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Abstract

�e reinforcement learning (RL) framework formalizes the notion of learning with inter-

actions. Many real-world problems have large state-spaces and/or action-spaces such as

in Go, StarCra�, protein folding, and robotics or are non-Markovian, which cause signif-

icant challenges to RL algorithms. In this work we address the large action-space prob-

lem by sequentializing actions, which can reduce the action-space size significantly, even

down to two actions at the expense of an increased planning horizon. We provide explicit

and exact constructions and equivalence proofs for all quantities of interest for arbitrary

history-based processes. In the case of MDPs, this could help RL algorithms that boot-

strap. In this work we show how action-binarization in the non-MDP case can signifi-

cantly improve Extreme State Aggregation (ESA) bounds. ESA allows casting any (non-

MDP, non-ergodic, history-based) RL problem into a fixed-sized non-Markovian state-

space with the help of a surrogate Markovian process. On the upside, ESA enjoys similar

optimality guarantees as Markovian models do. But a downside is that the size of the

aggregated state-space becomes exponential in the size of the action-space. In this work,

we patch this issue by binarizing the action-space. We provide an upper bound on the

number of states of this binarized ESA that is logarithmic in the original action-space size,

a double-exponential improvement.
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1 Introduction

�e reinforcement learning (RL) se�ing can be described by an agent-environment interaction
[1]. �e agent Π has an action-space A to choose its actions from while the environment P

†�e contact author.
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reacts to the action by dispensing an observation and a reward from the sets O and R ⊆ R,
respectively, see Figure 1. For simplicity, we assume that these sets are finite and hence the
rewards are bounded. Even with these restrictions, the problem of RL does not trivialize,
i.e. the agent can not learn the optimal behavior without further structure. Under a suitable
definition of the “state” of environment, the resultant set of states might be huge or even
infinite [2].
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Figure 1: �e agent-environment interaction.

�e problem of RL is plagued with the curse of dimensionality. �e sizes of an appropri-
ately defined set of states1 and action-space play an important role in the choice of algorithms,
architectures and solution techniques used to solve the task [1].

It is usually required to produce a relatively small set of states to make the problem
tractable [3]. �ere are many ways to achieve such approximations/abstractions, e.g. state
aggregation [4, 5, 6], homomorphism [7], linear function approximation [8], or neural net-
works [9] just to name a few. �e usual assumption for such abstractions is that they try to
produce a Markovian representation of the environment, which is known as a Markov De-
cision Process (MDP) [10]. In an MDP the most recent (abstract) observation is sufficient to
predict any future event2, but not all events are equally valuable. Some events might not lead
to a high rewarding state and/or some distinctions are not really necessary to perform well
[11]. For example, the agent might end up experiencing two completely different streams of
observations with the same reward structure. An algorithm which tries to produce a Marko-
vian representation would try to make this “unnecessary” distinction.

A lot can be achieved in terms of the representation power if an algorithm only makes
“useful” distinctions, i.e. the distinctions (or states) which respect the reward structure [6, 7,
11]. In some cases, such “useful” but non-Markovian abstractions reduce the effective state-
space dramatically. Usually, a smaller state-space facilitates faster learning [3, 12].

�e usual methods of state or action-space reductions either (1) reduce the problem to a
fixed size where the quality of reduction deteriorates as the original problem becomes more
complicated, or (2) provide a problem-specific reduction which usually grows, albeit much

1We prefer not to call the set of observations O the set of states. �is set becomes a set of states under strong
assumptions, see Section 5 for more details on this distinction.

2An event is any set of action-observation-reward sequences.
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slower, as the original problem grows [2]. In Markovian abstractions the size of the state-
space grows with the size of the observation and reward spaces. For example, if an MDP
abstraction produces states from some low-resolution images then we need more states to
handle high-resolution versions of the input images because the high-resolution images need
a bigger transition matrix to predict the next image. However, it is perfectly plausible that the
increased resolution might not be “useful” to achieve be�er rewards.

To the best of our knowledge, extreme state aggregation (ESA), a non-MDP abstraction
framework, is the only methodwhich provides a provable upper bound on the size of required
state-space uniformly3 for all problems [6]. However, a downside of ESA is that the size of the
aggregated state-space is exponential in the size of the action-space, see �eorem 5.2. In this
paper, we move the research further in this direction. We provide a variant of ESA that can
help provide much more compact representations as compared to MDP abstractions. Our
approach improves the key upper bound on the size of the state-space in the original ESA
framework.

�e key trick to achieve this improvement is to sequentialize the actions. O�enA already
has a natural vector structure Bd, e.g. real valued activators in robotics (B = R) or (padded)
words (B = {a, . . . , z, }), or more generally B1 × . . . × Bd, where B denotes a finite set
of decision symbols. In this case, sequentialization is natural, but one may further want to
binarize B to B

d′ esp. for ESA (�eorem 5.3). If actions are (converted to) B-ary strings,
the RL agent could execute the action “bits” sequentially with fictitious dummy observations
in-between.

