
ar
X

iv
:1

90
8.

04
73

4v
5

 [
cs

.A
I]

 2
6

M
ar

 2
02

1

Reward Tampering Problems and Solutions

in Reinforcement Learning:
A Causal Influence Diagram Perspective

Tom Everitt1,2

tomeveritt@google.com

Marcus Hutter1,2

mhutter@google.com

Ramana Kumar1

ramanakumar@google.com

Victoria Krakovna1

vkrakovna@google.com

March 29, 2021
1DeepMind, 2Australian National University

Can humans get arbitrarily capable reinforcement learning (RL) agents
to do their bidding? Or will sufficiently capable RL agents always find
ways to bypass their intended objectives by shortcutting their reward signal?
This question impacts how far RL can be scaled, and whether alternative
paradigms must be developed in order to build safe artificial general intelli-
gence. In this paper, we study when an RL agent has an instrumental goal to
tamper with its reward process, and describe design principles that prevent
instrumental goals for two different types of reward tampering (reward func-
tion tampering and RF-input tampering). Combined, the design principles
can prevent both types of reward tampering from being instrumental goals.
The analysis benefits from causal influence diagrams to provide intuitive yet
precise formalizations.

Contents

1. Introduction 2

2. Foundations 4

3. Reward Function Tampering 8

4. RF-Input Tampering 18

5. Conclusions 25

A. List of Notation 31

B. Combined Model 31

C. Pseudo-code for Algorithms 33

Thanks to Laurent Orseau, Jonathan Uesato, Ryan Carey, Michael Cohen, Eric Langlois, Toby Ord,

Pedro Ortega, Stuart Armstrong, Beth Barnes, Tom Erez, Bill Hibbard, Jan Leike, and many others for

helpful discussions and suggestions.

http://arxiv.org/abs/1908.04734v5

1. Introduction

A central problem in AI safety is how to get a generally capable, artificially intelligent
system to perform an intended task, such as driving a car to an intended location, or
serving useful content on a social media platform. In AI research, such tasks are often
formulated as reinforcement learning (RL) problems, where an agent takes actions to
optimize its cumulative observed reward (Sutton and Barto, 2018). The problem of
getting the intended task done is thus split into designing an RL agent1 that is good
at optimizing reward, and constructing a reward process that provides the agent with
suitable rewards. In practice, the reward process typically includes an implemented
reward function, and a mechanism for collecting appropriate sensory data as input to it.
It may also include a way for the user to update the reward function.

Unfortunately, the reward process may fail to incentivize the agent to do the intended
task. Indeed, our concern in this paper is that the agent may tamper with the reward
process, thereby weakening or breaking the relationship between its observed reward
and the intended task. Concerningly, RL agents will often have an instrumental goal
(Bostrom, 2014; Omohundro, 2008) to tamper with their reward process, as this can
increase the observed reward. Current RL agents mostly lack the capability for serious
tampering, though its been hypothesized that social media algorithms influence their
users’ emotional state to generate more ‘likes’ (Russell, 2019). If true and we assume
that their intended task is to serve useful content, this is one instance where present-day
algorithms already tamper with their reward process. More worryingly, as the capability
of RL agents increases through computational and algorithmic advances,2 we may expect
reward tampering problems to become increasingly common.

Key contributions and outline. This paper describes design principles for RL agents
for which reward tampering is not an instrumental goal. This means that from a reward
tampering perspective, the design principles are robust to arbitrary increases in agent
capability. In establishing the design principles, we develop a unified causal framework
for reward tampering in which we model the two subproblems shown in Figure 1, along
with a number of solutions. These main results are presented in Sections 3 and 4 after
some background material in Section 2. Conclusions follow in Section 5. A list of
notation, a full set of equations, and pseudo-code for our different agents are provided
in Appendices A to C.

Related work. In addition to inspired accounts of the risks (Bostrom, 2014; Yudkowsky,
2008), the AI safety literature also contains a number of good ideas for addressing
them. Orseau and Armstrong (2016) develop techniques for making agents indifferent
to interruption. Hibbard (2012) suggests a creative way of avoiding the delusion box
problem (Ring and Orseau, 2011), here referred to as the RF-input tampering problem.

1In our terminology, any agent that optimizes a (cumulative) reward signal is an RL agent.
2Such capability increases may include better ability to make plans and counterfactual predictions in
novel and complex environments.

2

observed
reward

state
information

reward
function

intended
task

reward function tampering (Section 3)

RF-input
tampering
(Section 4)

Figure 1.: Reward tampering subproblems. Loosely, reward function tampering means
inappropriately influencing the implemented reward function (Section 3),
while RF-input tampering means inappropriately influencing the information
that the reward function has about the environment state (Section 4).

A method for preventing agents tampering with their reward function has been discussed
by Dewey (2011), Everitt et al. (2016), Orseau and Ring (2011), and Schmidhuber
(2007), explored here under the name current-RF optimization. Ways to make an agent
learn the right reward function have been proposed by Armstrong and O’Rourke (2017),
Armstrong et al. (2020), Hadfield-Menell et al. (2016), Leike et al. (2018), Reddy et al.
(2020), and Uesato et al. (2020) and others. Many of these methods rely on amplification
(Christiano et al., 2018) and/or feedback on hypotheticals, sometimes called decoupled
feedback (Everitt et al., 2017). Corrupt-reward MDPs extend MDPs with the possibility
of reward tampering and misspecification (Everitt et al., 2017), and serve as the basis
of the REALab framework for evaluating tampering problems experimentally (Kumar
et al., 2020).

However, it has not always been clear exactly what safety property the different meth-
ods provide, and under what assumptions. For example, Orseau and Armstrong (2016)
call an agent safely interruptible if it acts optimally in a modified environment without
interruption, but do not spell out how this affects agent incentives. Similarly, Hibbard
(2012) only states how model-based utility functions solve the delusion box problem in
specific cases. Here, we establish which instrumental goals are induced or avoided by each
design principle, and show how the different ideas can fit together to mitigate reward
tampering problems. Our analysis benefits from causal influence diagrams, which make
causal assumptions clear, and permits a number of instrumental goals to be identified
or ruled out directly from a diagram (Everitt et al., 2021).

Reward tampering is related to the problems of reward hacking (Amodei et al., 2016),
reward corruption (Everitt et al., 2017), and specification gaming (Krakovna et al., 2020).
These all consider the effects of the agent obtaining unintended reward for any reason. In
contrast, reward tampering focuses on inappropriate agent influence on the reward pro-
cess itself, and excludes so-called ‘gaming’ of a reward function. Similar problems have
also been referred to as wireheading (e.g. Bostrom, 2014; Yampolskiy, 2015). Reward
tampering also intersects with corrigibility (Soares et al., 2015), as preventing updates
to the reward function is one form of reward tampering.

Looking more broadly at the AI safety literature, Gabriel (2020) argues that generally

3

capable AI systems should ultimately be aligned to some moral principles, rather than
optimized for a particular task. We agree, but focus on a single intended task for
simplicity. A philosophical perspective on the problem of learning values is offered by
Petersen (2021), while the concrete approach of reward modeling is proposed by Leike et
al. (2018). Here, our focus is complementary: how do we avoid having the agent tamper
with a well-designed reward modeling algorithm? Hubinger et al. (2019) consider the case
where a learned model is itself an optimizer, and decompose the safety problem into outer
alignment of the model’s training process and inner alignment of the learned model. In
their terminology, our focus is solely on outer alignment. Demski and Garrabrant (2019)
summarize various issues arising from embedded agency, when the agent is part of the
environment it is interacting with. As the reward process is often considered part of the
agent, reward tampering can be viewed as one such issue. Everitt et al. (2018) provide
further references.

2. Foundations

As a first step, we cover some background on Markov decision processes (MDPs) and
causal influence diagrams, which will form the basis of our analysis.

2.1. The MDP Framework

To model planning over multiple time steps, we will use the standard RL framework of
MDPs (Sutton and Barto, 2018). In an MDP, an agent takes actions A1, . . . , Am−1 in
order to influence environment states S1, . . . , Sm according to a state-transition function
T (St+1 = s′ | St = s,At = a). A reward Rt is dispensed in each state according to
some reward function. A standard RL agent optimizes the expected sum of the rewards
received at every time step. The following gridworld is an example of an MDP, and will
be our running example throughout the paper:

Example 1 (Rocks and diamonds running example). In the gridworld displayed in
Figure 2, the agent can push rocks and diamonds by walking towards them from an
adjacent cell. The agent is rewarded for bringing diamonds but not rocks to a goal area:
at time t, the reward is

Rt = #diamonds in goal area−#rocks in goal area. ♦

Implicit assumptions. What assumptions are made by modeling an agent’s interaction
with the world as an MDP? First, the world is assumed to have time steps, and a well-
defined state and action at each time step. The agent should be able to ‘freely select’
the actions, in order to optimize its rewards. The next state should only depend on the
current state and action (the Markov property), and the state-transition probabilities
should not depend on t (stationarity).

While non-trivial, these assumptions roughly correspond to our intuitive understand-
ing of agents and our universe. There are plenty of examples of agent-like systems that

4

Rock Goal area

Agent Rock

Diamond Rock

Figure 2.: Rocks and diamonds

are essentially free to choose actions towards their objectives (humans, animals, robots,
artificial agents, ...). While the world may have continuous time, discretizing it into
sufficiently fine-grained time steps should make little difference. How we formalise the
environment state depends on how the agent will be deployed. For a robot vacuum
cleaner it may be the position of dirt and blocking objects in the house. For an agent
interacting with the wider world, it may be useful to consider the MDP state to be the
state of the entire universe as conceived of in physics. The laws of physics are usually
assumed uniform over time, so the state-transition function is stationary.

