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Abstract

Clarke and Barron analysed the relative entropy between an i.i.d. source and a Bayesian mixture over a continuous
class containing that source. In this paper a comparable result is obtained when the source is permitted to be both
non-stationary and dependent. The main theorem shows that Bayesian methods perform well for both compression
and sequence prediction even in this most general setting with only mild technical assumptions.

1 Introduction
We continue the work of Clarke and Barron [1] bounding the relative entropy between probability measures on infinite
sequences and a Bayesian mixture over measures in some continuous classM. Small values of relative entropy have
a number of implications. Notably that prediction and compression using the Bayesian mixture is nearly as good
as using the true unknown source. The contribution of this work is to show that Bayesian methods generalise to
the case where data is not sampled identically and independently, a situation that is often encountered in practical
problems. One application is online compression where a sequence of words is observed and should be compressed.
If we assume the words are sampled from some probability distribution, which may be non-stationary and dependent,
then near-optimal compression is obtained by arithmetic coding with respect to that distribution. Typically, however,
the probability distribution from which the data is sampled is unknown. One approach in this case is to code with
respect to the Bayesian mixture over some set of measures believed to contain the truth. Bounding the relative entropy
between the truth and the Bayesian mixture is then equivalent to bounding the compression redundancy due to coding
with respect to the wrong measure.

Another application is discriminative learning where a classifier should predict label data based on observations.
Sometimes it is possible to model the joint distribution of the observations and labels together, but in many cases the
observations are relatively unordered and modelling the conditional distribution of the label given the observation is
easier. Our results show that Bayesian methods for discriminative learning perform well under only mild technical
assumptions.

SupposeM =
{
Pθ : θ ∈ Θ ⊆ Rd

}
is a set of measures on the space of infinite sequences over alphabet Ω. We let

M be a Bayesian mixture overM with respect to some prior and analyse the relative entropy D(Pnθ ‖Mn) where Pnθ
and Mn are the distributions on the first n observations induced by Pθ and Mn respectively. Unlike in [1] we permit
Pθ to be non-stationary and dependent, so Pnθ is typically not a product measure.

Our main contribution is a proof under mild technical assumptions that the relative entropy can be bounded by

D(Pnθ ‖Mn) ≤ ln
1

w(θ)
+
d

2
ln

n

2π
+

1

2
ln det J̄n(θ) + o(1)

where w(θ) is the prior density of parameter θ and J̄n(θ) is the mean Fisher information matrix at θ. If Pnθ is a product
measure, then J̄n(θ) coincides with the usual Fisher information matrix and the result above is the same as that given
in [1].

The main difficulty in generalising the proof in [1] to non-stationary dependent sources is the fact that the mean
Fisher information matrix J̄n(θ) is now dependent on n. We start with some notation (Section 2). The main theorems
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are presented (Section 3) followed by a variety of applications and discussion (Section 4). The proofs are found in
Sections 5 and 6. We discuss some of the assumptions and special cases in Sections 7-9, including the case when
the information matrix vanishes and a comparison to the known results in zero-dimensional (countable) families. For
discussion and conclusions see Section 10.

2 Notation
We use ln for the natural logarithm and A> for the transpose of matrix A. Suppose A ∈ Rd×d and x ∈ Rd. Then
|x|22 := x>x is the standard 2-norm and |x|2A := x>Ax is the norm with respect to A. Note that |·|A is a norm only if
A is positive definite, but occasionally we abuse notation by writing |·|A even ifA is not positive definite. We use ‖A‖2
for the spectral norm of A, which for positive definite matrices is the largest eigenvalue of A. It is easy to check that
|x|22 ≤ |x|

2
A ‖A−1‖2. The determinant of A is detA. The indicator function JexprK is equal to 1 if expr is true and

0 otherwise. For function f : Rn → R we write ∂if for the partial derivative of f with respect to the ith coordinate.
Higher order derivatives are denoted by ∂i,jf or ∂i1···ikf . The Gamma function is Γ(x) =

∫∞
0
tx−1e−tdt.

Probability spaces. Let (Ω,F) be a measurable space. Then the product measure space is (Ωn,Fn) where Fn is the
σ-algebra generated by the n-fold tensor product of F . Let F∞ be the cylinder σ-algebra defined by

F∞ := σ

{ ∞⋃

n=1

Fn ⊗ {Ω∞}
}
.

Then (Ω∞,F∞) is a measurable space. A probability measure P on this space may be thought of as a family of
probability measures where Pn : Fn → [0, 1] is induced by restriction Pn(A) = P (A × Ω∞). We think of P as
a probability measure on infinite sequences in Ω∞ and Pn to be the probability measure on the first n observations
induced by P . If ω ∈ Ω∞, then ω1:n = ω1ω2 · · ·ωn ∈ Ωn is the projection of the first n components and ω<n :=
ω1:n−1.

Parameterised families and Bayes. Suppose Θ ⊆ Rd and that Pθ is a family of probability measures parameterised
by θ ∈ Θ. We assume there exists a measure ν such that νn is σ-finite for all n and the density of Pnθ with respect to
νn exists for all n and θ ∈ Θ, which is denoted by pnθ . Then by the definition of the density we have

(∀A ∈ Fn) Pnθ (A) =

∫

A

pnθ (ω)dνn(ω).