�e example in Figure 2 provides a naive way of sequentializing the actions in an MDP.
Apparently, it might seem that such sequentialization of the action-space would be of no
help, as the state-space would blow up, and it is simply shi�ing the problem from the actions
to the states. However, we prove that this can be avoided. Most importantly, the universal
upper bound on the effective state-space of ESA remains valid. Our scheme of sequentializ-
ing the actions achieves a double exponentially improved bound; compare �eorem 5.3 with
�eorem 5.2.

s

s0

a00 a01

s1

a10 a11

Figure 2: A simple sequentialization example in an MDP. To see how the actions se-
quentialized, consider an agent which has to choose among four alternatives, e.g. A =
{a00, a01, a10, a11}. Let the agent receive a state signal s from the environment. It first de-
cides between a partition of actions, say two actions each, {a00, a01} and {a10, a11}. A�er it
has decided on the bifurcation, the extended state becomes sx, where x is the decision of the
first stage. Now the agent on this extended state sx makes its second decision to choose from
the short-listed set of actions. �is way, the agent only selects among two alternatives at each
stage by tripling the effective state-space.

Along the way, we also establish some other key results, which are interesting and use-

3Which depends only on the size of the action-space, discount factor and the optimality gap.
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ful on their own. We provide explicit and exact constructions and equivalence proofs for all
quantities of interest (Section 4) for arbitrary history-based processes, which are then used
to double-exponentially improve the previous ESA bound (�eorem 5.3). In the special case
of MDPs, we show that through a sequentialized scheme (of augmenting observations with
partial decision vectors) the resultant “sequentialized process” preserves the Markov prop-
erty (�eorem 4.2), which should help RL algorithms that bootstrap, though demonstrating
or proving this is le� for future work. Moreover in �eorem 4.6, we prove that the stipulated
sequentialization scheme preserves near-optimality, i.e. a near-optimal policy of the sequen-
tialized process is also near-optimal in the original process.

�e rest of the paper is organized as follows. Section 2 puts down the necessary notation.
In Section 3, we formally set up the problem. A framework to sequentialize actions is provided
in Section 4, along with other key results (�eorems 4.2 and 4.6). In Section 5 we combine our
sequentialization framework with ESA to improve the upper bound on the size of the state-
space (�eorem 5.3). We conclude the paper in Section 6 with an outlook.

2 Notation

�is paper is notation heavy, but we use a consistent notation through out. �e set of natural
numbers is N := {1, 2, . . . }, B := {0, 1} is a set of binary symbols, and R is the set of reals.
We denote by △(X) the set of probability distributions over any set X . �e concatenation
of two objects (or strings) is expressed through juxtaposition, e.g. xy is a concatenation of x
and y. We express a finite string with boldface, e.g. x = x1x2 . . . x|x| where | · | is used to
denote the length or cardinality of the object. �e individual members of a string or a vector
may be accessed as xi = xi for any i ≤ |x|. A substring of length i ≤ |x| is denoted as
x≤i = x1x2 . . . xi and x<i = x1x2 . . . xi−1. We interchangeably use the same notation for
vectors and strings, e.g. x ∈ B

d is a d-dimensional B-ary decision vector which may also be
expressed as a string. �is choice simplifies the notation and saves redundant variables. If a
variable is time-indexed, we express the continuation of the variable with a prime on it, e.g. if
x := xt then x

′ := xt+1 where := denotes equality by definition. A small scaler value (usually
the error tolerance) is denoted by ε > 0. A different member of the same set is expressed with
a dot on it, e.g. x, ẋ ∈ B. We express the fact of x being a prefix of y by x ⊑ y or y ⊒ x.
Moreover, xy represents a vector that is point-wise joined, i.e. xyi := xiyi.

3 Problem Setup

�is section provides the formal foundations for us to build up to the main result of this
work. We formulate the problem of RL from the ground up without starting from the usual
Markovian assumption [1]. We formalize a history-based RL setup. A�er formalizing the
(general) RL problem, we set up the scheme of sequentializing the decision-making process
to reduce the effective action-space for the agent. Especially for our main result about ESA,
we sequentialize the action-space to binary decisions.

Although this work assumes very li�le about the RL problem, we assume that the size of
the action-space is finite and |A | = |B|d for some d ∈ N. �e la�er assumption is not restric-
tive, as we can extend the set of actions by repeating some of the actions. It is important to
note that these repeated actions should be labeled distinctly. �is way we can have a bijection
between the original (extended) action-space and the sequentialized one. For example, let an
action set be {a1, a2, a3, a4, a5}. One possible extended set, with repetition, for |B| = 2 and
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d = 3 is A := {a1, a2, a3, a4, a5, a51 , a52 , a53}. Where, the actions a5i for i ≤ 3 are function-
ally the same as a5, i.e. taking a5 or any a5i action has the same effect, but they are labeled
distinctly.

Note that continuous action-spaces could be approximately sequentialized/binarized by
using the binary expansion of reals to some desired precision, say δ. Our main bound will
only depend logarithmically on δ.

3.1 General Reinforcement Learning

We consider a general reinforcement learning (GRL) setupwhere the agent keeps the complete
history of interaction [10]. �e (infinite4) interaction produces an infinite history. Recall that
O ,R andA represent some finite sets of observations, rewards and actions, respectively. �is
also implies that the rewards are bounded. �e set of all finite histories5 is denoted by

H :=
∞⋃

t=1

O × R × A × . . .× O × R × A︸ ︷︷ ︸
(t−1)−step interactions

×O × R (1)

which is used to express most of the quantities in our setup, e.g. the environment, agent, and
value functions. Note that the history set H does not contain the empty history. �is is a
design choice we make to be consistent with the standard RL setup [1] where the initial state
(in our case the initial observation and reward) is chosen by some “initial” distribution.