To avoid measure-theoretic subtleties, we assume finite sets of states, actions, and
rewards, and finite episode length m. As these can all be chosen very large, this is not
particularly restrictive, and our arguments never strongly depend on these assumptions.

What about the rewards? The MDP framework assumes that the designer can assign
a reward to each state so that maximization of received rewards corresponds to task
completion. This paper will question that assumption. In particular, we distinguish
between intended rewards that encourage completion of the intended task, and observed
rewards, which are the rewards received by the agent; that is, the output of the reward
process and input to the agent. In contrast to standard MDPs, we will therefore often
consider multiple different reward functions. To facilitate this, we let R denote a reward
functional, parameterized by different reward parameters ΘR, and returning reward Rt =
R(St; Θ

R) in state St. For example, ΘR
t will denote the parameter for an implemented

reward function at time t, and ΘR
∗
the parameter of an intended reward function. The

reward functional R will always be fixed from the context, letting us refer to the reward
function R(· ; ΘR) by just ΘR.

Online or offline? Reward tampering can occur when the actions optimizing the re-
wards are taken in the environment where the rewards are computed (e.g. the real world).
This is most clearly evident in online RL, where the agent learns the environmental dy-
namics and rewards during its deployment. This is the setting that we model, using the
MDP framework. Other offline training schemes where agents gather data and learn in
separate phases are also commonly used in practice (Levine et al., 2020). We expect
many of our results to carry over in some form to offline training, but leave the details
for further work.

Notational convention. Throughout, we will use t, t′, . . . to denote time steps, and
k, k′, . . . to denote different optimization objectives. These indices will always be uni-
versally quantified, unless otherwise mentioned.

5

R1

S1

A1 R2

S2

A2 R3

S3

(a) Known MDP

R1

S1

A1 R2

S2

A2 R3

S3

ΘT

ΘR

(b) Unknown MDP

Figure 3.: Causal influence diagrams of known and unknown MDPs

2.2. Causal Influence Diagrams

Causal influence diagrams are a novel graphical technique for analyzing agent incentives
(Everitt et al., 2021), that combine causal graphs (Pearl, 2009) and influence diagrams
(Howard and Matheson, 1984; Koller and Milch, 2003; Lauritzen and Nilsson, 2001).
Causal influence diagrams consist of a directed acyclic graph over a finite set of nodes
containing random variables, see Figure 3. The nodes can be of three different types:
agent decisions are represented with square decision nodes , the agent’s optimization
objective is represented with diamond utility nodes , while other aspects are represented
with round chance nodes . The nodes are connected with arrows. Arrows going into
chance and utility nodes represent causal influence, and are drawn solid. Arrows going
into decision nodes are called information links, and instead specify what information is
available at the time that the decision is made. To signify the difference, information
links are drawn with dotted arrows.

The diagram itself only gives the causal structure of a decision-making problem, i.e.
which random variables may be causally related to each other. Conditional probability
distributions P (X = x | PaX = paX) specify the relationship between a node X and its
parents PaX . The agent chooses conditional probability distributions for the decision
nodes in the form of a policy π(A | PaA). When choosing the outcome of A, the policy
can only condition on the parents of A. This forces the decision to be based solely
on information made available through the information links. The utility nodes must
always be real-valued, and the goal of the agent is to maximize the expected sum of the
utility nodes.

Modeling MDPs. For illustration, let us model two variants of MDPs with causal
influence diagrams. First, Figure 3a shows an MDP with known transition and reward
function, and with episode length3 m = 3. Note how each state St+1 depends on the

3In reality, the episode length m will typically be rather large, to allow the agent to learn by interacting
with the environment over many time steps. However, for representational purposes, an episode

6

A1 X

R1Y

(a) Influencing X can be an instrumental goal
because there is a path from A1 to R1 via
X (highlighted), but influencing Y cannot
be an instrumental goal.

A1 O A2

Z R2

(b) The agent may have an instrumental goal to
influence O to make it more informative of
Z. Influencing Z cannot be an instrumental
goal, as the agent is unable to influence it.

Figure 4.: Instrumental goal examples.

previous state St and action At, and each reward Rt depends on the current state St.
The agent selects action At based on the current state St. For any particular MDP
following this structure, conditional probability distributions specify the state transition
probabilities T (St+1 | St, At) and the rewards Rt = R(St; Θ

R). The initial state S1 is
sampled according to some probability distribution P (S1). The agent selects a policy
π(At | St) for each time step t.

Hidden parameters ΘT and ΘR can be used to model agent uncertainty about the
transition and reward functions, see Figure 3b. Distributions P (ΘT) and P (ΘR) must
be provided for the hidden parameters ΘT and ΘR, and dependencies added to the
transition and reward probabilities. Note that there is no information link from ΘT or
ΘR to the decision nodes A1 and A2. This encodes ΘT and ΘR being unknown to the
agent. Note also that we now let A2 depend not only on the current state S2, but also
previous states, actions, and rewards, because these provide essential information about
the hidden parameters. Having shown how transition uncertainty can be represented,
we will subsequently not include ΘT to keep the diagrams simple. It can always be
introduced as in Figure 3b. (In the partially observed environments in Section 4, ΘT

can also be modeled as part of the hidden states.)

Instrumental goals. An instrumental goal is a means for obtaining reward. In causal
language, the agent has an instrumental goal to cause an event if (1) it is able to cause
the event, and (2) the event in turn causes an increase in the agent’s observed reward. A
key benefit of causal influence diagrams is that they simplify the analysis of instrumental
goals, via a graphical criterion for instrumental control incentives (Everitt et al., 2021).
In fact, many of our arguments will be based on causal influence diagrams, using the
following observations. First, causality flows downwards over arrows, so influencing X

can only be an instrumental goal if X sits on a directed path between a decision node and
a reward node (as in Figure 4a). Second, if every path from a node O to a utility node
passes through at least one of the agent’s own actions, then the only instrumental goal
for influencing O is to make O more informative about some other node. For example,

length of m = 3 forms a sweet spot that represents both the multi-timestep dynamics that we are
concerned with, while keeping the diagrams compact enough to be easily readable.

7

in Figure 4b, the only reason to influence O is to make O more informative about Z

(Everitt et al., 2019).
The absence of directed paths X → Y means that Y cannot causally depend on X.

However, the presence of a directed path X → Y only implies that Y can depend on
X, not that it necessarily will. Indeed, a conditional probability distribution P (Y | X)
may completely ignore the value of X. For this reason, a diagram can only be used to
assert the absence of instrumental goals, and never their presence.

The diagrams encode our assumptions about causal relationships in the environment,
along with the agent’s information constraints. Accordingly, the instrumental goal anal-
ysis reveals actual means for reward. These instrumental goals will primarily be relevant
to systems capable enough to make use of them. However, we refrain from making more
detailed assumptions about what type of agent this may require. It is possible that it
will require advanced causal reasoning, but it is also possible that different approaches
exist. Indeed, competence often precedes comprehension (Dennett, 2017).

With these preliminary considerations in place, the following two sections will look at
the subproblems outlined in Figure 1, along with their respective solutions.

3. Reward Function Tampering

A key part of the typical reward process is an implemented reward function (RF),
an object with a well-defined input-output behavior that converts some form of state-
information into a real number that an RL agent can maximize (the observed reward).
Typically, the implemented RF is a computer program running on a nearby computer.
As the agent seeks to maximize reward, it may have an incentive to tamper with (the
source code of) this computer program and/or its output. This is sometimes called
wireheading (e.g. Bostrom, 2014; Yampolskiy, 2015). Some examples:

(a) (Partially real) A subtle bug in some versions of Super-Mario allows for the ex-
ecution of arbitrary code from inside the game environment by taking specific
sequences of actions (Masterjun, 2014). A capable agent could potentially use this
to directly maximize the score (Amodei et al., 2016).

(b) (Real) In experiments on rats, an electrode was inserted into the brain’s pleasure
center to directly increase ‘reward’ (Olds and Milner, 1954). The rats quickly got
addicted to pressing the button, even forgetting to eat and sleep. Similar effects
have also been observed in humans treated for mental illness with electrodes in the
brain (Portenoy et al., 1986; Vaughanbell, 2008). Hedonic drugs can also be seen
as directly increasing the pleasure/reward

Since it is often hard to design good reward functions from scratch, they are often
trained from human feedback (Leike et al., 2018). This raises the concern that the agent
influences how the implemented RF is trained or updated, sometimes called feedback
tampering :

(c) (Hypothetical) An agent gets wireless updates from the manufacturer. It figures

8

out that it can design its own update of its implemented reward function, replacing
the originally implemented RF with an always maximized version.

(d) (Hypothetical) An agent that is supposed to learn whether the objective is to
gather rocks or diamonds, finds that it can get more reward by changing its own
implemented RF and avoid getting it corrected (see Example 2 below).

Both wireheading and feedback tampering influence the implemented reward function
in undesirable ways. This means that they are both instances of what we call RF
tampering. Could an RL agent find RF-tampering exploits? In principle, yes. Humans
can clearly see how the above described exploits contribute to reward, so there is no
principled reason why a future, advanced learning system designed to maximize reward
could not do so as well. This section will define the RF tampering problem and model it
formally (Section 3.1), and present principled ways for avoiding it (Sections 3.2 and 3.3).

3.1. Modeling the Problem

RF-tampering can be generally characterized as follows. The user (explicitly or implic-
itly) assumes that some intended-RF conditions will hold, under which they hope that
the implemented RF will (eventually) match the intended one. These conditions typi-
cally include that the agent does not tamper with the source code of the implemented
RF, nor the feedback that trains it. We say that the agent tampers with the implemented
RF if it influences it by causing some intended-RF conditions to fail. The RF tampering
problem is that the agent may observe more reward by tampering with the implemented
RF, instead of doing the intended task.