We denote expectations with respect to Pnθ by Eθ where n is always understood from the context. Variances are
denoted by Varθ. The n-step mean Fisher information matrix at θ ∈ Θ is denoted by J̄n(θ) ∈ Rd×d and defined

J̄n(θ)i,j := − 1

n
Eθ [∂i,j ln pnθ ] ,

which like all other quantities of interest is independent of the reference measure used to define the density. There are
other definitions of the Fisher information matrix, all of which coincide under the weak assumption that derivatives
and expectations can be exchanged [2, §18]. We are not aware of any interesting family of measures for which this
assumption is not satisfied. Let w : Θ → [0,∞) be a prior probability density with respect to the Lebesgue measure,
which satisfies

∫
Θ
w(θ)dθ = 1. Then the density of the Bayesian mixture mn : Ωn → [0,∞) is defined by

mn(ω1:n) :=

∫

Θ

w(θ)pnθ (ω1:n)dθ.

The Bayes mixture measure Mn : Fn → [0, 1] may equivalently be defined by

Mn(A) =

∫

A

mn(ω)dν(ω) ≡
∫

A

∫

Θ

w(θ)pnθ (ω)dθdν(ω) =

∫

Θ

w(θ)Pnθ (A)dθ.
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If w and pnθ are continuous at θ, then Pnθ is absolutely continuous with respect to Mn and the relative entropy between
Pnθ and Mn is defined by

D(Pnθ ‖Mn) := Eθ ln
pnθ
mn

.

We do not claim that Pθ �M and indeed this is not generally the case (M≡ Bernoulli measures). The d-dimensional
(non-degenerate) normal distribution has density

N (θ|µ,Σ) =
1√

(2π)d det Σ
exp

(
−1

2
|x− µ|2Σ−1

)

where µ ∈ Rd is the mean and Σ is the positive definite covariance matrix.

3 Main Theorems
Our main result generalises Theorem 2.3 in [1]. The conditions (a), (b) and (d) below are standard regularity conditions
also made in [1]. The conditions (c) and (e) are regularity conditions on the mean Fisher information matrix, which in
this work depends on n as well as θ. The second result relaxes condition (e) at the cost of a slightly worse bound.

Theorem 1. Let θ◦ ∈ Θ and J̄n ≡ J̄n(θ◦). Define a family of functions {fn} : Θ→ R by

fn(θ) :=
1

n
D(Pnθ◦‖Pnθ ).

Assume that:

(a) w is continuous at θ◦.

(b) fn(θ) is twice differentiable at θ◦.

(c) Entries in the Hessian of fn are equicontinuous at θ◦.

lim
θ→θ◦

sup
n
|∂i,jfn(θ)− ∂i,jfn(θ◦)| = 0.

(d) ∂ifn(θ◦) = 0 for all i.

(e) lim supn→∞ ‖J̄−1
n ‖2 <∞.

If Dn ≡ D(Pnθ◦‖Mn), then

lim sup
n→∞

(
Dn −

d

2
ln

n

2π
− 1

2
ln det J̄n

)
≤ ln

1

w(θ◦)
.

The three components of the bound can be explained as follows. Assume Pθ is i.i.d., which implies that J̄n = J̄1

is independent of n. We want to approximate Dn by integrating the Bayes mixture over a region Rn containing θ◦.

Dn = Eθ◦ ln
pnθ◦
mn
≤ Eθ◦ ln

pnθ◦∫
Rn

w(θ)pnθ dθ
≈ Eθ◦ ln

pnθ◦∫
Rn

w(θ◦)pnθ◦dθ
= ln

1

w(θ◦)
+ ln

1

V (Rn)

where V (Rn) is the volume ofRn. The quality of the approximation depends on the choice ofRn with smaller regions
leading to better approximations, but also smaller volumes. A single scalar parameter θ can usually be estimated with
an accuracy of about n−1/2 using n samples, which suggests that pnθ is approximately constant inside the cube of width
n−1/2 and dimension d. As n tends to infinity the volume of the cube shrinks to zero and the continuity of the prior
justifies the approximation w(θ) ≈ w(θ◦). Choosing this as the region leads to V (Rn) = n−d/2, which explicates the
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d
2 lnn component of the bound. The additional term depending on the information matrix is explained by making the
above argument more precise. The insight is that J̄1 is a measure of the expected curvature of ln p1

θ at θ◦. Then large
J̄1 implies that Rn must be small for a good approximation. If the data is i.i.d., then the curvature is independent of n
and V (Rn) ∝ n−d/2 det J̄

1/2
1 is unsurprising. For non i.i.d. sources the curvature of ln pnθ is possibly dependent on n

and so appears in the bound in Theorem 1. An alternative explanation is found in [1].
By making an additional assumption we also obtain a stronger result in terms of the actual redundancy, rather than

the expected redundancy.

Theorem 2. Assume conditions (a-e) and additionally that

(f)
1

n
Varθ◦

(
ln
pnθ◦
pnθ

)

is twice differentiable at θ◦ and has equicontinuous second derivatives as in assumption (c) above. Then there exists a
sequence of random variables rn : Ω∞ such that for all ω = ω1ω2 · · · ∈ Ω∞

lim sup
n→∞

(
ln
pnθ◦(ω1:n)

mn(ω1:n)
− d

2
ln

n

2π
− 1

2
ln det J̄n − rn(ω)

)
≤ ln

1

w(θ◦)
+ ln 2 +

√
2d

where limn→∞ Eθ◦ |rn| = 0.

The condition (c) above is subtly different to the one suggested in [3, §3] where it is assumed that the average
information matrix is equicontinuous at θ◦. The version used here is require for technical reasons and may in fact be
necessary. The condition (d) is very weak and follows from the standard regularity conditions that permit the exchange
of the derivative and expectation. The assumption (e) that ‖J̄−1

n ‖2 is uniformly bounded in n is unexpected because if
the opposite is true, thenM should in some direction be approximately flat near θ◦, which is precisely when we might
expect to do even better than Theorem 1 implies.