Formally, the environment P is a (conditional) probability function such that P : H ×
A → △(O × R). Similarly, the agent is also expressible as a (conditional) distribution on
the action-space, i.e. Π : H → △(A ). For a fixed policy Π the expected discounted future
sum of rewards is the value of the policy. At any history h ∈ H and action a ∈ A the
action-value function (or Q-function) is expressed as

QΠ(h, a) :=
∑

o′r′

P (o′r′|ha)
(
r′ + γV Π(hao′r′)

)
(2)

where V Π(h) :=
∑

aQ
Π(h, a)Π(a|h) is the value function ofΠ and 0 ≤ γ < 1 is the discount

factor. Equation (2) is known as the Bellman equation (BE). �e optimal behavior (or policy)
is the one which achieves the maximum value for all histories, i.e. Π∗(h) :∈ argmaxΠ V

Π(h).
�e optimal value (and action-value) functions, V ∗ := V Π∗

and Q∗ := QΠ∗

, of this optimal
policy satisfy the following optimal Bellman equation (OBE) [1, 6].

Q∗(h, a) :=
∑

o′r′

P (o′r′|ha) (r′ + γV ∗(hao′r′)) (3)

where V ∗(h) := maxaQ
∗(h, a). �e agent defined in this sub-section works with the origi-

nal action-space A and keeps the histories from H . In the next sub-section, we formulate
another agent which only works in the “sequentialized” action-space, i.e. it takes decisions
in a sequence of B-ary choices, and responds only to the histories generated by this B-ary
interaction, see Figure 3. In the extreme case, this agent may only take binary decisions by
sequentializing the action-space to binary sequences, i.e. B = B.

4For simplicity, we assume the interaction never stops. We do not consider the case where the agent or the
environment can stop responding. It complicates the modeling beyond the scope of this work.

5Note that this set (of underlying “state” space) is (countably) infinite.
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3.2 Sequential Decisions

We want to transform the action-space into a sequence of B-ary decision code words, which
are decided sequentially. To map the actions between the original action-space and the se-
quentialized decision-space, we define a pair of encoder and decoder functions. Let C be any
encoding function that maps the actions to a B-ary decision code of length d, i.e. C : A →
B

d. A decoder function D : B
d → A sends the B-ary decision sequences generated by C

back to the actions in the (original) action-space. In this work, the choices of C andD do not
ma�er6 as long as they are bijections such that D(C(A )) = A .

�is sequentialization of the action-space changes the interaction history. �e generated
histories are no longer members ofH . �e goal of this paper is to argue that an agent can still
work with the sequentialized histories only. �e agent can plan, learn and interact with the
environment using B-ary actions and keeping sequentialized histories. Hence, the agent can
be agnostic to the original action-space and with the state provided through an appropriate
abstraction it can only take B-ary decisions at every time step, see Figure 3.
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Figure 3: �e agent-environment interaction through the sequentialization scheme. Note that
the sequentialized-environment block (or a B-ary “mock”) manages two different time-scales
t and k. It is simply a buffer block which knows (de)coders C and D (see text for details). It
buffers the input B-ary actions and dispatches the buffered observation and reward. Once
a complete B-ary decision sequence is produced by the agent the B-ary mock decodes the
encoded actions to the original environment to continue the interaction loop. We can con-
sider this sequentialized environment as a “middle layer” between the agent and the original
environment.

We construct a history transformation function which maps the original histories from
H to some sequentialized histories in H̆ , where

H̆ :=
∞⋃

t=1

O × R × B × . . .× O × R × B︸ ︷︷ ︸
(t−1)−step interactions

×O × R (4)

It is worth noting that H̆ does not (directly) contain any information about A , cf.
Equation (1). �e agent experiencing histories from this set would not be aware of A .

6�e choice could ma�er in practical implementation of such agents. For example, a clever choice of such
functions might produce sparse B-ary decision sequences for the optimal actions, hence it may facilitate in
learning such optimal B-ary decision sequences.
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Definition 3.1 (History transformation function). A history transformation function is ex-
pressed with g : H → H̆ . �e map is recursively defined for any history h, action a, next
observation o′ and next reward r′ as

g(hao′r′) := g(h)x1or⊥x2or⊥ . . .xdo
′r′ and g(e) := e (5)

where x := C(a), o is the last observation of the history h, e denotes the “initial” history7, and
r⊥ is any fixed real-value. In this work, we assume8 that r⊥ ∈ R and r⊥ = 0.

In the above construction, we chose to repeat the last observation o in between the real
interactions with the environment. �is is not the only possible choice, we can choose a
dummy observation o⊥ ∈ O instead without affecting the claims. For brevity, we define o

and r⊥ as d-dimensional constant vectors of o and r⊥, respectively. �ese vectors are then
“welded” with x to succinctly replace x1or⊥ . . . xior⊥ with xor⊥≤i. Note that we do not
sequentialize the observations. It can be done, but we believe it is not useful in any way.

