the action spaces of the different tasks vary
dramatically. The arithmetic encoding-based approach we
advocate provides an elegant solution to this problem, which
builds on techniques from universal source coding.

Given K > 1 coding distributions, it is straightforward to
combine them into a universal ensemble whose compression
performance will be close to that of the best coding distribu-
tion in hindsight. If we denote the ith coding distribution by
ρi, one can take a uniform Bayesian mixture of the K coding
distributions, whose marginal distribution over sequences is
given by

ξ(x1:n) :=
K
∑

i=1

1

K
ρi(x1:n). (3)

A standard dominance argument shows that the logarithmic
loss/coding length of the mixture ξ compared to any choice
of action model j is bounded by

− log ξ(x1:n) ≤ − log

(

1

K
ρj(x1:n)

)

= − log ρj(x1:n) + logK,

or in other words, the excess log-loss is bounded by a con-
stant, which is asymptotically negligible when one considers
the time-averaged performance of the ensemble.

This has important ramifications for multi-task reinforce-
ment learning in our internal action formulation. Recently,
various works (Janner, Li, and Levine 2021) have attempted
to frame reinforcement learning in terms of probabilistic se-
quence models over interaction strings, i.e. defining a se-
quential probability measure ν over strings that represent
state/reward/action histories in the form s1r1a1 . . . . By tak-
ing a uniform Bayesian mixture over multiple instances
of these history-based measures for different tasks, just as
in the coding distribution example, one also obtains a se-
quence model that is universal across all of these tasks. More
formally, given a history string h which is an element of
(S×R×A)∗∪ ((S ×R×A)∗ × (S ×R)), we can define
the uniform Bayesian mixture

ξ(h) =
K
∑

i=1

1

K
νi(h) (4)

over K history based measures νi, with each νi correspond-
ing to a task specific history model. Note that this formu-
lation in terms of measures on strings still implies the usual
Bayesian learning in terms of sequential updating of the pos-
terior, it is just hidden in this notation; see Section 2 by Mi-
lan et al. (2016) for a brief overview.

An interesting effect now emerges if we use the condi-
tional action distribution ξ(·|s1r1a1, . . . , snrn) as the ac-
tion model in our setup. In particular, this action model will
rapidly learn to automatically generate actions appropriate
for the underlying task, without requiring any task identity
information. How this works is subtle; Bayesian inference
is used implicitly by ξ to determine which task the agent
is most likely in, and due to the rapid convergence of the
Bayesian mixture to the best task specific model, the action



model used for decoding after a small number of external en-
vironment interactions will essentially behave the same as if
we knew which task specific action model to use in the first
place. In other words, what this means in practice is that one
can use ξ as the action model, and Cξ will produce codes
which are almost as short as any task-specific action encod-
ing Cρj

. In particular, this implies that short bitstrings can
decode to very different external actions which are plausible
under either task-specific model.

The most interesting aspect about this construction is that
the internal action formalism allows us to treat a multi-task
reinforcement problem as a single reinforcement learning
task with a common action space.

6 Discussion

This section discusses some interesting and potentially sur-
prising ramifications of information-theoretic internal ac-
tions.

Uninformative internal policy π and application to Large
Language Models. An interesting corollary of the internal
reinforcement learning setup is that a uniform policy over
internal actions gives rise to an external agent that selects
actions that are essentially distributed to the action model.
This is a by-product of the duality between optimal codes
and probabilities, and can be seen with the following argu-
ment. In the case of a binary internal action space, a uniform
policy will generate a particular sequence b1:n with probabil-
ity 2−n. Now, notice that the probability of an action a ∈ A
in state s where Cρ(a|s) = b1:n is given by

ρ(a|s) = 2log2
ρ(a|s) ≈ 2−|Cρ(a|s)| = 2−n.

The approximate equality step is due to the small gap be-
tween the optimal code length − log2 ρ(a|s) and the realised
code length Cρ(a|s) produced by an arithmetic encoder cou-
pled to ρ. The size of this gap is bounded by 1, but is essen-
tially negligible for the purposes of this argument.

This has interesting ramifications for constructing agents
when the action model is already useful, such as in the case
of Large Language Models (LLMs) obtained by supervised
learning on massive amounts of internet data. Random be-
haviour by the internal policy in this case will still produce
useful behavior, which provides a natural starting point for
any internal policy learning technique. In particular random
internal-action exploration becomes targeted, possibly lead-
ing to optimal external-action exploration, in a similar fash-
ion to Thompson Sampling. It is in this way that the action
model provides a powerful mechanism for specifying data-
dependent prior knowledge to existing reinforcement learn-
ing algorithms.