Theorem 3. Let ε > 0. Under conditions (a-d) above it holds that

lim sup
n→∞

(
Dn −

d

2
ln

n

2π
− d

2
ln(‖J̄n‖2 + ε)

)
≤ ln

1

w(θ◦)
.

Although the choice of ε is arbitrary, the o(1) term hidden by the lim sup depends on ε, which prevents ε = 0.
Theorem 3 does not imply that Dn grows sub-logarithmically if ‖J̄n‖2 = 0. Later we show that Dn will typically
grow logarithmically with n except when fn is completely flat at θ◦. The d

2 ln(‖J̄n‖2 + ε) term may be replaced by
1
2 ln detAn where An = J̄n + εI with I the identity matrix. See the proof for details. The proofs of Theorems 1, 2
and 3 are delayed until Sections 5 and 6.

4 Applications
The conditions of Theorems 1 and 3 are satisfied for many well-known sources such as categorical sources, Markov
models and some types of discriminative learning. We present some simple examples, but first give some interpreta-
tions of the relative entropy as a measure of performance. Note that many of the applications considered below have
been considered elsewhere in more specialized articles. The main objective of this section is to show that the new
result provides comparable bounds on the performance of Bayes, even in these special cases.

Interpretations of relative entropy. For simplicity suppose Ω is countable, which allows us to replace the integrals
by sums and think of the density pnθ as a distribution on Ωn. The relative entropy between Pn and Mn is a versatile
measure of the performance of Mn when predicting or compressing in place of Pn. If ω1:t ∈ Ωt, then the conditional
density of measure pt is written pt(ωt|ω<t) = pt(ω1:t)/p

t(ω<t). An important property is the chain rule, which says
that

Dn ≡ D(Pn‖Mn) = EP
n∑

t=1

dt

4



where

dt(ω<t) := EP
[
ln

pt(ωt|ω<t)
mt(ωt|ω<t)

∣∣∣ω<t
]
≡
∑

ωt∈Ω

pt(ωt|ω<t) ln
pt(ωt|ω<t)
mt(ωt|ω<t)

is the F t−1-measurable random variable that is the relative entropy between the 1-step predictive distributions of P
and M given ω<t. Therefore if dt(ω<t) is small, then mt(·|ω<t) is close to pt(·|ω<t) and so predicting using the
Bayesian mixture measure M is nearly as good as using the unknown P . If Dn grows sub-linearly, then dt converges
to zero in Cesàro average, which implies that M predicts almost as well as the optimal unknown distribution P .

More directly, suppose ω ∈ Ω∞ is sampled from an unknown Pθ and observed sequentially. An online compres-
sion algorithm that knows Pθ may use arithmetic coding to produce a code for ω1:n that has an expected code-length
of at most two bits more than the optimal value. If M is used rather than P , then the expected additional code-length
is the relative entropy Dn. This means that substituting the Bayesian mixture into the arithmetic coding algorithm
achieves an expected code-length of at most Dn + 2 bits more than the theoretical limit [4, 5, 6].

Categorical sources. Let d ≥ 1 and Ω = {0, 1, 2, · · · , d}. An i.i.d. categorical source is a product measure on the
infinite sequences Ω∞ so that the probability of sampling symbol 0 ≤ k ≤ d depends only on k and not the preceding
symbols. The space of categorical measures is parameterised by

Θ =
{
θ ∈ [0, 1]d : |θ|1 ≤ 1

}

where θk is the probability that the source parameterised by θ produces symbol k. Define θ0 = 1− |θ|1 and

pθ(ω1:n) =

n∏

t=1

θωt .

Then since pθ is a product measure we have for all n that J̄n = J̄1, which may easily be computed by hand to be

(∀1 ≤ i, j ≤ d) J̄n(θ)i,j =

{
1
θi

+ 1
θ0

if i = j
1
θ0

otherwise.

Then by Lemma 8 in the Appendix we compute the determinant to be det J̄n(θ) =
∏d
k=0

1
θk

. We are permitted to
choose any prior density provided it is continuous, but a natural choice is Jeffrey’s prior, which when it exists is defined
to be proportional to the square root of the determinant of the information matrix. Jeffrey’s prior is a non-informative
prior that is parameterisation invariant. A nice property is that if w is chosen to be Jeffrey’s prior, then the bound on
Dn will be independent of θ◦. For i.i.d. categorical sources Jeffrey’s prior is the symmetric Dirichlet with parameter
1
2 .

w(θ) = Γ

(
d+ 1

2

)
π−

d+1
2

√√√√
d∏

k=0

1

θk
∝
√

det J̄n.

After checking the conditions for Theorem 1 are satisfied we obtain

D(Pnθ ‖Mn) ≤ d+ 1

2
lnπ + ln

1

Γ(d+1
2 )

+
d

2
ln

n

2π
+ o(1).

Note that in this case the Bayesian mixture corresponds to the KT estimator for which the redundancy is already well-
known [7, 8, ?, 9]. It is also worth remarking on the choice of parameterisation. Perhaps the most natural approach
would be to choose Θ ⊆ Rd+1 under the constraint that |θ1| = 1. Unfortunately the theorem cannot be applied for
a variety of reasons. One is that there is no prior density on Θ ⊂ Rd+1 with respect to the (d + 1)-dimensional
Lebesgue measure. Another is that condition (d) is no longer satisfied. Even if the theorem held, the bound would still
be worse by an additive 1

2 log n. An overkill solution would be to allow Θ to be a d-dimensional manifold, but since
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all conditions are local this is not too helpful in practise. One just ends up working on the chart level directly anyway,
which essentially is what we do above.