However, if the original process P is an MDP, i.e. the most recent observation is the state
of P , then there is another interesting option possible for o⊥: extend the observation space

O with O × ∪d−1
i=0 Bi =: Õ , and let the B-ary mock dispatch an appropriate observation at

every partial B-ary decision vector x<i as:

õ⊥ ··= (o,x1,x2, . . . ,xi−1) ∈ Õ (6)

It is not hard to show that with this sequentialization scheme the resultant sequentialized

decision process is also an MDP over Õ , see �eorem 4.2. By doing so, we end up with a

state-space of size |Õ|= |O |(|A |−1) ≤ |O × A |. It is clear that this recasting of the original
problem might not be very helpful for some Monte-Carlo like tree search methods, however,
it might significantly improve the performance of some temporal-difference like algorithms,,
e.g. Q-learning [13], when applied to huge action-spaces.

Note that g is injective, but it may not be a bijection. �ere are many sequentialized
histories τ ∈ H̆ which are not mapped by g, i.e. there does not exist any history in H such
that τ = g(h). For such sequentialized histories we define g−1(τ) := ⊥, which formally allows
us to talk about g−1 without worrying about it being undefined on some arguments. �e
choice of this definition is not important. As ama�er of fact, there is no particular significance
of the symbol ⊥. What makes this choice insignificant is the fact that the environment does
not react until the agent has taken dB-ary actions. Some histories not covered by g are such
“partial” sequentialized histories where the actual environment does not react. Note that
the rewards of the sequentialized setup are zero (r⊥ := 0) unless the sequentialized history
length is a multiple of d, i.e. a “complete” sequentialized history. See Figure 4 for an example
sequentialized/binarized setup for B = B and d = 2.

Any agent which interacts with the environment through this sequentialized scheme
would effectively experience the following sequentialized environment.

Definition 3.2 (Sequentialized environment). For any B-ary action x ∈ B, sequentialized

history τ ∈ H̆ , and any partial extension xor⊥<i for i ≤ d the probability of receiving o′ and

7�e initial history e ∈ O × R is similar to the initial state in standard RL. It is dispatched by environment
without any input at the start.

8�is assumption is not much of a restriction, if r⊥ /∈ R then we can extend the reward space by R ∪ {r⊥}.
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τ

τ0

τ00o′r′

x2 = 0

τ01o′r′

x2 = 1

x1 = 0

τ1

τ10o′r′

x2 = 0

τ11o′r′

x2 = 1

x1 = 1

Figure 4: A simple sequentialization/binarization example in a deterministic history-based
process. �e B-ary/binary decisions are on the edges. For brevity, we do not represent o⊥
and r⊥ in the figure. For example, it should be apparent that τ1o⊥r⊥ ≡ τ1. �e circles
represent complete histories while the squares indicate partial histories.

r′ as the next observation and reward is as follows:

P̆ (o′r′|τxor⊥<ix) :=





P (o′r′|ha) if τxor⊥<ixo
′r′ = g(hao′r′)

1 if o′r′ = or⊥

and g−1(τxor⊥<ixo
′r′) = ⊥

0 otherwise

(7)

where P is the actual environment.

As highlighted before, the history h can not be empty, so the above definition is well-
defined.

�e next step is to define the (action) value functions for this sequentialized agent-
environment interaction. Let Π̆ be a policy such that Π̆ : H̆ → △(B). �en, we define the
(action) value functions similar to the original agent-environment interaction case. For any
τ ∈ H̆ and x ∈ B, the action-value function is defined as

Q̆Π̆(τ, x) :=
∑

o′r′

P̆ (o′r′|τx)
(
r′ + λV̆ Π̆(τxo′r′)

)
(8)

where V̆ Π̆(τ) :=
∑

x∈B
Q̆Π̆(τ, x)Π̆(x|τ) and λ is the discount factor of this sequentialized

problem. Similar to the original optimal (action) value functions, Q̆∗ and V̆ ∗ denote the op-
timal (action) value functions of the sequentialized problem. �e discount factor λ plays an
important role in trading off the size of the action-space with the planning horizon. Recall
that the size of the original action-space is |A | = |B|d. �erefore, if the agent has to make d
B-ary decisions for each original action the discount factor a�er d B-ary actions should be
γ, i.e. λd = γ. �is implies that λ = γ1/d < 1 as γ < 1 and d <∞.

�is completes the problem setup. We have defined an agent Π̆ which only makes B-ary
decisions and reacts to sequentialized histories, see Figure 3. As expected, the set of sequen-
tialized histories H̆ is blown out in comparison with H . However, in Section 5, we show
that, under certain non-Markovian abstractions of either H or H̆ , this expansion is not
“harmful”.
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4 Sequentialized Processes and Values

In this section we formally define the sequentialized process and related value functions. But
first we need a couple of important quantities to state our main results. For any B-ary vector
x ∈ Bi where i ≤ d, we define A (x) := {a ∈ A : x ⊑ C(a)} a restricted set of ac-
tions. Moreover, for any history h, an action-value function maximizer on this restricted set
is defined as Π∗(h,x) ∈ argmaxa∈A (x)Q

∗(h, a).
We start off the section by noting an important relationship between the sequentialized

process and the original process.

Proposition 4.1 (Sequentialized Process). For any o′ ∈ O , r′ ∈ R, h ∈ H and D(x) =: a ∈
A , the following relationship holds between P̆ and P :

P̆ (o′r′|g(h)xor⊥<dxd) = P (o′r′|ha) (9)

Proof. �e proof trivially follows from Definition 3.2 by evaluating the definition at i = d
with D(x<dxd) = a.