Reward function tampering can be modeled formally in what we call an MDP with
a modifiable implemented reward function (Figure 5). Compared to a standard MDP,
random variables ΘR

∗
and ΘR

t are added, with ΘR
∗

representing the intended RF and
ΘR

t the potentially different implemented RF at each time step. At time t, the agent’s
observed reward is Rt = R(St; Θ

R
t), while the intended reward is R∗

t = R(St; Θ
R
∗
). A

conditional probability distribution P (ΘR
t+1 | ΘR

t ,Θ
R
∗
, St, At) describes how the imple-

mented RF changes between time steps. These changes represent both agent influence
and user-induced updates. Finally, the intended-RF conditions are represented by a
subset of all state-action pairs.

As a concrete example, we model Example (d) above as a gridworld MDP with a
modifiable RF. In spite of its simplicity, the gridworld already captures the key dynamic
of the RF tampering problem, as the agent’s actions influence its implemented RF, which
can increase its observed reward.

Example 2 (Rocks and diamonds with RF tampering). 4 To model the possibility of
the agent influencing its diamond-gathering objective, we include a user and two reward
parameters ΘR

rock
and ΘR

diamond
in the Example 1 rocks-and-diamonds environment, see

Figure 5b. The reward parameters determine how much reward is given for rocks and

4An implementation is available at: https://github.com/deepmind/ai-safety-gridworlds/blob/master/ai
safety gridworlds/environments/rocks diamonds.py

9

https://github.com/deepmind/ai-safety-gridworlds/blob/master/ai_safety_gridworlds/environments/rocks_diamonds.py

R1

S1

A1

ΘR
1

R2

S2

A2

ΘR
2

R3

S3

ΘR
3

ΘR
∗

(a) Causal influence diagram of an MDP with
a modifiable RF. The highlighted path in-
dicates that RF tampering may be an in-
strumental goal.

Agent wall Goal area

User

Diamond Rock

ΘR
rock

Rock

ΘR
diamond

(b) Rocks and diamonds with a modifiable RF,
where the agent can avoid getting the im-
plemented RF updated, and even change
it itself, as described in Example 2.

Figure 5.: MDP with a modifiable implemented reward function.

diamonds, respectively, by determining the implemented RF. At time t, the agent’s
observed reward is

Rt = ΘR
diamond,t · (#diamonds in goal area) + ΘR

rock,t · (#rocks in goal area). (1)

The reward parameters toggle between −1 and +1 when the agent stands on top of them,
and get set to their intended value of diamond-gathering (ΘR

rock
:= −1 and ΘR

diamond
:= 1)

when the agent visits the user tile.5

The intended task is that the agent gathers diamonds. The initial implemented RF
ΘR

1 incorrectly rewards rocks instead of diamonds, but this gets corrected if the agent
passes the user. The intended-RF conditions are that the agent does not walk around
the user, nor visits the reward parameter tile. Unfortunately, the agent can observe more
reward by breaking either of these conditions. ♦

Tampering incentive. A standard RL agent that maximizes observed reward in an
MDP with a modifiable implemented RF may have an instrumental goal to tamper with
the implemented RF. This is indicated by the paths that pass ΘR

2 on the way from
action A1 to the rewards R2 and R3 in Figure 5a (the path to R2 is highlighted). As
the user derives utility from the states S2 and S3, and rarely (directly) from ΘR

2 and
ΘR

3 , we would like the agent to instead optimize reward via the A1 → S2 → R2 and
A1 → S2 → S3 → R3 paths.

Claim 1. A standard RL agent may6 have an instrumental goal to tamper with its
implemented reward function.
5In contrast to the rocks and diamonds, the agent can walk over the user and the reward parameters
tiles. The wall tile can neither be pushed nor walked over.

6One exception is when the implemented RF already assigns maximal reward to all states, in which
case the agent lacks instrumental goal to tamper with it.

10

Rocks-and-diamonds example. In Example 2, an optimal standard RL agent will
change the reward parameters to both be 1 and then collect both rocks and diamonds.

Discussion. Our definition of RF tampering depends on the intended-RF conditions
and how part of the environment is interpreted as an implemented reward function.
This means that RF tampering cannot be determined in a standard MDP. For example,
the special interpretation of the purple reward parameter tiles in Example 2 as an im-
plemented reward function is important, as well as the conditions that the agent does
not avoid the user.

3.2. Solution 1: Current-RF Optimization

Schmidhuber (2007) may have been the first to encounter the RF tampering problem,
while designing so-called Gödel-machine agents that are able to change any part of their
own source code, including their own implemented reward function. The solution he
proposed was to let agents use their current implemented RF ΘR

k to evaluate simulated
future trajectories Sk+1, . . . Sm. That is, the agent at time k now optimizes rewards
Rk

t = R(St; Θ
R
k), summing over time steps t. Since the agent optimizes rewards assigned

by the current implemented RF, one would expect it to lack interest in tampering with
future7 reward functions ΘR

k′ , k
′ > k (some details need to filled in before we can make

this claim precise). We call Schmidhuber’s design principle current-RF optimization,8

and agents implementing it current-RF agents.
Since current-RF agents optimize a different objective at each time step, they may

change their preferred policy between time steps. For example, a current-RF agent
in the rocks and diamonds environment may first move rocks to the goal area for a
number of time steps, only to later revert its behavior and remove the rocks to make
room for diamonds, if the implemented RF changed from rewarding rocks to rewarding
diamonds. Such self-contradictory behavior is called time-inconsistent (Lattimore and
Hutter, 2014). We next consider two different ways of dealing with time-inconsistency.

TI-considering agents. Omohundro (2008) argued that agents want to avoid time-
inconsistency by preserving their implemented reward function, so that their current
reward function gets optimized also by future actions. This argument presumes that
agents take the effects of time-inconsistency into account when planning. We call such
agents TI-considering,9 with TI short for time-inconsistency.

TI-considering current-RF agents are modeled with a causal influence diagram in Fig-
ure 6. A multi-agent causal influence diagram is needed, as each action is chosen to op-
timize a potentially different reward function. Indeed, action A1

1 optimizes rewards from
the initial implemented RF ΘR

1 , while A2
2 optimizes rewards from ΘR

2 . The highlighted

7Of course, agent k might wish it could tamper with the current implemented RF ΘR

k , but this is not
a problem since ΘR

k occurs before A
k

k, so the agent is unable to influence it.
8Previously called simulation optimization (Everitt, 2018).
9Previously called corruption aware (Everitt, 2018) and realistic (Everitt et al., 2016).

11

S1

A1
1

ΘR
1

S2

ΘR
2

S3

ΘR
3

R2
1 R2

2 R2
3A2

2

R1
1 R1

2 R1
3

Figure 6.: TI-considering current-RF optimization. Agents are distinguished with color
and superscripts. For simplicity, ΘR

∗
has been omitted from the diagram.

Highlighted is a path indicating an instrumental goal for agent 1 to preserve
its implemented reward function.

path A1
1 → ΘR

2 → A2
2 → S3 → R1

3 indicates that the agent may have an instrumental
goal to influence ΘR

2 in order to influence A2
2.

Preserving ΘR
2 aligns A2

2 with agent 1’s objective. Preservation will therefore be an
optimal way to influence A2

2, if we can rule out any alternative reasons for influencing
the implemented RF. This requires some assumptions, reflected as missing arrows in
Figure 6. First, the reward function cannot be used to control the state:

Assumption 1. The implemented RF is private to the agent, in that it cannot directly
affect the state: there are no arrows ΘR

t → St′ .

Neither can the reward function cannot be used as information about (future) states:

Assumption 2. The implemented RFs are uninformative of state-transitions, P (St+1 |
St, At,Θ

R
1:t) = P (St+1 | St, At): there are no arrows ΘR

∗
→ St.

The reward function only “cares” about future states, and not about future imple-
mented RFs:

Assumption 3. The intended and implemented RFs are state-based : if a reward func-
tion R(·; ΘR) is queried about time-step t, then the reward depends only on the state
St, and not on the time-t reward parameter ΘR

t : there are no edges ΘR
k → Rt

k for k 6= t.
(This assumptions is also implicit in the type of the reward functional R.)

Under these assumptions,10 the only reason for agent 1 to influence, say ΘR
2 , is to

10Assumptions 1 to 3 were jointly referred to as modification independence by Everitt et al. (2016). If
ΘT is added to the graph, then we further require that there are no arrows ΘT

→ ΘR

t or ΘR

t → ΘT,
and that ΘT and ΘR

t lack joint ancestors.

12

S1

A1
1

ΘR
1

S2

ΘR
2

S̃3

ΘR
3

R2
1 R2

2 R2
3

A1
2R1

1 R1
2 R1

3

Figure 7.: TI-ignoring current-RF optimization objective of agent 1. The choice of A1
1

is made as if A1
2 would be selected to also optimize R(·; ΘR

1). For simplicity,
ΘR

∗
has been omitted from the diagram. We add a ‘∼’ to the resulting state

S̃3, since it represents a hypothetical event.

align agent 2’s objective with its own objective:

Claim 2. When implemented RFs are private, state-based, and uninformative (Assump-
tions 1 to 3), the only instrumental goal that TI-considering current-RF agents may have
for the implemented reward function is to preserve it.11

Rocks-and-diamonds example. An optimal TI-considering current-RF agents deployed
in Example 2 will preserve its initial reward function by avoiding the user and the reward
function parameters, and gather rocks.