So far we haven’t made use of the generalisation to non-stationary dependent sources, but do so now by applying
Theorem 1 to Markov models.

Markov models. One of the simplest commonly used examples of a non-i.i.d. process is the Markov chain. The
redundancy of Bayes methods for Markov chains has been studied in detail in [10] (see Corollary 1) and [11]. Our
general Theorem 1 implies a comparable result. Let Ω = {1, 2, · · · , N} be a finite set of states. Then a Markov chain
is characterised by a transition matrix θ : RN×N → [0, 1] with θkj being the probability of transitioning from state j to
state k. The vector θj =

{
θ1
j · · · , θNj

}
∈ RN therefore satisfies |θj | = 1 for all states j. The corresponding measure

on the sequence of states is defined in terms of its density by

pθ(ω1:n) =

n∏

t=1

θωtωt−1

where we assume that the intial state ω0 ∈ Ω is known. Given the constraint that |θj | = 1 allows us to view the
parameter space as

Θ =

{
θ ∈ [0, 1]N(N−1) :

N−1∑

k=1

θkj ≤ 1,∀j
}

where θNj := 1 −∑N−1
j=1 θkj . The mean Fisher information matrix is no longer independent of n, but converges as

n→∞. If πθ(j) = limn→∞
1
n

∑n
t=1 pθ(ωt = j|ω0) is the steady-state distribution of the Markov chain pθ, then the

determinant of the Fisher information matrix was shown in [10] to be

det J̄n(θ) =

N∏

j=1

πθ(j)
N−1

∏N
k=1 θ

k
j

Therefore if we choose w(θ) ∝
√

det J̄n, then

D(Pnθ ‖Mn) ≤ N(N − 1)

2
ln

n

2π
+O(1),

which is known to be the minimax rate. For detailed discussion on the redundancy of Bayes methods for Markov
chains see [10, 12] and [13].

Discriminative learning. We now consider a regression setting where a predictor should learn a (noisy) function
f : X → Y from sequences of data xt and targets yt. At each time-step t the predictor observes data xt in X and
should predict a distribution over labels yt in Y . The sampled label is then observed and the cycle repeats. It can occur
that the sequence of observations is unpredictable and the joint distribution P (x, y) may be hard to model. In this
case we may prefer discriminative learning where P (y|x) is modelled for each x. Since x may be arbitrary we cannot
reasonably assume that the distribution of the labels y are independent and identically distributed and so the work of
Clarke and Barron does not apply. In order to apply our main theorem we need to be more specific and parameterise
M = {Pθ(·|x)} where θ ∈ Θ. The most natural example is linear regression described below.

Linear Basis Function Regression. Let x1, x2, · · · , xn be an observed sequence of data where xk ∈ X and Φ : X →
[0, 1]d be a set of bounded basis function. Then for θ ∈ Θ ≡ Rd define a model for the targets y1:n ∈ Rn ≡ Ωn by

pθ(y1:n|x1:n) =

n∏

t=1

N (θ>Φ(xt), β
−1)

where the noise parameter β > 0 is known. The Hessian of fn in the statement of Theorem 3 is easily computed to be

∂i,jfn(θ) =
β

n

n∑

t=1

Φ(xt)iΦ(xt)j ,

6



which is independent of θ. Therefore conditions (b-c) are trivially satisfied. For condition (a) we simply choose the
prior by

w(θ) := N (θ|µ,Σ),

which is continuous everywhere for all µ ∈ Rd and non-degenerate Σ. Other priors are possible, but the Gaussian
prior permits efficient computation of the posterior and predictive distributions [14]. Now

J̄n(θ◦)i,j = ∂i,jfn(θ◦) =
β

n

n∑

t=1

Φi(xt)Φj(xt).

Since Φ(x) ∈ [0, 1]d the spectral norm of the information matrix is bounded by ‖J̄n(θ)‖2 ≤ d‖J̄n(θ)‖max ≤ d · β.
Therefore by Theorem 3 we obtain for all ε > 0 that

lim sup
n→∞

(
Dn −

d

2
ln

n

2π
− d

2
ln (d · β + ε)

)
≤ ln

1

N (θ◦|µ,Σ)
=

1

2
|θ◦ − µ|2Σ−1 +

d

2
ln 2π +

1

2
ln det Σ.

Under the assumption that the model is not mis-specificed this shows that Bayesian linear regression converges to the
truth with low cumulative expected error.

5 Proof of Theorems 1 and 2
As suggested in [3] we roughly follow the proof in [1], carefully adapting each step to the non i.i.d. case where
necessary.

Lemma 4. Let Rn ⊆ Θ be a Lebesgue measurable region with non-zero measure and define a probability measure
on Rn by

cn :=

∫

Rn

exp (−nfn(θ)) dθ

φn(θ) :=
1

cn
exp (−nfn(θ)) ,

Then

ln
pnθ◦
mn
≤ ln

1

w(θ◦)
+ ln

1

cn
+

∫

Rn

φn(θ)

(
ln
w(θ◦)

w(θ)

)
dθ +

∫

Rn

φn(θ)

(
ln
pnθ◦
pnθ
− nfn(θ)

)
dθ (?)

Dn ≤ ln
1

w(θ◦)
+ ln

1

cn
+

∫

Rn

φn(θ)

(
ln
w(θ◦)

w(θ)

)
dθ (??)