When the original process is an MDP then there exists a sequentialization scheme such
that the sequentialized process is also Markovian.

�eorem 4.2 (Sequentialization preserves Markov property). If P is an MDP over O , and the

observations from the B-ary mock are Õ ··= O × ∪d−1
i=0 Bi, then P̆ is also an MDP over Õ .

Proof. In the case of augmenting the observation space, the definition of P̆ becomes slightly
more verbose than Definition 3.2 as o⊥ is different for each partial history as defined in
Equation (6).

P̆ (õ′r′|τxõr⊥<ix) :=





P (o′r′|ha) if τxõr⊥<ixõ
′r′ = g(hao′r′)

1 if õ′r′ = ox<ixr⊥

and g−1(τxõr⊥<ixõ
′r′) = ⊥

0 otherwise

(10)

for any i ≤ d, õ, õ′ ∈ Õ , and o ∈ O is the most recent observation in h. At any h the sufficient
information is o, so P (o′r′|ha) ≡ P (o′r′|oa). �erefore, from the above (expanded) definition
of P̆ , it is clear that:

P̆ (õ′r′|τxõr⊥<ix) ≡ P̆ (õ′r′|ox<ix) = P̆ (õ′r′|õx)

hence proves the proposition.

�e following proposition proves that the action-values of the “partial” histories of the
sequentialized problem are related. �is fact later helps us to show that these action-value
functions respect the Q-uniform structure of the original environment.

Proposition 4.3 (Q̆∗ max-relationship). For any sequentialized history τ ∈ H̆ such that
g−1(τ) ∈ H , the following holds

max
x∈B

Q̆∗(τ, x) = λd−1 max
x∈Bd

Q̆∗(τxor⊥<d,xd) (11)

9



Proof. �e proof is straight forward. We successively apply the definition of Q̆∗.

max
x1∈B

Q̆∗(τ, x1) = max
x1∈B

∑

o′r′

P̆ (o′r′|τx1)

(
r′ + λmax

x2∈B

Q̆∗(τx1o
′r′, x2)

)

(a)
= λmax

x1∈B

max
x2∈B

Q̆∗(τx1or⊥, x2)

... (continue unrolling for d− 1-steps)

= λd−1 max
x∈Bd

Q̆∗(τxor⊥<d,xd) (12)

where (a) follows from the definition of P̆ and the fact that r′ = r⊥ = 0 when P̆ 6= 0.

Now, using Proposition 4.3we can prove a relationship between the action-value functions
of the actual environment and the sequentialized environment.

Lemma 4.4 (Q̆∗
x-relationship). For any history h with the corresponding sequentialized his-

tory τ = g(h) and B-ary decision vector x ∈ Bd, the following holds for any i ≤ d.

Q̆∗(τxor⊥<i,xi) = γ
d−i

d Q∗(h,Π∗(h,x≤i))

Proof. Before we prove the general result, we show that the result holds for i = d, i.e. the
sequentialized problem has same optimal action-values at the “real” decision steps. Note that
Π∗(h,x≤d) = D(x). Let x := C(a) and τ := g(h). Using the fact that r⊥ = constant = 0,
we get

fr⊥(h, a) := Q̆∗(τxor⊥<d,xd)

(a)
=

∑

o′r′

P̆ (o′r′|τxor⊥<dxd)
(
r′ + λmax

x′
Q̆∗(τxor⊥<dxdo

′r′, x′)
)

(b)
=

∑

o′r′

P (o′r′|ha)
(
r′ + λmax

x′
Q̆∗(τxor⊥<dxdo

′r′, x′)
)

(c)
=

∑

o′r′

P (o′r′|ha)

(
r′ + λd max

x
′∈Bd

Q̆∗(τxor⊥<dxdo
′r′xor⊥

′
<d,x

′
d)

)

(d)
=

∑

o′r′

P (o′r′|ha)

(
r′ + γmax

a′∈A

fr⊥(hao
′r′, a′)

)
(13)

where (a) is just Equation (8) with the optimal policy, (b) follows by Proposition 4.1, (c) is
given by Proposition 4.3, (d) is true by rearranging the argument, the definition of fr⊥ and
by using the relation λd = γ. Note that Equation (13) is the OBE of the original problem, see
Equation (3). �e solution of the OBE is unique [14], hence fr⊥ is indeed Q∗.
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Having proved the claim for i = d, we show that it also holds for any i < d.

Q̆∗(τxor⊥<i,xi)
(a)
=

∑

o′r′

P̆ (o′r′|τxor⊥<ixi)

(
r′ + λmax

xi+1

Q̆∗(τxor⊥<ixio
′r′, xi+1)

)

(b)
= λmax

xi+1

Q̆∗(τxor⊥<ixior⊥, xi+1)

... (continue unrolling for d− i− 1-steps)

= λd−i max
xi+1

. . .max
xd

Q̆∗(τxor⊥<ixior⊥xi+1or⊥ . . . xd−1or⊥, xd)

(c)
= λd−i max

a∈A (x≤i)
Q∗(h, a) (14)

where, again (a) is Equation (8) with the optimal policy, (b) follows from the definition of P̆
and r⊥ = 0, and (c) is true from the fact that the claim holds for i = d and the maximum is
over the restrictive set of actions.