Specifying the action space from data. In complicated
environments, it may be difficult or complicated to precisely
specify the action space explicitly. This situation readily
arises in natural language domains for example. In these
cases it is more natural to simply learn a probabilistic model
of the domain. Our internal agent formalism directly allows
for this possibility via the action model. The action model
allows for a strict separation between pre-training on data,

for example pre-training an action model using a collection
of grandmaster games in chess, and the resultant learning
behavior of the internal agent.

It is also worth pointing out an interesting connection to
meta-learning with sequence models across many tasks. Per-
haps surprisingly, perplexity-based meta-learning of history-
dependent LLMs is closely related to the explicit Bayesian
mixture solution described in Equation 4. In particular, one
can show that in many standard meta-learning setups, the op-
timal perplexity-minimizing solution is exactly a Bayesian
mixture distribution (Ortega et al. 2019). Provided that a suf-
ficiently powerful history-dependent model is used (such as
the case with LLMs based on Transformers) to model the in-
teraction histories, a low-perplexity solution can be seen as
a learnt approximation to the explicit Bayesian construction
we provided in in Equation 4. In this way the action space
for a multi-task agent can be learnt directly from data alone,
which goes some way to explaining the recent empirical suc-
cess of approaches such as Janner, Li, and Levine (2021). In
other words, if one wanted an agent that could play both
chess and something with a radically different action space
such as the text-based NetHack (Küttler et al. 2020), a nat-
ural strategy would be to pre-train using meta-learning a se-
quence model from example trajectories in both games, and
use this to define the action model; the internal action frame-
work will then automatically deal with the different under-
lying action spaces.

Comparison to binarization. It is instructive to consider
the differences between a direct binarization of the action
space compared with our approach. One can interpret the
combination of an action model and a binary arithmetic de-
coder as a generalized form of binarization. As discussed
earlier, an action model which assigned a uniform distribu-
tion over the action space in every state is equivalent to a
naive binarization, with every action being assigned a code-
length of ⌈log2 |A|⌉. Binarization of actions in reinforce-
ment learning has the obvious benefit of reducing the size of
the action space, which can lead to some benefits (Majeed
and Hutter 2020). However, often this binarization comes
with a corresponding increase to the planning horizon, and
in many circumstances provides no benefits.

Our non-uniform binarization essentially reshapes the ac-
tion space according to the knowledge contained within the
action model. Thus planning using various types of depth
limited search takes on a different meaning in our inter-
nal reinforcement learning setting. Although the planning
algorithm may only be searching d steps ahead, the im-
plied information-theoretic planning horizon might be much
greater than d.

Computational advantages. Many reinforcement learn-
ing techniques require an ability to efficiently generate a ran-
dom sample from the action space. A convenient property of
our formalism is that it provides a generic technique to gen-
erate samples from arbitrary action models/action spaces.
This is a byproduct of having an arithmetic decoder cou-
pled to an action model. By generating a sequence of bits
y1:m with each bit sampled from a Bernoulli(1/2) distribu-
tion, and feeding them to a binary arithmetic decoder Dρ



coupled to the action model ρ, one can show that external ac-
tion a := Dρ(y1:m) is distributed according to ρ (MacKay
2003), which resembles Thompson sampling. We can also
efficiently compute the probability of a as a product of con-

ditional probabilities (P [a] =
∏k

t=1 P [bt|b<t]) required for
some learning algorthms. We can even efficiently compute
the cumulative probability based on the recursion P (X1:k ≤
b1:k) = [[b1 = 1]]P (X1 = 0) + P (X2:k ≤ b2:k|X1 =
b1)P (X1 = b1). Unfortunately binarization does not lend
itself to an efficient way of computing the most probable
(MAP) action argmaxa P (a). But Thompson sampling for
large spaces often performs better than MAP anyway, since
the latter is not representation invariant and favors brittle so-
lutions. Binarization decreases the branching factor in plan-
ning algorithms but increases the planning horizon. Since
binarized actions are length-optimized this may still lead
to a net win. For example, depth-limited planning tech-
niques, which typically have an exponential dependence on
the length of the horizon, now have an exponential depen-
dence on the combined code-length under ρ, which drasti-
cally alters their semantics and is closely connected to us-
ing a prior policy to guide search such as in successful ap-
proaches for Computer Go (Silver et al. 2017; Orseau et al.
2018; Orseau and Lelis 2021).