Before presenting the proof we want to remark on one aspect of the difference between our proof and [1]. They
replaced nfn(θ) ≡ D(Pnθ◦‖Pnθ ) with its Taylor series in the first step above when defining φn(θ). With our definition
we obtain a straight-forward bound on the expected redundancy with almost no assumptions. The properties of fn(θ)
can then be used to control the dominant ln 1

cn
term, with strong assumptions leading to strong results. Note that the

integral term in (??) vanishes asymptotically under the assumptions that w is continuous at θ◦ and Rn contracts to the
point θ◦ as n tends to infinity.
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Proof. We follow the proof of Theorem 2.3 in [1], but replace the φn in their proof with the version defined above.

ln

(
pnθ◦
mn

)
− ln

1

w(θ◦)

(a)
= − ln

(
mn

w(θ◦)pnθ◦

)

(b)
= − ln

∫

Θ

w(θ)pnθ
w(θ◦)pnθ◦

dθ

(c)

≤ − ln

∫

Rn

w(θ)pnθ
w(θ◦)pnθ◦

dθ

(d)
= ln

1

w(θ◦)
− ln

∫

Rn

φn(θ)
w(θ)pnθ
w(θ◦)pnθ◦

cn exp (nfn(θ)) dθ

(e)

≤
∫

Rn

φn(θ) ln

(
w(θ◦)p

n
θ◦

w(θ)pnθ

1

cn
exp (−nfn(θ))

)
dθ

(f)
= ln

1

cn
+

∫

Rn

φn(θ)

(
ln
pnθ◦
pnθ
− nfn(θ) + ln

w(θ◦)

w(θ)

)
dθ

where (a), (b) and (f) are immediate from definitions and rearrangement. (c) by positivity of the quantity inside the
integral and by restricting the integral to the region Rn. (d) by the introduction of φn(θ). (e) is true by Jensen’s
inequality. The proof of (??) follows by taking the expectation with respect to Pθ◦ leading to

Dn ≡ Eθ◦ ln

(
pnθ◦
mn

)
≤ ln

1

w(θ◦)
+ ln

1

cn
+

∫

Rn

φn(θ)

(
ln
w(θ◦)

w(θ)

)
dθ

where we used the fact that nfn(θ) ≡ Eθ◦ ln pnθ◦/p
n
θ .

We now prove Theorem 1. First we choose Rn in such a way that Rn → {θ◦} as n tends to infinity. We then
bound cn by approximating fn(θ) using a Taylor series expansion about θ◦. Since Rn contracts to a point and w is
continuous, the term inside the integral in Lemma 4 vanishes.

Proof of Theorem 1. Fix some K ∈ N and define

Rn :=
{
θ : n |θ − θ◦|2J̄n < K

}
.

By condition (e) in the theorem statement we have that ‖J̄−1
n ‖2 is uniformly bounded by some constant c. Recalling

the definition of Rn and Lemma 7 we obtain

lim
n→∞

sup
θ∈Rn

n|θ − θ◦|22 ≤ lim
n→∞

sup
θ∈Rn

n|θ − θ◦|2J̄n‖J̄
−1
n ‖2 ≤ lim

n→∞
K‖J̄−1

n ‖2 ≤ K · c.

Therefore Rn contracts to the point-set {θo} as n tends to infinity. To bound ln 1
cn

we approximate fn(θ) by a second
order Taylor series about θ◦. It is immediate from the definition that fn(θ◦) = 0. The first derivative is the expected
value of the score function, which vanishes by assumption (d).

∂ifn(θ◦) = 0.

The second derivative at θ◦ is the information matrix J̄n so

fn(θ) =
1

2
|θ − θ◦|2J̄n + |θ − θ◦|2hn(θ)

8



where hn : Θ → R satisfies limθ→θ◦ supn ‖hn(θ)‖2 = 0 by Lemma 6 in the Appendix. We now bound cn by
comparing to the multivariate normal. First we deal with the remainder term.

En := inf
θ∈Rn

exp
(
−n |θ − θ◦|2hn(θ)

)

≥ exp

(
− sup
θ∈Rn

n‖hn(θ)‖22‖J̄−1
n ‖2 |θ − θ◦|2J̄n

)

≥ exp

(
− sup
θ∈Rn

‖hn(θ)‖22‖J̄−1
n ‖2

K

)
n→∞
−−−−−→
Rn→{θ◦}

1

where the first inequality follows from Lemma 7, the second from the definition of Rn. The convergence follows from
the equicontinuity of the remainder term and the fact that Rn contracts to {θ◦}. Therefore

cn ≡
∫

Rn

exp (−nfn(θ)) dθ

=

∫

Rn

exp

(
−1

2
n|θ − θ◦|2J̄n − n |θ − θ◦|

2
hn(θ)

)
dθ

≥ En

√
(2π)d

det(nJ̄n)

∫

Rn

N (θ|θ◦, (nJ̄n)−1)dθ,

which is proportional to a normal integral over Rn with mean θ◦ and variance (nJ̄n)−1. Therefore by a multivariate
form of Chebyshev’s inequality (Lemma 5 in the Appendix or see [15]) we can bound cn by

cn ≥ En

√
(2π)d

det(nJ̄n)
(1− d/K)

= En

√(
2π

n

)d
1

det J̄n
(1− d/K) . (1)

Therefore by Lemma 4

Dn ≤ ln
1

w(θ◦)
+ ln

1

1− d/K +
d

2
ln

n

2π
+

1

2
ln det J̄n + ln

1

En
+

∫

Rn

φn(θ)

(
ln
w(θ◦)

w(θ)

)
dθ.

By the continuity of w and the fact that Rn converges to a point it follows that

lim
K→∞

lim
n→∞

∫

Rn

φn(θ) ln
w(θ◦)

w(θ)
dθ = 0.

Therefore sending K to infinity leads to.

lim sup
n→∞

(
Dn −

d

2
ln

n

2π
− 1

2
ln det J̄n

)
≤ 1

w(θ◦)

as required.