What we have proven so far is that the sequentialization scheme produces action-value
functions which (at the “partial” histories) are rescaled versions of the original action-value
function. �ey agree with the original Q∗ at the decision points (at the “complete” histories)
where the sequentialized policy Π̆ completes an action code.

We also show that a similar relationship as proved in Lemma 4.4 holds for a fixed policy
Π̆. However, we use a different proof method for the following lemma. Note that Π̆ induces a
policy Π̄ on the original environment, which can trivially be expressed as follows:

Π̄(a|h) :=

d∏

i=1

Π̆(xi|τxor⊥<i) =: Π̆(x|τ) (15)

for any a = D(x) and τ = g(h).

Lemma 4.5 (Q̆Π̆
x-relationship). For any arbitrary policy Π̆ the following relationship is true:

Q̆Π̆(τxor⊥<d,xd) = QΠ̄(h,D(x)) (16)

for any history τ = g(h) and x ∈ B
d.

Proof. Before we prove the main result of the lemma, we show that the following relationship
holds for the value-functions of the sequentialized and the original environment:

V Π̆(τ) = λd−1V Π̄(h) (17)

for any τ = g(h). We use a different argument than Lemma 4.4 to prove the above statement.
Lets imagine the sequentialized environment is at the history τ = g(h). �e agent starts
to follow the policy Π̆. �e following is the (expected-reward, discount-factor) sequence it
generates from this history.

(0, λ0), (0, λ1), . . . , (0, λd−2), (r̄, λd−1),

(0, λd), (0, λd+1), . . . , (0, λ2d−2), (r̄′, λ2d−1),

(0, λ2d), . . .

11



where r̄ is the expected reward. �e sum of the reward part of the above sequence returns

V̆ Π̆(τ). Now, if we re-scale the discount part of the above sequence by λd−1 we get V Π̄(h) as
the sum of the reward part.

(0, λ1−d), (0, λ2−d), . . . , (0, λ−1), (r̄, λ0),

(0, λ1), (0, λ2), . . . , (0, λd−1), (r̄′, λd),

(0, λd+1), . . .

which proves Equation (17) when λd = γ. Now, let a := D(x).

QΠ̆(τxor⊥<d,xd) =
∑

o′r′

P̆ (o′r′|τxor⊥<dxd)
(
r′ + λV Π̆(τxor⊥<dxdo

′r′)
)

(a)
=

∑

o′r′

P (o′r′|ha)
(
r′ + λV Π̆(τxor⊥<dxdo

′r′)
)

(17)
=

∑

o′r′

P (o′r′|ha)
(
r′ + λdV Π̄(hao′r′)

)

=
∑

o′r′

P (o′r′|ha)
(
r′ + γV Π̄(hao′r′)

)
= QΠ̄(h,D(x))

where (a) is due to Proposition 4.1.

�e following theorem proves the usefulness of our sequentialization framework. We
show that the optimal policy of the sequentialized environment is also optimal in the original
environment when it is li�ed back using the decoding function D.

�eorem 4.6 (Sequentialization preserves ε-optimality). Any λd−1ε-optimal policy of the se-
quentialized environment is ε-optimal in the original environment.

Proof. Let Π̆ be an ε′-optimal policy of the sequentialized environment, where ε′ := λd−1ε. It
implies the following:

V̆ ∗(τxor⊥<i)− V̆ Π̆(τxor⊥<i) ≤ ε′ (18)

for any complete sequentialized history τ = g(h) and x ∈ Bi−1 where i ≤ d. Especially, we
are interested in the case when i = 1, i.e. values at the complete histories.

V̆ ∗(τ)− V̆ Π̆(τ) ≤ ε′ (19)

With simple algebra, we can show that the following relationship holds for the optimal policies
of the sequentialized and original processes:

V̆ ∗(τ)
(a)
= max

x
Q̆∗(τ, x)

(b)
= λd−1 max

x∈Bd

Q̆∗(τxor⊥<d,xd)

(c)
= λd−1 max

x∈Bd

Q∗(h,D(x)) = λd−1V ∗(h) (20)

where (a) is the definition of the value function, (b) holds due to Proposition 4.3, and (c) is
true by applying Lemma 4.4 for i = d.

12



Now, by simply using Equation (17) and Equation (20), we can prove the claim.

V ∗(h)− V Π̄(h)
(a)
= λ1−d

(
V̆ ∗(τ)− V̆ Π̆(τ)

) (19)
≤ ε (21)

for any τ = g(h), where (a) is due to Equation (17) and Equation (20).

We are done formally defining the setup. In the next section we put everything together
under the context of ESA to establish the validity of our sequentialization setup.

5 Extreme State Aggregation

In the previous sections, we formalized the GRL problem with a sequentialized action-space.
A GRL agent keeps the history of its interaction to decide the next action. �e history grows
with time but even worse is that, without more assumptions and/or abstractions, no history
ever repeats [10]. �is is a unique characteristic of the history-based setup which sets it apart
from the standard RL [1]. It enables the GRL framework to cover from the extreme case of
unique histories to the most restrictive scenarios of bandits. However, without abstractions,
a GRL agent which assumes every history is unique is more of a theoretical artifact than a
realizable algorithm. It is critical to note that our sequentialization scheme results in just like
any other GRL agent. It also requires an abstraction map (or further structural assumptions)
to provide an implementable algorithm. Usually, one starts by assuming some structure on
the history set(s). A�er reviewing some, we will argue against all of them.