Pre-training and universality. A common use case in
machine learning is to consider fine tuning an existing pre-
trained model to save on compute. The next result shows
that pre-training on any data will not affect the asymptotic
performance of any consistent density estimator. In our con-
text, it suggests that a good general approach to constructing
an action model for a new domain might be to first pre-train
on large, task-agnostic data and then to use fine tuning to
incorporate task-specific knowledge if this data is available.

More formally, consider sequences X1:∞ over a finite al-
phabet X sampled from Pθ0 . Assume θ(X1:n) is a consis-
tent estimator of θ0. Then whatever the first k samples x1:k

are, θ(x1:kXk+1:n) is still a consistent estimator of θ0. Ad-
ditionally, the reverse is also true. Most importantly, this
holds without any assumptions on the stochastic process
(Xt) ∼ Pθ0 .

Proposition 3 (consistency is immortal). For any fixed k ∈
N, θ(X1:n) is a consistent estimator of θ0 if and only if for all
x1:k such that Pθ0 [x1:k] > 0, θ(x1:kXk+1:n) is a consistent
estimator of θ0.

One consequence of this proposition is that for a given ρ
and π, if Π defined in Equation 1 is a consistent estimator
of π∗

µ, the optimal policy in µ, then if the action model ρ
is pre-trained on additional data then Π is still a consistent
estimator.

Discounting. One subtlety that arises is how to best com-
municate a reward from the environment to the internal pol-
icy. Notice that in Algorithm 1, after the first internal action,
rt is set to 0. This has the effect of preserving the return and
associated discounting schedule in the external environment.
Although in the case of uninformative action binarization
one can map a discounted external setup to an equivalent dis-
counted internal setup (Majeed and Hutter 2020), attempting

a more general construction along those lines in our case
requires time-dependent, and worse, history-dependent dis-
counting which runs into both technical and computational
challenges.

7 Related Work

We now discuss some related work.

Compression-based RL. Using compression to aid with
machine learning goes back to at least the work by Frank,
Chui, and Witten (2000), where compression-based mod-
els were compared to classical machine learning methods
on a number of natural language problems. More recently,
Hamilton, Fard, and Pineau (2013) used compression with
Predictive State Representation on domains with large ob-
servation spaces to aid with the intractability. Botvinick
et al. (2015) discussed the internal representation of rein-
forcement learning, specifically a natural or efficient cod-
ing of the internal representation. Veness et al. (2015)
used compression-based techniques for policy evaluation via
action-value estimation.

Large transformer/language models used to aid RL.
Language models have had a recent resurgence, starting with
Attention is all you need (Vaswani et al. 2017) and being fol-
lowed by the success of GPT-2 (Radford et al. 2019) and
GPT-3 (Brown et al. 2020). Despite the accomplishment
of language models on NLP tasks, there have only been a
few circumstances where these techniques have translated
to the field of reinforcement learning. Luketina et al. (2019)
provides a survey of reinforcement learning methods which
have been improved with the addition of natural language
approaches. One such example is Kaplan, Sauer, and Sosa
(2017), where natural language methods were used with
deep reinforcement learning to play Atari games. In addition
to this, recent work on using transformer models with rein-
forcement learning includes: Parisotto et al. (2020), Noever,
Ciolino, and Kalin (2020) train GPT-2 (Radford et al. 2019)
on the PGN format to learn chess, Ciolino, Kalin, and No-
ever (2020) trained GPT-2 in a similar way to learn Go, and
Stein, Filchenkov, and Asadulaev (2020) used Transform-
ers for Deep Q-learning to play Atari games. Krause et al.
(2020) introduced a coding scheme to improve small lan-
guage models.

8 Future Work

Arithmetic encoding has a number of extensions which de-
serve further investigation in the context of reinforcement
learning. In particular, one can generalise arithmetic encod-
ing to time-adaptive coding distributions, which is known
as adaptive arithmetic encoding. While one could crudely
incorporate this notion into our existing work, a more com-
plete treatment would require going outside the MDP for-
malism.

Finally from a theory perspective, there are some addi-
tional generalizations that can be made, though they are be-
yond the scope of this paper. These include a more thorough
treatment of the infinite horizon case by using discounting,
investigating setups which do not require an end of action



symbol ⊤ (as discussed earlier) and allowing the external
action space to be countably infinite.