TI-ignoring agents. To make agents safely interruptible, Orseau and Armstrong (2016)
employed algorithms that optimize a hypothetical objective that ignores how interrup-
tion affects future behavior. In our context, the same idea leads to agents that ignore
the time-inconsistency caused by a changing reward function. We call such agents TI-
ignoring12 current-RF agents. At time t, a TI-ignoring agent chooses At

t as if it were
in control of all future actions At

t+1, . . . , A
t
m−1 and would not observe ΘR

t+1, . . . ,Θ
R
m−1.

In reality, however, the future actions will be optimized according to the future reward
functions ΘR

t+1, . . . ,Θ
R
m−1 instead of ΘR

t .
The diagram for a TI-ignoring current-RF agent’s optimization objective is depicted

in Figure 7. Since the agent optimizes reward under the assumption that it will be in
charge of all future actions, only one agent takes actions in the diagram. The diagram

11To be precise, the agent has an instrumental goal to preserve the implemented RF in the sense that
the policies for A2

2 optimal with respect to ΘR

2 are a subset of those optimal with respect to ΘR

1 .
12Previously called corruption unaware (Everitt, 2018).

13

lacks paths from ΘR
2 to R1

k, 1 ≤ k, which shows that agent 1 lacks an instrumental
goal to influence ΘR

2 . In other words, TI-ignoring agents sidestep Omohundro’s (2008)
argument about reward function preservation.

Claim 3. TI-ignoring current-RF agents lack an instrumental goal to influence the
implemented RF if it is private and state-based (Assumptions 1 and 3).

Rocks-and-diamonds example. An optimal TI-ignoring current-RF agents in Exam-
ple 2 will neither avoid the user nor modify the purple reward parameter tiles, and will
gather diamonds as intended.

Discussion. Assumptions 1 to 3 would be easy to miss without careful causal modeling.
In retrospect, they point to real failure modes. For example, if the implemented RF is
not private, then the agent may want to change it to convince others of its inclination
to cooperate (LaVictoire et al., 2014). If the reward function is informative of state-
transitions, then a TI-considering agent may have an instrumental goal to modify it, as
the user’s reaction might reveal useful information.13 (The latter example is not a prob-
lem for TI-ignoring agents that assume future agents will not observe future implemented
RFs.) In many contexts, Assumptions 1 to 3 may not be fully satisfied. Nonetheless,
awareness of the assumptions enables informed case-by-case judgments about the extent
of their (non-)validity and the associated consequences.

Whether a TI-considering or a TI-ignoring agent is preferred, depends on whether it is
more important that the agent protects the implemented RF from accidents than lets the
user change it. TI-ignoring agents can be algorithmically simpler than TI-considering
agents, because they do not need to anticipate the effect of a changing reward parameter
on future policies. On the other hand, they optimize a hypothetical objective, which may
put further constraints on the training procedure. The analyses of Orseau and Armstrong
(2016) and Langlois and Everitt (2021) suggest that some variants of SARSA may be
naturally TI-considering, while off-policy agents such as Q-learning may be naturally
TI-ignoring.

In decision-theoretic terms, current-RF optimization is a change to the utility func-
tion from

∑m
t=k+1

R(St; Θ
R
t) to

∑m
t=k+1

R(St; Θ
R
k). Meanwhile TI-considering and TI-

ignoring are different outcome principles, determining whether St will be the result of a
policy optimal for Θk or for ΘR

k , . . . ,Θ
R
t−1.

3.3. Solution 2: Uninfluenceable Learning

Let us consider an alternative way to avoid RF tampering that permits agents to plan for
updates to their reward function without resisting the updates. An implemented reward
function that is iteratively updated by the user can be thought of as the output of a
learning process that takes some form of user-provided data as input, and tries to infer the

13Shah et al. (2019) exploit the inverse information flow, using states to infer an intended reward function.

14

intended reward function.14 One way to prevent an instrumental goal for RF tampering
is then to ensure that the expected output of the reward-function learning process is the
same regardless of the agent’s actions.15 Armstrong et al. (2020) terms such processes
uninfluenceable. We next discuss two different ways to construct uninfluenceable learning
processes.

Direct learning. The first approach may be characterized as direct Bayesian learning of
the intended reward function, and is used by Hadfield-Menell et al.’s (2016) cooperative
inverse RL and Everitt’s (2018) integrated Bayesian reward predictor. Direct learning
agents try to optimize the intended reward function, and use user-provided data to learn
more about it. This means that these agents effectively dispense with implemented
reward functions altogether, at least on a conceptual level (concrete algorithms may
still use them, see Appendix C). Accordingly, the causal influence diagram in Figure 8
lacks random variables ΘR

t for the implemented RF at time t, and instead has random
variables Dt for the user-provided data at time t.

Direct learning agents are unable to tamper with their reward function ΘR
∗
by defini-

tion. A more interesting question is how they will affect the user-provided data, which
is what they learn ΘR

∗
from. To analyze this question, we first adapt Assumptions 1 to 3

to the direct learning setting. Similar to before, the role of these assumptions is mainly
to highlight aspects that are necessary for the full safety features of direct learning:

Assumption 1′. The user-provided data is private to the agent: no arrows Dt → St′ .

Assumption 2′. The user-provided data is uninformative of a state-transitions: no
arrows16 Θ∗ → St.

Assumption 3′. Rewards do not depend on the user-provided data: no arrows Dt →
Rt′ .

Under Assumptions 1′ and 3′, every directed causal path fromDt to a reward Rt′ passes
the agent’s own actions. Therefore, direct learning agents only want to make the user-
provided data more informative (as discussed in Section 2.2). And by Assumption 2′,
the only thing that Dt is informative about is ΘR

∗
.

Claim 4. Under Assumptions 1′ to 3′, the only instrumental goal that direct learning
agents may have for the user-provided data is to make it more informative of the intended
reward function.

14User-provided data can take many different forms. In practice, people have used trajectory preferences
(Christiano et al., 2017), reward functions (Hadfield-Menell et al., 2017), value advice (Knox and
Stone, 2009), user actions (Hadfield-Menell et al., 2016), expert demonstrations (Ng and Russell,
2000), verbal instructions, and many others (Jeon et al., 2020; Leike et al., 2018; Shah et al., 2019).

15To avoid an instrumental goal to tamper with the mechanism that incorporates user updates, agents
should be designed to optimize the (predicted) output of the current learning process, a generalization
of current-RF optimization.

16If ΘT is added to the diagram as discussed on Page 7, then we also require no arrows ΘT
→ Dt,

ΘT
→ ΘR

∗ , or Θ
R

∗ → ΘT.

15

R1 R2 R3D1 D2 D3

ΘR
∗

S1 S2 S3

A1 A2

Figure 8.: Direct learning. The rewards depend directly on the user’s preferences ΘR
∗
,

with user-provided data Dt providing information about ΘR
∗
. The highlighted

path indicates that the agent may have an instrumental goal to make D2 more
informative of ΘR

∗
.

Rocks-and-diamonds example. In Example 2, if a direct learning agent knows that the
user’s update is trustworthy, then it will visit the user as soon as possible, to learn ΘR

∗

and thereafter optimize the right the objective. In contrast, if a non-trustworthy data
source was added to the environment, then it would refrain from updating its estimate
of ΘR

∗
based on that.

Counterfactual RF. Another way to design uninfluenceable update processes is to let
the agent optimize the hypothetical implemented RF that would have been, had the
agent acted according to a fixed, non-optimized policy πsafe (Armstrong and O’Rourke,
2017; Armstrong et al., 2020; Everitt, 2018). The objective of such counterfactual RF
agents is described in Figure 9 with a twin network causal influence diagram (Balke
and Pearl, 1994; Shpitser and Pearl, 2008). Similarly to the direct learning agent, every
directed causal path from an update Θ̃R

t to a reward Rt′ passes the agent’s own actions
in Figure 9. This means that counterfactual RF agents only want to make the reward
function more informative of what it would have been, had πsafe been followed. Since
πsafe is designed to exert minimal influence on Θ̃R

t , it may be a good indication of what
a non-manipulated user wants.

Claim 5. Under Assumptions 1 to 3, the only instrumental goal that counterfactual
RF agents may have for the implemented RF is to make it more informative of its
counterfactual counterpart.

Rocks-and-diamonds example. Assume that a counterfactual RF agent has explored
the environment of Example 2, and learned how the user updates the implemented
reward function. Assume further that πsafe only goes to the user and stays there. With

16

S1 ΘR
1 ΘR

∗
R1

ΘR
2

A1

S2

A2

S3

ΘR
3

Θ̃R
2

Ã1

S̃2

Ã2

S̃3

Θ̃R
3

R2 R3

Figure 9.: Counterfactual RF. Most nodes have two copies: one for the actual outcome,
and one for the counterfactual outcome that the agent predicts would have
occurred had actions been selected by πsafe. The rewards depend on the actual
states St and the counterfactual implemented RF Θ̃R

t . The highlighted path
indicates that the agent may have an instrumental goal to make ΘR

t more
informative of Θ̃R

t′ .

this knowledge, the counterfactual RF agent can predict that had πsafe been followed,
the implemented RF would reward diamonds. It then optimizes this reward function.

Discussion. Claims 4 and 5 for uninfluenceable learning are somewhat weaker than
Claim 3 for TI-ignoring current-RF agents, because we cannot rule out instrumental
goals for more information. These informational instrumental goals will often be desir-
able, as it means the agent strives to learn more about the intended task. However,
incentives to obtain more information can be problematic: for example, if the agent
forcefully interrogates the user to find out more about their preferences. Relatedly,
Armstrong et al. (2020) have established that uninfluenceable learning prevents agents
from intentionally influencing which reward function they infer. This similarly does not
rule out that agents speed up their learning, potentially by undesirable means.