On one extreme we have unique histories and on the other end, typically, the environment
distribution is assumed to be Markovian, i.e. for any h and a, P (o′r′|ha) ≡ P (o′r′|oa) for all
o′r′ where o is the most recent observation in h [1]. �is means that histories with the same
most recent observation are members of the same class (or state). �is assumption provides a
lot of structure on H . �e value functions become functions of the most recent observations.
Note that Hu�er [6] defines the Markovian assumption directly on histories, which is a bit
weaker than what we have stated above.

Unfortunately, the Markovian assumption is too strong to be used in many real-world
problems. We do not interact with the world based on just our recent observations. As general
agents, we keep “relevant” historical events in memory to plan be�er in the future, sometimes
optimally. Apart from some “toy” examples and (well-defined) games [9, 15, 16], this assump-
tion demands too much structure on the history space. So, what other assumption can we
make? We can keep the Markovian structure but can weaken the assumption, significantly,
by assuming that the agent is not able to observe the state directly. �e agent may require
a sufficiently long history of interaction to discern the hidden Markovian state of the envi-
ronment [17]. �e class of problems this assumption models is known as partially observable
Markov decision problems (POMDP). Almost all problems we care about can be modeled as
POMDPs. However, POMDP solution methods are very demanding and the optimal behavior
is not guaranteed to be learnable in general [18]. We do not address this non-MDP class any
further.

We focus on other important quantities in GRL formulation, e.g.Π∗, V ∗, andQ∗, and make
no direction assumption on P . �is has been a subject of many works; [4, 5] considered a
unified abstraction framework by mapping states similar in value, Hu�er [6] subsumed the
previous work by considering the GRL setup, andMajeed and Hu�er [7] extended the work to
state-action abstractions. �e value functions provide natural criteria to group histories. �e
resultant structure can be non-Markovian. Such non-MDP abstractions have many benefits
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over Markovian reductions. �e resultant state-space (∼= the set of groups of histories) can be
significantly smaller with these abstractions than theMarkovian counterparts. One advantage
of using such abstractions, as compared to POMDPs, is the guarantee of the optimal behavior
being a function of states, which helps the learning in many problems that were traditionally
not considered learnable [19].

However, themost remarkable aspect of such non-MDP abstractions is that theremay exist
an upper bound on the required number of states uniformly for any problem, as it is the case in
ESA [6]. �e idea is to group histories together which have similar optimal action-valuesQ∗.
Since Q∗ is a bounded real function (which is the case as R is bounded), we can potentially
upper bound the required number of states by lumping together histories by discretization of
the action-value function. In this work, we are primarily interested in non-MDP abstractions
of the following type.

Definition 5.1 (ε-Q-uniform abstraction). An abstraction function φ : H → S is an ε-Q-
uniform abstraction if for any h, ḣ ∈ H and all a ∈ A we have

(
φ(h) = φ(ḣ)

)
=⇒

∣∣∣Q∗(h, a)−Q∗(ḣ, a)
∣∣∣ ≤ ε

where S is the set of states9 of the abstraction.

In ESA, the agent’s policy is (constrained to be only) a function of the states. Although
these states do not exhibit Markovian dynamics, the agent can “pretend” that the abstract
process is Markovian. �is structure provides a surrogate-MDP whose optimal policy is ε-
optimal in the original environment.

�e ε-Q-uniform, non-MDP abstractions lead to the following important result due to
Hu�er [6]. We only state the result without a proof for the closure of exposition, see Hu�er
[6] for more details about ESA and proofs.

In the following theorems we assume that the rewards are bounded in the unit interval,
i.e. R ⊆ [0, 1]. �is is done for brevity, and it is not a necessary condition. �e rescaling of
the rewards does not affect the decision-making process in (G)RL. In general, let the range of
the rewards be R := maxR − minR. �en, the scalars in the nominators of �eorems 5.2
and 5.3 are replaced by 2R and 4R2 respectively.

�eorem 5.2 (ESA [6, �eorem 11]). For every environment P there exists a reduction φ and
a surrogate-MDP whose optimal policy10 is an ε-optimal policy for the environment. �e size of

the surrogate-MDP is bounded (uniformly for any P ) by11

|S | ≤

(
2

ε(1− γ)3

)|A |

�is is a powerful result, but it suffers from the exponential dependence on the action-
space size. We now put our action sequentialization framework to work and dramatically
improve this dependency from exponential to only a logarithmic dependency in |A |.

So far, we have considered an arbitrary B-ary decision set to sequentialize the action-
space. However, in the following theorem we go to the extreme case of sequentializing the

9We consider a finite abstract set of states, but the underlying set of states (∼= history-space) is (allowed to
be) infinite. Note also that we consider approximate Q-uniform aggregations which result into a finite abstract
state.

10See Hu�er [6] of how to learn this policy, the surrogate-MDP, Q∗, and φ.
11�e 2 instead of a 3 in the original theorem is a trivial improvement by removing the grid point at 0 in the

construction.
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action-space to binary decisions (B = B) to squeeze out the maximum improvement possible
through the framework.