9 Conclusion

In this work we have laid the conceptual foundations for
information-theoretic actuation. We revisited the meaning
of action in reinforcement learning, and explored a partic-
ular type of internal viewpoint. We have demonstrated how
our method is theoretically well justified, by formally con-
necting it to a traditional reinforcement learning MDP setup.
We argued that such a framework is well positioned to take
advantage of the recent progress in large sequence/language
models for multitask reinforcement learning problems over
large action spaces. The next step is to explore application of
this formalism in conjunction with modern sequence mod-
elling techniques on some benchmark problems to better
understand the potentials and limitations of this approach.
Multi-task RL problems with vastly different action spaces
seem the most natural setting where our approach could have
immediate impact.
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Supplementary Material

Proof of Theorem 2

Proof. Instead of expanding the entire action-value function we will show that a single interaction between µ and Π are equal
to an interaction between ϑ and π. Let s′, r, a′ be arbitrary states, rewards and actions, then

µ(s′r|s, a)Π(a′|s′)

(a)
= µ(s′r|s, a)

∑

q′∈Ds′ :
a′=τ(Dρ(q

′|s′))

|q′|
∏

i=1

π(q′i|s
′q′<i)

(b)
= ϑ(s′ǫr|sq, b)

∑

q′∈Ds′ :
a′=τ(Dρ(q

′|s′))

|q′|
∏

i=1

π(q′i|s
′q′<i)

(c)
=

∑

q′∈Ds′ :
a′=τ(Dρ(q

′|s′))

ϑ(s′ǫr|sq, b)π(q′1|s
′ǫ)×

|q′|
∏

i=2

ϑ(s′q′<i0|s
′q′<i−1, q

′
i−1)π(q

′
i|s

′q′<i).

Step (a) comes from Equation 1; step (b) comes from the first case of Definition 1; step (c) comes from the second case of
Definition 1, where ϑ(s′q′<i0|s

′q′<i−1, q
′
i−1) = 1.

Therefore in the expansion of the action-value function we can replace one with the other,

QΠ
µ (s, a) = E

Π
µ

[

m
∑

t=1

rt|s, a

]

=
∑

s1,r1,a1

µ(s1r1|s, a)Π(a1|s1) . . .
∑

sm,rm,am

µ(smrm|sm−1, am−1)Π(am|sm)

m
∑

t=1

rt

=
∑

s1,r1,a1











∑

q′∈Ds1
:

a1=τ(Dρ(q
′|s1))

ϑ(s1ǫr1|sq, b)π(q
′
1|s1ǫ)

|q′|
∏

i=2

ϑ(s1q
′
<i0|s1q

′
<i−1, q

′
i−1)π(q

′
i|s1q

′
<i)











. . .
∑

sm,rm,am











∑

q′∈Dsm :

am=τ(Dρ(q
′|sm))

ϑ(smǫr1|sm−1ǫ, b)π(q
′
1|smǫ)

|q′|
∏

i=2

ϑ(smq′<i0|smq′<i−1, q
′
i−1)π(q

′
i|smq′<i)











m
∑

t=1

rt

= E
π
ϑ

[

m
∑

t=1

rt|sq, b

]

= Qπ
ϑ(sq, b)

Notice that the horizon is defined externally, i.e. an m-horizon return in the external environment corresponds to m decoded
external actions, and not the number of internal actions taken.

Proof of Proposition 3

Proof. (⇒)



Let N := {x1:∞ : θ(x1:n) 6→ θ0} be the set of sequences on which convergence fails. The consistency assumption implies

0 = Pθ0 [N ]

=
∑

x1:k∈Xk

Pθ0 [N|x1:k]Pθ0 [x1:k]

≥ Pθ0 [N|x1:k]Pθ0 [x1:k].

Since Pθ0 [x1:k] > 0 by assumption, the RHS can only be 0 if Pθ0 [N|x1:k] = 0, which implies Pθ0 [x1:k × X∞ \ N |x1:k] = 1,
hence θ(x1:kXk+1:n) → θ0 with Pθ0 [·|x1:k]-probability 1.

(⇐)
Again let N := {x1:∞ : θ(X1:n) 6→ θ0} be the set of sequences on which convergence fails. The consistency assumption

implies that for all x1:k for which Pθ0 [x1:k] > 0, we have Pθ0 [x1:k ×X∞ \ N |x1:k] = 1, which implies that Pθ0 [N|x1:k] = 0.
Therefore,

Pθ0 [N ] =
∑

x1:k∈Xk:Pθ0
[x1:k]>0

Pθ0 [N|x1:k]Pθ0 [x1:k] = 0

which implies Pθ0 [X
∞ \ N ] = 1, hence θ(X1:n) → θ0 with Pθ0-probability 1.