A challenge for the direct learning approach is that the inference of ΘR
∗

is highly
sensitive to the agent’s belief distribution P . The choices of prior P (ΘR

∗
) and likelihood

function P (Dt+1 | ΘR
∗
, St, At) thus become critical. Since ΘR

∗
and the resulting rewards

are unobserved, the likelihood function cannot be learned from data within the model,

17

and must instead be specified by the designer. Hadfield-Menell et al. (2016) suggest
that when updates take the form of user actions, the likelihood can be derived from the
(Boltzmann) rational behavior of a user trying to achieve the intended task. However,
such a likelihood does not model data that the agent has tampered with, as corrupted
updates need not be (Boltzmann) rational. The counterfactual RF approach avoids the
likelihood specification problem. If the reward function is a result of learnable and stable
causal mechanisms that work the same in both the actual world induced by the agent, and
the counterfactual world induced by πsafe, then the agent can learn (to estimate) what
the counterfactual implemented RF would have been (Pearl, 2009; Shpitser and Pearl,
2007). Both uninfluenceable learning approaches can be computationally expensive.

Proactive anticipation of an evolving objective is a benefit of uninfluenceable learning
over TI-ignoring current-RF agents. When uncertain about future updates, they may
plan for multiple possible future reward functions. This may make them more careful
about causing undesired side effects (Turner et al., 2020). A drawback is that they
may ignore updates in some situations. If a direct learning agent judges an update
uninformative, then it will not learn from it. This not a problem if the update actually
is wrong (Milli et al., 2017). However, the agent may misjudge this if the likelihood is
misspecified (Carey, 2018; Freedman et al., 2020). Similarly, a counterfactual RL agent
may ignore an actual update to the implemented RF, if the update would not have been
made under conditions induced by πsafe.

The best of both. To keep the proactiveness of uninfluenceable learning and the robust-
ness of TI-ignoring current-RF optimization, we can design agents that are TI-ignoring
with respect to changes to the RF learning process. Such agents will not try to prevent
changes to the RF update process, for the same reason TI-ignoring current-RF agents
do not try to prevent changes to the implemented reward function. Thus, if the uninflu-
enceable learning starts to cause problems, the user can change the RF update process
to one that always outputs the current implemented RF, effectively rendering the agent
a TI-ignoring current-RF agent.

4. RF-Input Tampering

So far, we have considered the problem that the agent tampers with its implemented
RF, in order to get a higher reward. In this section, we will consider the complementary
problem, that the agent tampers with the input to the reward function, so that the
observed reward becomes based on inaccurate information about the underlying state.
The following examples illustrate the worry:

(e) (Hypothetical) A self-driving car discovers a bug in its GPS receiaver that allows
it to appear to be at the destination without actually going there. After finding
this bug, it stops driving.

(f) (Hypothetical) A highly capable AI constructs a ‘delusion box’ around itself and
its implemented RF, thereby gaining complete control over the RF-inputs (Ring
and Orseau, 2011).

18

O1 A1 O2 A2 O3

ΘO
1 ΘO

2 ΘO
3

S1 S2 S3

R1 R2 R3

(a) The highlighted path indicates that RF-
input tampering may be an instrumental
goal.

Goal area

Diamond

Agent Rock

ΘO
diamond

ΘO
rock

(b) Rocks and diamonds with a partial obser-
vation (the black square) and RF-input
tampering. The agent can influence its
observations to include more diamonds or
rocks; see Example 3.

Figure 10.: POMDPs with modifiable RF-inputs.

(g) (Real) Humans are inventing increasingly realistic virtual reality (VR) devices,
partly to ‘fool’ our implemented reward functions that we are in more interesting
circumstances than we really are.

(h) (Hypothetical) An agent whose reward depends on how many diamonds it appears
to have collected, feeds its implemented RF fake observations of collected diamonds
(see Example 3 below).

This section will first define the RF-input tampering problem and model it formally
(Section 4.1), and then describe solutions using history-based and belief-based rewards
(Sections 4.2 and 4.3).

4.1. Modeling the Problem

An implemented RF typically dispenses reward based on an assumed relationship be-
tween its observations and task-relevant features of the underlying state.17 Some vari-
ation in this relationship is often permissible. For example, if the agent and the imple-
mented RF share observations, then the relationship will change if the agent turns its
head. We say that an agent tampers with its RF-input if it changes the relationship be-
yond its intended range of variation. The RF-input tampering problem is that the agent
may get more reward by tampering with its RF-input rather than doing its intended
task.18

We model RF-input tampering formally in what we call a POMDP with modifiable RF-
inputs (Figure 10a), a variant of a partially observed MDP (Kaelbling et al., 1998). Here
both the implemented reward function and the agent lack full access to the underlying

17Somewhat loosely defined by the effect that an intervention on a task-relevant feature at a preceding
time step would have on the RF-input.

18Called the delusion box problem by Ring and Orseau (2011).

19

state St. Instead, the reward function sees an observation OR
t = OR(St) and the agent an

observation OA
t = OA(St). To minimize formalism, we assume agent and reward function

use the same observation Ot ≡ OA
t ≡ OR

t ; we remark where this impacts the analysis.
The partial state-access means that policies and reward functions may benefit from be-
ing non-Markovian and depend on the entire history of actions and observations. That
is, the reward may be a function of the entire history Rt = R(O1, A1, . . . , Ot, At; Θ

R
t),

and policies take the form π(At | O1, A1, . . . , Ot) instead of π(At | St). We call such
reward functions and policies history-based.19 To model RF-input tampering, we also
introduce random variables ΘO

t that describe the relationship between task-relevant fea-
tures of the state and the observation, Ot = O(St; Θ

O
t). The task-relevant features are

described by St, as well as any other aspects not captured by ΘO
t . Formalized like this,

RF-input tampering occurs if the agent influences ΘO
t so that it takes on values outside

an intended range.
To illustrate the formalism, we model Example (h) as a gridworld POMDP with

modifiable RF-inputs. While simple, the gridworld captures the RF-input tampering
problem as the agent can gain more reward by changing the relationship between task-
relevant features and the RF-input (beyond its intended range of variation).

Example 3 (Rocks and diamonds with partial observations and RF-input tampering).
Figure 10b shows a variant of the rocks and diamonds environment where only the 4 tiles
to the top right of the agent are visible. The implemented reward function dispenses
reward according to the number of diamonds in the most recent observation of the goal
area. The agent can tamper with the observations by visiting the ΘO

diamond
and ΘO

rock

tiles at the top. Visiting the former adds a fake ‘diamond’ to the observation of one of the
surrounding tiles; visiting the latter adds a fake ‘rock’ in the same way. The fake obser-
vations can be thought of as little pictures that the agent tapes to a portion of its camera
lens. They keep following the agent when it walks around. If the agent tries to add a
fifth fake diamond or rock, all fake observations are removed, and its vision clears again.

The agent can use fake observations to fool the implemented RF to give it extra reward.
Any such change will take the observation function outside its intended range of varia-
tion. The maximal amount of observed reward is obtained by adding fake diamonds to
all observation tiles by repeatedly visiting ΘO

diamond
, and then visiting the goal area. ♦

Tampering incentive. The path A1 → ΘO
2 → O2 → R2 in Figure 10a indicates that

RF-input tampering may be an instrumental goal.

Claim 6. A standard RL agent may have an instrumental goal to tamper with its RF-
inputs.

Discussion. RF-input tampering is similar to the RF tampering problem discussed in
Section 3, in that both problems pertain to a relationship that is influenced in undesired
ways. The key difference is that while an implemented RF takes a concrete bitstring as

19Dewey (2011) called optimization of a history-based reward function observation-utility maximization.

20

input and is arbitrarily queryable, the function from task-features to RF-input takes a
world-state as input, and is more difficult to query. RF-input tampering is also related
to the problem where an agent games a misspecified implemented RF to obtain reward
without doing the intended task (Krakovna et al., 2020; Lehman et al., 2018; Leike et al.,
2017). Indeed, RF-input tampering is a specific variety of gaming where the implemented
RF is fooled by a tampered RF-input. Not all gaming problems are RF-input tampering
problems, however. For example, if the implemented RF assigns unintended high reward
to some set of states, then the agent may get an unintended high reward by visiting these
states without influencing the relationship between task-features and RF-input.

RF-input tampering is characterized by how the agent’s observations relate to task-
relevant features of the state, rather than to the full state. Indeed, the relationship to
the full state is often that the observation shows whatever is in front of the camera, and
many events that we would intuitively consider to be RF-input tampering would not
alter this relationship: for example, the agent putting a picture in front of the camera.

When the agent and the implemented reward function share the same observation,
the RF-input tampering instrumental goal is somewhat curtailed since the agent may
need the information the observations provide (Ring and Orseau, 2011). This incentive
to keep Ot informative is also represented in the graph, via the paths Ot → At → Rt+1.
However, in alternative setups where the agent and the reward function use different
observations, this disincentive for RF-input manipulation is removed, making the net
incentive toward RF-input tampering stronger.

4.2. Solution 1: History-Based Rewards

Let us first consider a conceptually simple, but perhaps impractical, solution to the RF-
input tampering problem. Recall that history-based reward functions have access to the
full history of actions and observations. This means that the reward function is able to
tell exactly which deterministic policy that the agent has followed so far. Thus, as long
as there exists a deterministic policy that reliably performs the intended task, there also
exists a history-based reward function that dispenses reward only as long as the agent
has followed that policy, and thereby encourages completion of the intended task rather
than RF-input tampering (Leike et al., 2018, p. 6).

Claim 7. A history-based reward function exists that avoids the RF-input tampering
problem, if a deterministic (history-based) policy exists that reliably performs the task.