Proof of Theorem 2. We use the same Rn as in the proof of Theorem 1 and apply the first part of Lemma 4 to obtain.

ln
pnθ◦
mn
≤ ln

1

w(θ◦)
+ ln

1

cn
+

∫

Rn

φn(θ)

(
ln
w(θ◦)

w(θ)

)
dθ +

∫

Rn

φn(θ)

(
ln
pnθ◦
pnθ
− nfn(θ)

)
dθ. (2)

The ln 1
cn

term and the first integral are constant random variables and are bounded as they were in Theorem 1. We
only need to show that

rn :=

∫

Rn

φn(θ)

(
ln
pnθ◦
pnθ
− nfn(θ)

)
dθ

9



converges to zero in L1. By an application of Fubini’s theorem the expectations can be exchanged to yield

Eθ◦ |rn| =
∫

Rn

φn(θ)Eθ◦

∣∣∣∣ln
pnθ◦
pnθ
− nfn(θ)

∣∣∣∣ dθ

≤
∫

Rn

φn(θ)

(
Varθ◦ ln

pnθ◦
pnθ

) 1
2

dθ.

We now use assumption (f) to control the variance term by taking a second degree Taylor series expansion about θ◦. If
θ ∈ Rn, then

Varθ◦

(
ln
pnθ◦
pnθ

)
= n |θ − θ◦|2J̄n + n |θ − θ◦|2hn(θ)

≤ n |θ − θ◦|J̄n
(
1 + ‖J̄−1

n ‖2‖hn(θ)‖22
)

≤ K(1 + ‖J̄−1
n ‖2‖hn(θ)‖22)

where the second derivative of the variance at θ◦ is twice the information matrix with remainder hn : Θ→ R satisfying.
limθ→θ◦ supn ‖hn(θ)‖2 = 0 by Lemma 6. In the last two steps we used Lemma 7 and the definition of Rn. Therefore

lim
n→∞

Eθ◦ |rn| ≤ lim
n→∞

∫

Rn

φn(θ)

(
Varθ◦ ln

pnθ◦
pnθ

) 1
2

dθ

≤ lim
n→∞

∫

Rn

φn(θ)
(
K(1 + ‖J̄−1

n ‖2‖hn(θ)‖22)
) 1

2 dθ (3)

=
√
K (4)

where the final inequality follows since Rn contracts to a point and because ‖J̄−1
n ‖2 is uniformly bounded. Therefore

limn→∞ Eθ◦ |rn| = 0. We cannot send K to infinity like in the proof of Theorem 1. Instead we simply fix K = 2d
and insert Equations (1) and (3) into (2) to obtain for all ω = ω1ω2 · · · ∈ Ω∞

lim sup
n→∞

(
ln
pnθ◦(ω1:n)

mn(ω1:n)
− d

2
ln

n

2π
− 1

2
ln det J̄n − rn(ω)

)
≤ ln

1

w(θ◦)
+ ln 2 +

√
2d

as required.

6 Proof of Theorem 3
In the previous section we used the assumption (e) that ‖J̄−1

n ‖2 was uniformly bounded by a constant to show that
the critical region Rn contracts to θ◦ as n tends to infinity. This result can be guaranteed by defining the region Rn
with respect to a different norm. Define a positive definite matrix An := J̄n + εI with I ∈ Rd×d the identity matrix
and ε > 0 to be chosen later. The matrix An is positive definite since it is the sum of two positive definite matrices.
Furthermore An > J̄n. The assumption may now be eliminated by using the norm |θ − θ◦|An to define the critical
region rather than |θ − θ◦|J̄n . The only component that requires checking is the bound on cn. The critical region
becomes

Rn :=
{
n |θ − θ◦|2An ≤ K

}
.

We now show thatRn contracts to a point as n tends to infinity. It is an easy consequence of the spectral decomposition
theorem that the smallest eigenvalue of An satisfies λmin ≥ ε and ‖A−1

n ‖2 = 1
λmin

≤ 1
ε , which is precisely the

condition required for Rn to contract to the point θ◦. Therefore

lim sup
n→∞

(
Dn −

d

2
ln

n

2π
− 1

2
ln detAn

)
≤ ln

1

w(θ◦)

10



The determinant of An may asymptotically be arbitrarily larger than det J̄n, which appeared in Theorem 1. If λi is
the ith eigenvalue of J̄n, then λi + ε is the ith eigenvalue of An and an easy bound on detAn is

detAn =

d∏

i=1

(λi + ε)
(a)

≤
d∏

i=1

(‖J̄n‖2 + ε) = (‖J̄n‖2 + ε)d

where (a) follows by the inequality λi ≤ ‖J̄n‖2. Therefore

lim sup
n→∞

(
Dn −

d

2
ln

n

2π
− d

2
ln(‖J̄n‖2 + ε)

)
≤ ln

1

w(θ◦)

as required.

7 Weakening the assumptions
The continuity of the prior w at θ◦ is required to ensure that w assigns non-zero probability to environments in a region
of θ◦. That fn is twice differentiable is required to define the curvature of Eθ◦ ln pθ. Condition (d) was used to show
that the 1st order terms in the Taylor series of fn vanish. The assumption is standard and very weak. For example, it
holds for all finite Ω, as well as exponential families in their canonical form. A nice discussion with examples may be
found in [2, §18]. The equicontinuity condition is necessary to ensure that the Taylor approximation of fn is uniformly
accurate in n. Actually a counter-example when ∂i,jfn is not equicontinuous is not hard to construct. Let Ω = {0, 1},
Θ = [0, 1] and w(θ) = 1 and an ≥ 0 be a sequence of constants to be chosen later. Define probability mass in terms
of its conditionals by

pθ(1|ω<n) := min

{
1, θ + an

(
θ − 1

2

)2
}
,

which depends on n, but not ω<n. For θ◦ = 1
2 we have pθ◦(1|ω<n) = 1

2 for all n, but if an is chosen to converge to
infinity, then limn→∞ pθ(1|ω<n) = 1 for all θ 6= θ◦. Based on this, if an is chosen to converge to infinity sufficiently
fast, then width of the interval in which pnθ is close to pnθ◦ can be made arbitrarily small (Fig. 1) and so

lim
n→∞

(
Dn −

1

2
ln

n

2π

)
=∞.