�eorem5.3 (Binary ESA). For every environment there exists an abstraction and a correspond-

ing surrogate-MDP for its binarized version (B = B) whose optimal policy is ε-optimal for the
true environment. �e size of the surrogate-MDP is uniformly bounded for every environment as

|S | ≤
4⌈1− γ + log2|A |⌉6

γ2ε2(1− γ)6

Proof. Consider the agent that is interacting with the sequentialized/binarized environment
P̆ . By�eorem 4.6, we know that a near-optimal policy of this sequentialized environment is
also near-optimal in the original environment. Now, if we use ESA on the binarized problem
and get an ε′-optimal policy through the surrogate-MDP by �eorem 5.2, we are sured to be
ε-optimal in the original environment P as explained above. Additionally, the size of the
state-space is bounded as

|S |
Theorem 5.2

≤

(
2

ε′(1− λ)3

)2

=
4

ε′2(1− λ)6
(22)

where λ is the discount factor of the sequentialized problem. Next, we upper bound
Equation (22) by using the fact that λd = γ. Let δ := 1− γ < 1. So,

1− λ = 1− (1− δ)1/d = 1− e
ln(1−δ)

d

(a)

≥ 1−
1

1− ln(1− δ)/d

(b)

≥ 1−
1

1 + δ/d

=
δ

d+ δ
=

1− γ

d+ 1− γ
(23)

where (a) holds due to 1
e−α ≤ 1

1−α
, (b) is true by using the fact that δ < 1, hence ln(1− δ) ≤

−δ. �erefore, using Equation (22), Equation (23), and ε′ = λd−1ε ≥ λdε = γε we get,

|S | ≤
4

ε′2(1− λ)6
≤

4(1− γ + d)6

γ2ε2(1− γ)6
(24)

which proves the claim.

Superficially, it might seem that we have simply replaced the original discount factor with
a larger value. But, it is not the case. If we simply scaled the discount factor (without sequen-
tializing the actions) then the resulting bound would indeed deteriorate, see�eorem 5.2, but
on the contrary, with sequentialization/binarization and our analysis the bound (dramatically)
improves.

Usually in RL the discount factor γ is close to 1. In that case, the bound in �eorem 5.3
can be tightened further as:

|S | .
4⌈log2|A |⌉6

ε2(1− γ)6
(25)

which agrees with the bound in�eorem 5.2 for the case when |A | = 2, i.e. when the original
problem already has a binary action-space.
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6 Conclusion & Outlook

�is work contributes to the study of the GRL problem. We have provided a reduction to
handle large state and action spaces by sequentializing the decision-making process. �is
helped us improve the upper bound on the number of states in ESA from an exponential
dependency in |A | to logarithmic. �e gain is double exponential in terms of the action-space
dependence at no other cost.

Our result carries a broader impact on the implementation of general RL agents12. �e
required storage for such agents, which have access to a non-MDP, approximate Q-uniform
abstraction, can be reasonably bounded which only scales logarithmically in the size of the
action-space.

We conclude the paper with some future research directions. �is work analyses the case
when the agent has a fixed aggregation map. Hu�er [6] provides an outline for a learning al-
gorithm to learn such abstractions which can be combined with our sequentialization frame-
work.

Another direction, which we also did not touch in this work, is to explore the connection,
if any, between the surrogate-MDPs of a map on the original environment, and its extension
on the sequentialized problem. By li�ing the small binary ESA map, say ψ, back to H , one
obtains a small map directly on H , say φ. While ψ used sequentialization/binarization for
the construction of φ, the map φ can be used without further referencing to sequentialization.
�is suggests that a bound logarithmic in |A | should be possible without a detour through
the sequentialization. �is deserves further investigation.

We sequentialize the action-space through an arbitrary coding scheme C , so the main re-
sult does not depend on this choice. Sometimes, it is possible that the action-space may allow
“natural” sequentialization, e.g. in a video game controller the “macro” action might be a bi-
nary vector where the first bit might represent the le�/right direction, the second bit indicates
up/down, and so on. �e exact nature of these “binary decisions” depends on the domain
which is reflected by the choice of encoding C . Sequentialization was our path to double-
exponentially improve that bound. Whether there are more direct/natural aggregations with
the same bound is an open problem. Moreover, if the agent is learning an abstraction through
interaction, the choice of these functions may become critical.

�is paper focused on rigorously formalizing and proving the main improvement result.
One can also try to empirically show the effectiveness of our improved upper bound. To
do this, we need a problem domain where ESA requires more states than the sequential-
ized/binarized version of it. But a point of caution is that the upper bound still scales badly
in terms of γ and ε. Any reasonable value of these parameters would imply a huge upper
bound. Even with Markovian abstractions, a cubic dependency on the discount factor is the
best achievable. We considered a general underlying process and non-Markovian abstractions,
and dramatically improved the previously best bound (1 − γ)−3|A | to (1 − γ)−3·2. Indeed it
would be interesting to see whether this can be further improved to the optimal (1 − γ)−3

rate.
Acknowledgements. �is work has been supported by Australian Research Council grant
DP150104590. �anks to the anonymous reviewers for their feedback and to András György
who pointed out that the sequentialized/binarized process in Figure 2 preserves the Markov
property, which encouraged us to also consider the Markov case.

12�e general (or strong) agents are designed to work with a wide range of environments [20].
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