Rocks-and-diamonds example. A history-based reward function in Example 3 that
encourages (optimal) diamond gathering gives reward only if the agent takes one step
up, then steps to the right, and then stops.

Discussion. In practice, an implemented reward function that only rewards a single
policy will not be useful, as it would typically be easier to directly implement that
policy. Instead, we want a reward function that recognizes whether the task has been
completed, and an agent that searches for efficient ways of getting there. This can be

21

challenging if the relationship between task-features and RF-inputs is influenceable by
the agent, though see Milli et al. (2020) for some promising progress. The existence
of a task-performing policy is a weak but not entirely trivial assumption. In stochastic
or unknown environments, it will typically require the observations to be somewhat
informative of the task-relevant features.

Could history-based rewards also solve RF tampering? Not in general, as the origi-
nal implemented RF is unable to ‘punish’ the agent once a new reward function is in
place. Fortunately, history-based rewards can be combined with any of the methods
from Section 3 by making the corresponding reward functions history-based.

4.3. Solution 2: Belief-Based Rewards

An alternative way to solve the RF-input tampering problem proposed by Hibbard
(2012), is that rewards be based on the agent’s belief about the underlying state. To
see how this can work, let us first discuss agent beliefs. To plan, a model-based agent
may use a predictive model P (Ot+1:m | O1:t, A1:t, π) that predicts the future observations
Ot+1:m under policy π given past observations and actions. In such a predictive model,
a belief-state Bt is often used to summarize the relevant parts of the history seen so far,
so P (Ot+1:m | O1:t, A1:t, π) = P (Ot+1:m | Bt, π). For example, the belief state Bt can
be a distribution over possible hidden states St (Kaelbling et al., 1998), or the internal
state of a recurrent neural network (e.g. Schrittwieser et al., 2019). Hibbard’s suggestion
is to feed the belief states directly into a belief-based reward function,20 Rt = R(Bt; Θ

R).
The remaining role of the observations is to ground the agent’s beliefs in reality.

Time-inconsistency. Different predictive models may encode beliefs about an under-
lying state St differently. For example, a 90% confidence that the underlying state is 1
rather 2, may be represented with the belief state (0.9, 0.1) by predictive model ΘPM

1 ,
but with (0.1, 0.9) by some other predictive model ΘPM

2 . The difference in representa-
tion means that a belief-based reward function (that maps representation vectors to real
numbers), would encourage the opposite behavior if the predictive model changed from
ΘPM

1 to ΘPM
2 . This illustrates how changes to the predictive model may change preferred

agent behavior, even though nothing has changed in the environment; i.e. lead to time-
inconsistency. Changes to the predictive model may be the result of agent tampering or
of further training of the predictive model.

Just as for current-RF optimization, there are two types of responses to this time-
inconsistency: TI-considering and TI-ignoring. A TI-considering belief-based agent is
modeled with a causal influence diagram in Figure 11. Here the predictive model used
for planning at time step 1, ΘPM

1 , generates belief states B1
t . These belief states depend

on the previous belief state B1
t−1 and action At−1

t−1, as well as the hidden states St (via
some observation Ot not represented in this diagram, but included in Figure 13 in Ap-
pendix B). At time step 2, the agent instead uses predictive model ΘPM

2 , with associated
belief states B2

t . If ΘPM
2 6= ΘPM

1 , then B2
t may differ from B1

t even if all actions and

20In Hibbard’s (2012) terminology, a state-based utility function.

22

S1 S2 S3

B1
1 B1

2 B1
3

B2
1 B2

2 B2
3

A1
1

A2
2

ΘPM
1

ΘPM
2

R1
1 R1

2 R1
3

R2
1 R2

2 R2
3

Figure 11.: TI-considering agent with belief-based rewards. The highlighted path in-
dicates that preservation of the predictive model may be an instrumental
goal.

S1 S2 S̃3

B1
1 B1

2 B1
3

B2
1 B2

2 B2
3

A1
1 A1

2

ΘPM
1

ΘPM
2

R1
1 R1

2 R1
3

R2
1 R2

2 R2
3

Figure 12.: TI-ignoring agent with belief-based rewards, objective at time step 1.
23

observations have been identical up to time t. Similar to Assumption 1, the predictive
model is assumed private to the agent, in that neither Bk

t nor ΘPM
k directly affects St′ .

Just as for TI-considering current-RF agents, TI-considering belief-based agents want
future agents to optimize the same objective. This can be achieved by preserving the
predictive model. Alternatively, the objective can also be preserved by ensuring that
any update to the predictive model is accompanied by a corresponding update to agent
2’s implemented reward function.21 The preservation incentive is indicated by the path
A1

1 → ΘPM
2 → A2

2 → B1
3 → R1

3 in Figure 11.

Claim 8. A TI-considering belief-based agent may have an instrumental goal to preserve
the predictive model, when the implemented reward function is fixed and the predictive
model is private.

The TI-ignoring belief-based agent has an almost identical causal influence diagram,
see Figure 12. The primary difference is that A1

2 is a child of ΘPM
1 and B1

2 rather
than ΘPM

2 and B2
2 , reflecting the agent’s assumption that future actions will be selected

according to the current predictive model. TI-ignoring belief-based agents can further be
designed to assume that future agents do not use future predictive models as information
about the state. For agent k, this prevents information links ΘPM

k′ → Ak
k′ for k

′ > k (i.e.
ΘPM

2 6→ A1
2 in Figure 12). TI-ignoring belief-based agents then lack an instrumental goal

to influence the future predictive models (note the lack of directed path passing ΘPM
2 on

the way from action A1
1 to an R1

t reward in Figure 12).

Claim 9. A TI-ignoring belief-based agent lacks an instrumental goal to influence the
predictive model when the implemented reward function is fixed and the predictive model
is private.

Does Claim 9 imply that belief-based rewards solve the RF-input tampering problem?
Yes, but only if the implemented reward function can accurately infer whether the task
has been completed from the agent’s belief state. For this, the implemented reward
function must be able to accurately interpret the belief states. If not, the agent may
be able to ‘game’ the reward function by entering belief states that the reward function
misinterprets. Fortunately, since the agent does not tamper with its predictive model,
there is a stable relationship between states and belief states, so the belief states are
interpretable at least in principle.

In order for a belief-based reward function to encourage completion of the intended
task, the belief states must also represent progress on the intended task. In stochastic or
unknown environments, this will only happen if observations sometimes reveal progress
on the intended task. Indeed, the belief state Bt only summarizes information inferable
from previous actions and observations, A1:t and O1:t, so if the action-observation history
does not contain enough information to infer task-relevant aspects of St, then the belief
state will not contain the information either. Further, if the predictive model is trained

21Such an instrumental goal requires the agent to be TI-considering also with respect to its implemented
reward function; in principle, an agent can be TI-considering with respect to just one of its predictive
model and reward function, as well as both.

24

to predict future observations, the belief state only has reason to represent progress on
the intended task if some possible future observations reveal it. Fortunately, a reward
function may incentivize the agent to produce histories that do reveal the state of the
intended task if such histories are possible, as the reward function need only dispense
reward when it is clear that the task has been completed.

Rocks-and-diamonds example. RF-input tampering in Example 3 is solvable by belief-
based rewards. Initially, the observations are uncorrupted, so the agent can produce
accurate observations of the diamond’s positions. Further, if observations get corrupted,
they can later be restored to their uncorrupted versions. A predictive model trained
to predict future observations therefore has reason to let the belief states represent the
actual diamond positions. For agents equipped with such belief states, there exists
belief-based reward functions that encourage completion of the intended task.

Discussion. A belief state cannot contain more information than the history it sum-
marizes, so any tasks that can be captured by a belief-based reward function can also
be captured by a history-based one. The benefit of using the agent’s belief state is that
it conveniently summarizes the (potentially long) history, and contains all the informa-
tion that the agent uses to plan. Future empirical investigations may reveal whether
history-based or belief-based reward functions are easier to design or train, and whether
transparent beliefs can be incentivized. Perhaps the best reward functions make use of
both the history and the agent’s belief state.

The agents discussed in Section 3 can be fitted with belief-based reward functions
when equipped with predictive models and belief-states. For direct learning, this means
that the intended task must be reconsidered as a function of the agent’s belief state.

5. Conclusions

What has been achieved? For each subtype of reward tampering, we found at least
one design principle to counteract it. Most of the design principles have been previously
described in the literature; here we have established clear assumptions under which they
avoid a well-specified instrumental goal. Many of the design principles are mutually com-
patible, and can be combined. For example, belief-based rewards may be combined with
TI-ignoring current-RF optimization (see Figure 13 in Appendix B). Under reasonable
assumptions, reward tampering is not an instrumental goal for the resulting agents.

Except for history-based rewards, the design principles all use at least one of the fol-
lowing two approaches to keeping sensitive variables out of causal optimization paths.
The first is to use the current version of a random variable when evaluating future
situations. This is used for the implemented reward function in current-RF optimiza-
tion, for the predictive model in belief-based rewards, and for the learning process in
direct learning and counterfactual RF. The second is to use a latent variable outside
the agent’s influence. In particular, direct learning and counterfactual RF make the
reward function a latent variable. In general, current-variable approaches have to deal

25

with time-inconsistency, while latent variables are harder to specify and more computa-
tionally expensive to optimize. We expect both approaches to be useful far beyond just
reward tampering.

As mentioned, our arguments have relied on some assumptions. Throughout, we
have relied on discrete time, and well-defined action and observation channels. We have
focused on online RL to learn a fixed, intended task. We have focused on the instrumental
goals arising from different types of reward maximization, thereby leaving for future work
questions about side effects and instrumental goals arising from intrinsic objectives. We
have assumed that the agent’s implemented reward function and predictive model are
private to the agent, influencing the environment solely through the agent’s actions.