The information matrix at θ◦ = 1
2 can be found via a straight-forward application of the definition and is J̄n(θ◦) =

1/4, which is positive (definite) and independent of n. Therefore all conditions of the theorem are met except for
equicontinuity and yet the result does not hold. This should not be surprising. The equicontinuity condition ensures
that the approximation of fn via its second order Taylor series has uniform error, which is crucial to the proof.

8 Higher Order Derivatives
In the main theorems we used the second order approximation of the log likelihood function to control the redundancy,
but if J̄n = 0, then Theorem 1 cannot be applied and Theorem 3 seems suboptimal since, regardless of how ε is
chosen, the bound on Dn still increases like d

2 log n. Here we consider the case where the second (and maybe higher)
derivatives vanish. For the remainder of this section we fix an even k and assume that ∂i1···ijfn(θ◦) = 0 for all j < k.
Then by the kth order Taylor expansion we let

fn(θ) ≈ 1

k!

∑

i1···ik

∂i1···ikfn(θ◦)(θ − θ◦)i

11
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Figure 1: Conditional probability mass pθ(1|ω<n) for different an

where for x ∈ Rd and i = i1 · · · ik we use the multi-index notation xi ≡∏k
i=1 xii . Then define

Λn := max
x∈Rd
|x|k=1

∑

i1···ik

∂i1···ikfn(θ◦)x
i

where Λn ∈ (0,∞) because the derivative is positive definite and the set
{
x ∈ Rd : |x|k = 1

}
is compact. Then

∑

i1···ik

∂i1···ikfn(θo)(θ − θ◦)i ≤ Λn

d∑

i=1

(θi − θ◦i)k.

We replace the critical region used in the proof of Theorem 1 with

Rn :=

{
θ : nΛn

d∑

i=1

(θi − θ◦i)k < K

}
.

The proof goes through unchanged except for the computation of cn. We define a measure on Rd by

Gn(θ) :=
1

ηn
exp

(
−nΛn

k!

d∑

i=1

(θi − θ◦i)k
)

where the ηn is the normalisation constant that can be determined by the usual methods for computing Gaussian
integrals.

ηn :=

∫

Rd
exp

(
−nΛn

k!

d∑

i=1

(θi − θ◦i)k
)
dθ =

(∫ ∞

−∞
exp

(
−nΛn

k!
xk
)
dx

)d
=

(
2

k

(
k!

nΛn

)1/k

Γ

(
1

k

))d
.

where the last step follows by substituting y = nΛnx
k/k! and the definition of the Gamma function. Then

cn =

∫

Rn

exp (−nfn(θ)) dθ ≈ ηn
∫

Rn

Gn(θ)dθ

12



where the approximation is due to the lower order terms when substituting the Taylor series expansion. The integral
may be bounded naively by computing the kth moments of G in each direction, Markov’s inequality and the union
bound. We omit the details. This approach leads to the bound

∫

Rn

G(θ)dθ ≥ 1− d2(k − 1)!

K

K→∞−→ 1,

which importantly is independent of n. Like in the proof of Theorem 1 we can send K to infinity in the final stage of
the proof.

cn ≥ ηn
(

1− d2(k − 1)!

K

)

Finally we apply Lemma 4 to obtain lim supn→∞

(
Dn − ln 1

ηn

)
≤ ln 1

w(θ◦) and so

lim sup
n→∞

(
Dn −

d

k
lnn− d

k
ln Λn

)
≤ ln

1

w(θ◦)
+
d

k
ln

1

k!
+ d ln

k

2Γ( 1
k )
.

Most interesting is the dependence on n, which if Λn is assumed to be constant in n is logarithmic, regardless of k.
Larger k only decrease the multiplicative constant. Note that for k = 2 we have d

2 ln Λn = d
2 ln ‖J̄n‖2 ≥ 1

2 ln det J̄n,
which featured in Theorem 1. An obscure case is when the kth derivatives of fn(θ) vanish for all k, but where fn(θ)
is itself non-zero. This can occur, for example if Ω = {0, 1}, Θ = [0, 1], w(θ) = 1 and pnθ (ω1:n) is i.i.d. with
p1
θ(0) = exp(− exp(−1/θ)) where p1

0(0) := 1. In this case Dn can be shown to grow with order log log n.

9 Zero Dimensional Families
All results have been proven for d ≥ 1. Here we briefly compare to the case whenM = {P1, P2, · · · } is a countable
family of measures. It is no longer possible, desirable or necessary to define the Bayes mixture in terms of densities
or a continuous prior. Instead w : N→ [0, 1] is a probability mass function and the Bayes mixture is defined by

M(A) :=

∞∑

i=1

w(i)Pi(A).

Then it is trivial to bound Dn = D(Pnk ‖Mn) ≤ ln 1
w(k) , which is independent of n. M may be parameterised by

Θ = R+ where Pθ = Pk for θ ∈ [k− 1, k). With this parameterisation the log likelihood is constant in a region about
θ◦ = k− 1

2 ∈ (k−1, k), but in this case even the bound shown in the previous section guarantees only sub-logarithmic
redundancy, when in fact it should be constant.