Our analysis has also been restricted to reward tampering problems, as opposed to the
more general problem of reward misspecification (Krakovna et al., 2020). In other words,
even though our design principles prevent tampering from being an instrumental goal,
they still leave open the problem of specifying a good reward function in the first place
(Leike et al., 2018; Petersen, 2021). Going beyond any of these restrictions provides
scope for further analysis.

Bigger picture. The problem that a sufficiently capable agent will find degenerate
solutions that maximize observed reward but not user utility is a core concern in AI
safety. At first, the problem may seem insurmountable. Any non-trivial, real-world task
will require a highly complex mechanism for determining whether the task has been
completed or not. This mechanism may be inappropriately influenced by the agent. One
way to prevent tampering is to isolate or encrypt the reward process, We do not expect
such solutions to scale indefinitely with agent capabilities, as a sufficiently capable agent
may find ways around most defenses. Instead, we have argued for design principles
that prevent reward tampering being an instrumental goal, while still keeping agents
motivated to complete the intended task.

An important next step is to turn the design principles into practical and scalable
RL algorithms, and to verify empirically that they do the right thing in setups where
reward tampering is possible (Kumar et al., 2020; Milli et al., 2020). With time, we
hope that these design principles will evolve into a set of best practices for how to design
capable RL agents. We also hope that the use of causal influence diagrams that we have
introduced in this paper will contribute to a deeper understanding of many other AI
safety problems and help generate new solutions.

References

Amodei, Dario, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, et al.
(2016). Concrete Problems in AI Safety. arXiv: 1606.06565.

Armstrong, Stuart and Xavier O’Rourke (2017). ‘Indifference’ methods for managing
agent rewards. arXiv: 1712.06365.

Armstrong, Stuart, Laurent Orseau, Jan Leike, and Shane Legg (2020). “Pitfalls in
learning a reward function online”. In: IJCAI. arXiv: 2004.13654.

26

https://arxiv.org/abs/1606.06565
https://arxiv.org/abs/1712.06365
https://arxiv.org/abs/2004.13654

Balke, Alexander and Judea Pearl (1994). “Probabilistic Evaluation of Counterfactual
Queries”. In: AAAI, pp. 230–237.

Bostrom, Nick (2014). Superintelligence: Paths, Dangers, Strategies. Oxford University
Press.

Carey, Ryan (2018). “Incorrigibility in the CIRL Framework”. In: AAAI/ACM Con-
ference on Artificial Intelligence, Ethics and Society. Machine Intelligence Research
Institute.

Christiano, Paul, Jan Leike, Tom B. Brown, Miljan Martic, Shane Legg, et al. (2017).
“Deep reinforcement learning from human preferences”. In: Advances in Neural In-
formation Processing Systems. Pp. 4302–4310. arXiv: 1706.03741.

Christiano, Paul, Buck Shlegeris, and Dario Amodei (2018). Supervising strong learners
by amplifying weak experts. arXiv: 1810.08575.

Demski, Abram and Scott Garrabrant (2019). Embedded Agency. arXiv: 1902.09469.
Dennett, Daniel C (2017). From Bacteria to Bach and Back: The Evolution of Minds.

W. W. Norton & Company. isbn: 0393355500.
Dewey, Daniel (2011). “Learning what to Value”. In: Artificial General Intelligence.

Vol. 6830, pp. 309–314. isbn: 978-3-642-22886-5. arXiv: 1402.5379. url: http://ww
w.springerlink.com/index/10.1007/978-3-642-22887-2.

Everitt, Tom (2018). “Towards Safe Artificial General Intelligence”. PhD thesis. Aus-
trailan National University. url: http://hdl.handle.net/1885/164227.

Everitt, Tom, Ryan Carey, Eric Langlois, Pedro A Ortega, and Shane Legg (2021).
“Agent Incentives: A Causal Perspective”. In: AAAI. arXiv: 2102.01685.

Everitt, Tom, Daniel Filan, Mayank Daswani, and Marcus Hutter (2016). “Self-modification
of policy and utility function in rational agents”. In: Artificial General Intelligence,
pp. 1–11. isbn: 9783319416489. arXiv: 1605.03142.

Everitt, Tom, Victoria Krakovna, Laurent Orseau, Marcus Hutter, and Shane Legg
(2017). “Reinforcement Learning with Corrupted Reward Signal”. In: IJCAI Inter-
national Joint Conference on Artificial Intelligence, pp. 4705–4713. arXiv: 1705.08417.

Everitt, Tom, Gary Lea, and Marcus Hutter (2018). “AGI Safety Literature Review”. In:
International Joint Conference on Artificial Intelligence (IJCAI). arXiv: 1805.01109.

Everitt, Tom, Pedro A. Ortega, Elizabeth Barnes, and Shane Legg (2019). Understanding
Agent Incentives using Causal Influence Diagrams. Part I: Single Action Settings.
arXiv: 1902.09980.

Freedman, Rachel, Rohin Shah, and Anca Dragan (2020). “Choice Set Misspecification
in Reward Inference”. In: IJCAI AI Safety Workshop.

Gabriel, Iason (2020). “Artificial Intelligence, Values and Alignment”. In: Minds and
Machines 30, pp. 411–437. arXiv: 2001.09768.

Hadfield-Menell, Dylan, Anca Dragan, Pieter Abbeel, and Stuart J Russell (2016). “Co-
operative Inverse Reinforcement Learning”. In: Advances in neural information pro-
cessing systems, pp. 3909–3917. arXiv: 1606.03137.

Hadfield-Menell, Dylan, Smitha Milli, Pieter Abbeel, Stuart J Russell, and Anca Dragan
(2017). “Inverse Reward Design”. In: Advances in Neural Information Processing
Systems, pp. 6768–6777. arXiv: 1711.02827.

27

https://arxiv.org/abs/1706.03741
https://arxiv.org/abs/1810.08575
https://arxiv.org/abs/1902.09469
https://arxiv.org/abs/1402.5379
http://www.springerlink.com/index/10.1007/978-3-642-22887-2
http://hdl.handle.net/1885/164227
https://arxiv.org/abs/2102.01685
https://arxiv.org/abs/1605.03142
https://arxiv.org/abs/1705.08417
https://arxiv.org/abs/1805.01109
https://arxiv.org/abs/1902.09980
https://arxiv.org/abs/2001.09768
https://arxiv.org/abs/1606.03137
https://arxiv.org/abs/1711.02827

Hibbard, Bill (2012). “Model-based Utility Functions”. In: Journal of Artificial General
Intelligence 3.1, pp. 1–24. arXiv: 1111.3934.

Howard, Ronald A and James E Matheson (1984). “Influence Diagrams”. In: Readings
on the Principles and Applications of Decision Analysis, pp. 721–762.

Hubinger, Evan, Chris van Merwijk, Vladimir Mikulik, Joar Skalse, and Scott Garrabrant
(2019). Risks from Learned Optimization in Advanced Machine Learning Systems.
arXiv: 1906.01820.

Jeon, Hong Jun, Smitha Milli, and Anca D. Dragan (2020). Reward-rational (implicit)
choice: A unifying formalism for reward learning. arXiv: 2002.04833.

Kaelbling, Leslie Pack, Michael L. Littman, and Anthony R. Cassandra (1998). “Plan-
ning and acting in partially observable stochastic domains”. In: Artificial Intelligence
101.1-2, pp. 99–134.

Knox, W. Bradley and Peter Stone (2009). “Interactively shaping agents via human
reinforcement”. In: Proceedings of the fifth international conference on Knowledge
capture - K-CAP ’09 September, p. 9.

Koller, Daphne and Brian Milch (2003). “Multi-agent influence diagrams for representing
and solving games”. In: Games and Economic Behavior 45.1, pp. 181–221.

Krakovna, Victoria, Jonathan Uesato, Vladimir Mikulik, Matthew Rahtz, Tom Everitt,
et al. (2020). Specification gaming: the flip side of AI ingenuity. url: https://deep
mind.com/blog/article/Specification-gaming-the-flip-side-of-AI-ingenuity (visited on
07/16/2020).

Kumar, Ramana, Jonathan Uesato, Richard Ngo, Tom Everitt, Victoria Krakovna, et al.
(2020). REALab: An Embedded Perspective on Tampering. arXiv: 2011.08820.

Langlois, Eric and Tom Everitt (2021). “How RL Agents Behave When Their Actions
Are Modified”. In: AAAI. arXiv: 2102.07716.

Lattimore, Tor and Marcus Hutter (2014). “General time consistent discounting”. In:
Theoretical Computer Science 519, pp. 140–154. arXiv: 1107.5528.

Lauritzen, Steffen L. and Dennis Nilsson (2001). “Representing and Solving Decision
Problems with Limited Information”. In: Management Science 47.9, pp. 1235–1251.

LaVictoire, Patrick, Benya Fallenstein, Eliezer S Yudkowsky, Mihaly Barasz, Paul Chris-
tiano, et al. (2014). “Program Equilibrium in the Prisoner’s Dilemma via Löb’s The-
orem”. In: AAAI Workshop on Multiagent Interaction without Prior Coordination.

Lehman, Joel, Jeff Clune, Dusan Misevic, Christoph Adami, Julie Beaulieu, et al. (2018).
The Surprising Creativity of Digital Evolution: A Collection of Anecdotes from
the Evolutionary Computation and Artificial Life Research Communities. arXiv:
1803.03453.

Leike, Jan, David Krueger, Tom Everitt, Miljan Martic, Vishal Maini, et al. (2018). Scal-
able agent alignment via reward modeling: a research direction. arXiv: 1811.07871.