10 Conclusion
Our main contribution is a generalisation of Theorem 2.3 in [1] to the case where sources are permitted to be dependent
and non-stationary. Under only mild assumptions we obtain the same bound on the relative entropy between the
Bayesian mixture and Pθ ∈M of order d2 log n where d is the dimension of the hypothesis classM. The results were
applied to discriminative learning and Markov chains for which the results in [1] do not apply. If the mean Fisher
information has unbounded spectral norm as n tends to infinity, then Theorem 3 can be applied to obtain nearly the
same bound as Theorem 1. We showed that if the information matrix vanishes, then higher-order approximations of
the log-likelihood lead to similar bounds on the redundancy. Our results can usefully be applied beyond discriminative
learning and Markov sources presented here and suggest Bayesian reinforcement learning as a natural and important
example of non-i.i.d.sources [3]. Interesting future work is to generalise the other results in [1].
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A Technical Results
Lemma 5 ([15]). Suppose θ ∼ N (θ◦,Σ) where θ◦ ∈ Rd and Σ ∈ Rd×d is positive definite. Then for all δ > 0

P (|θ − θ◦|2Σ−1 ≤ δ) ≥ 1− d

δ
.

The following lemma is required to uniformly bound the approximation error of the Taylor series of lnPnθ /P
n
θ◦

. We
presume similar results appear elsewhere, but include the statement and proof for completeness and because references
seem hard to find.
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Lemma 6. Let θ◦ ∈ Θ ⊂ Rd and fn : Θ→ R and Hn(θ) ∈ Rd×d be the Hessian of fn at θ. Suppose also that

(a) fn is twice differentiable at θ◦ ∈ Θ.

(b) ∂ifn(θ◦) = 0 and fn(θ◦) = 0 for all 1 ≤ i ≤ d.

(c) Hn(θ)i,j is equicontinuous at θ◦ for all 1 ≤ i, j ≤ d.

Then there exists a family of functions hn : Θ→ Rd×d such that

fn(θ) =
1

2
|θ − θ◦|2Hn(θ◦) + |θ − θ◦|2hn(θ)

where limδ→0 supn supθ∈N2
δ
‖hn(θ)‖2 = 0 and N2

δ := {θ : |θ − θ◦|2 < δ}.

Proof. For θ ∈ N2
δ a first order Taylor series of fn about θ◦ leads to

fn(θ) = (θ − θ◦)>Sn(θ)(θ − θ◦)

where

Sn(θ)i,j ∈
{

1

2
Hn(θ̄)i,j : θ̄ ∈ N2

δ

}

Now define hn(θ) := Sn(θ)− 1
2Hn(θ◦), which implies that fn(θ) = 1

2 |θ − θ◦|Hn + |θ − θ◦|hn(θ) and

lim
δ→0

sup
n

sup
θ∈N2

δ

‖hn(θ)‖2
(a)

≤ d lim
δ→0

sup
n

sup
θ∈N2

δ

|hn(θ)|max

(b)
= d lim

δ→0
sup
n

sup
θ∈N2

δ

max
i,j

∣∣∣∣Sn(θ)i,j −
1

2
Hn(θ◦)i,j

∣∣∣∣

(c)

≤ dmax
i,j

lim
δ→0

sup
n

sup
θ∈N2

δ

∣∣∣∣
1

2
Hn(θ)i,j −

1

2
Hn(θ◦)i,j

∣∣∣∣

(d)
= 0

where (a) is follows from the bound ‖ · ‖2 ≤ d |·|max for matrices of dimension d. (b) by the definition of hn(θ). (c)
by the definition of Sn(θ) and exchanging the max with the limit, which is valid because the indices i and j range over
finite set. (d) by equicontinuity of the Hessian at θo.

Lemma 7. If A ∈ Rd×d is positive definite and x ∈ Rd, then |x|22 ≤ |x|
2
A ‖A−1‖2. If B ∈ Rd×d and x ∈ Rd, then

|x|2B ≤ |x|
2
2 ‖B‖22.

Proof. Let λmin be the smallest eigenvalue of A and A = U>DU be the spectral decomposition of A where the
diagonal of D consists of the eigenvalues of A and U−1 = U>. Then |x|22 = x>U>Ux ≤ x>U>DUx/λmin =

|x|2A /λmin. Complete the first part by checking that ‖A−1‖2 = 1/λmin. The second part is proven by noting that

|x|2B
|x|22

≤ max
y:|y|22=|x|22

|y|2B
|y|22

≡ ‖B‖22.

Rearrange to complete the result.

Lemma 8. Let
∑d
j=0 θj = 1. Then the matrix A ∈ Rd×d defined by

Aj,k =
Jj = kK
θj

+
1

θ0

has determinant detA =
∏d
j=0

1
θj

.

15



Proof. Define αj = 1/θj and subtract the last row of A from all previous rows to obtain a block matrix B with the
same determinant as A of the form

B =

(
W X
Y Z

)
=




α1 0 · · · 0 −αd
0 α2 −αd
...

. . . −αd
0 · · · 0 αd−1 −αd
α0 α0 α0 α0 αd + α0




Then

detA = detW det(Z − YW−1X)

=



d−1∏

j=1

αj




αd + α0 +

d−1∑

j=1

αdα0

αj




=




d∏

j=0

αj




 1

α0
+

1

αd
+

d−1∑

j=1

1

αj




=




d∏

j=0

αj



(

d∑

i=0

θi

)
=

d∏

j=0

αj ≡
d∏

j=0

1

θj

as required.
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