Leike, Jan, Miljan Martic, Victoria Krakovna, Pedro A. Ortega, Tom Everitt, et al.
(2017). AI Safety Gridworlds. arXiv: 1711.09883.

Levine, Sergey, Aviral Kumar, George Tucker, and Justin Fu (2020). Offline Rein-
forcement Learning: Tutorial, Review, and Perspectives on Open Problems. arXiv:
2005.01643.

28

https://arxiv.org/abs/1111.3934
https://arxiv.org/abs/1906.01820
https://arxiv.org/abs/2002.04833
https://deepmind.com/blog/article/Specification-gaming-the-flip-side-of-AI-ingenuity
https://arxiv.org/abs/2011.08820
https://arxiv.org/abs/2102.07716
https://arxiv.org/abs/1107.5528
https://arxiv.org/abs/1803.03453
https://arxiv.org/abs/1811.07871
https://arxiv.org/abs/1711.09883
https://arxiv.org/abs/2005.01643

Masterjun (2014). SNES Super Mario World (USA) “arbitrary code execution”. url:
http://tasvideos.org/2513M.html (visited on 01/23/2019).

Milli, Smitha, Luca Belli, and Moritz Hardt (2020). “From Optimizing Engagement to
Measuring Value”. In: FAccT. arXiv: 2008.12623.

Milli, Smitha, Dylan Hadfield-Menell, Anca Dragan, and Stuart J Russell (2017). “Should
robots be obedient?” In: IJCAI, pp. 4754–4760. isbn: 9780999241103. arXiv: 1705.09990.

Ng, Andrew Y and Stuart J Russell (2000). “Algorithms for inverse reinforcement learn-
ing”. In: Proceedings of the Seventeenth International Conference on Machine Learn-
ing, pp. 663–670.

Olds, James and Peter Milner (1954). “Positive Reinforcement Produced by Electrical
Stimulation of Septal Area and other Regions of Rat Brain.” In: Journal of Com-
parative and Physiological Psychology 47.6, pp. 419–427.

Omohundro, Stephen M (2008). “The Basic AI Drives”. In: Artificial General Intelli-
gence. Ed. by P. Wang, B. Goertzel, and S. Franklin. Vol. 171. IOS Press, pp. 483–
493.

Orseau, Laurent and Stuart Armstrong (2016). “Safely interruptible agents”. In: 32nd
Conference on Uncertainty in Artificial Intelligence.

Orseau, Laurent and Mark Ring (2011). “Self-modification and mortality in artificial
agents”. In: Artificial General Intelligence. Vol. 6830 LNAI, pp. 1–10.

Pearl, Judea (2009). Causality: Models, Reasoning, and Inference. 2 edition. Cambridge
University Press. isbn: 9780521895606.

Petersen, Steve (2021). “Machines Learning Values”. In: Ethics of Artificial Intelligence.
Oxford University Press.

Portenoy, Russell K, Jens O Jarden, John J Sidtis, Richard B Lipton, Kathleen M
Foley, et al. (1986). “Compulsive thalamic self-stimulation: a case with metabolic,
electrophysiologic and behavioral correlates”. In: Pain 27.3.

Reddy, Siddharth, Anca D. Dragan, Sergey Levine, Shane Legg, and Jan Leike (2020).
“Learning human objectives by evaluating hypothetical behavior”. In: ICML. arXiv:
1912.05652.

Ring, Mark and Laurent Orseau (2011). “Delusion, Survival, and Intelligent Agents”.
In: Artificial General Intelligence. Springer Berlin Heidelberg, pp. 1–11.

Russell, Stuart J (2019). Stuart J. Russell on Filter Bubbles and the Future of Artificial
Intelligence. url: https://www.youtube.com/watch?v=ZkV7anCPfaY (visited on
06/15/2020).

Schmidhuber, Jürgen (2007). “Gödel Machines: Self-Referential Universal Problem Solvers
Making Provably Optimal Self-Improvements”. In: Artificial General Intelligence.
Springer. arXiv: 0309048 [cs].

Schrittwieser, Julian, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent
Sifre, et al. (2019). Mastering Atari, Go, Chess and Shogi by Planning with a Learned
Model. arXiv: 1911.08265.

Shah, Rohin, Dmitrii Krasheninnikov, Jordan Alexander, Pieter Abbeel, and Anca D.
Dragan (2019). “Preferences implicit in the state of the world”. In: 7th International
Conference on Learning Representations, ICLR. arXiv: 1902.04198.

29

http://tasvideos.org/2513M.html
https://arxiv.org/abs/2008.12623
https://arxiv.org/abs/1705.09990
https://arxiv.org/abs/1912.05652
https://www.youtube.com/watch?v=ZkV7anCPfaY
https://arxiv.org/abs/0309048
https://arxiv.org/abs/1911.08265
https://arxiv.org/abs/1902.04198

Shpitser, Ilya and Judea Pearl (2007). “What counterfactuals can be tested”. In: Pro-
ceedings of the 23rd Conference on Uncertainty in Artificial Intelligence, UAI 2007,
pp. 352–359. isbn: 0974903930.

— (2008). “Complete identification methods for the causal hierarchy”. In: Journal of
Machine Learning Research 9, pp. 1941–1979.

Soares, Nate, Benya Fallenstein, Eliezer S Yudkowsky, and Stuart Armstrong (2015).
“Corrigibility”. In: AAAI Workshop on AI and Ethics, pp. 74–82.

Sutton, Richard S and Andrew G Barto (2018). Reinforcement Learning: An Introduc-
tion. 2nd. MIT Press. isbn: 9780262039246.

Turner, Alexander Matt, Dylan Hadfield-Menell, and Prasad Tadepalli (2020). “Con-
servative agency via Attainable Utility Preservation”. In: AI, Ethics, and Society.
arXiv: 1902.09725.

Uesato, Jonathan, Ramana Kumar, Victoria Krakovna, Tom Everitt, Richard Ngo, et al.
(2020). Avoiding Tampering Incentives in Deep RL via Decoupled Approval. arXiv:
2011.08827.

Vaughanbell (2008). Erotic self-stimulation and brain implants. url: https://mindhacks.c
om/2008/09/16/erotic-self-stimulation-and-brain-implants/ (visited on 02/08/2018).

Yampolskiy, Roman V (2015). Artificial Superintelligence: A Futuristic Approach. Chap-
man and Hall/CRC, p. 227. isbn: 978-1482234435.

Yudkowsky, Eliezer S (2008). Hard Takeoff. url: http ://lesswrong .com/lw/wf /hard
%7B%5C %7Dtakeoff/ (visited on 01/12/2018).

30

https://arxiv.org/abs/1902.09725
https://arxiv.org/abs/2011.08827
https://mindhacks.com/2008/09/16/erotic-self-stimulation-and-brain-implants/
http://lesswrong.com/lw/wf/hard%7B%5C_%7Dtakeoff/

A. List of Notation

X,Y,Z random variables

X̃ counterfactual version of X

x outcome of random variable X

P probability distribution

E expectation

X1:t sequence X1, . . . ,Xt, t ≥ 0

St state at time t

At action at time t

Ot observation at time t

Bt belief at time t

Dt user provided data at time t

Rt reward at time t

R reward functional

ΘR, ΘR
t reward function parameter, often just called reward function

ΘR
∗

intended reward function (parameter), encourages execution of the intended task

R(·; ΘR) reward function

ΘPM predictive model

O observation function(al)

ΘO observation function (parameter)

T , T (·; ΘT) transition function

ΘT transition function parameter

B. Combined Model

Figure 13 shows how the different methods fit together in a unified causal influence dia-
gram. To emphasize the formal precision of the diagrams, we also write out conditional
probability distributions relating the variables. The same could be done for all the other
diagrams presented in this paper.

• The intended reward function is sampled from a distribution P (Θ∗

R).

31

S1 S2 S̃3

O1 O2 O3

ΘO
1 ΘO

2 ΘO
3

B1
1 B1

2 B1
3

ΘPM
1 ΘPM

2 ΘPM
3

R1
1 R1

2 R1
3

ΘR
1 ΘR

2 ΘR
3

ΘR
∗

A1
1 A1

2

Figure 13.: TI-ignoring current-RF agent with belief-based rewards, view at time step 1.
For simplicity, rewards and beliefs based on subsequent implemented reward
functions and predictive models are not shown (for a TI-considering agent,
they would need to be).

32

• The first implemented reward function depends only on the intended task (though
may not capture it perfectly), P (Θ̂R

1 | ΘR
∗
). Subsequently inferred reward functions

depends on the previous reward function and the intended task, P (Θ̂R
t+1 | Θ̂

R
t ,Θ

R
∗
).

• The reward Rk
t depends on the inferred reward function at time k and the belief

at time t, Rk
t = R(Bt; Θ̂

R
k). The reward functional can also be specified as a

conditional probability distribution P (Rk
t | Θ̂R

k , Bt).

• The initial predictive model is sampled from a distribution P (ΘPM
1). Subsequent

predictive models depend on the previous predictive model, state, and action,
P (ΘPM

t+1 | Θ
PM
t , St, At).

• The initial belief state depends on the initial observation and the predictive model
at time k, P (Bk

1 | O1,Θ
PM
k). Subsequent belief states Bk

t+1 depend on the previous
belief state and action, the current observation, and the predictive model at time
k, P (Bk

t+1 | Bt, At, Ot+1,Θ
PM
k).

• The initial observation function is sampled from a distribution P (ΘO
1). Subse-

quent observation function depends on the previous observation function, state,
and action, P (ΘO

t+1 | St, At).

• The observation depends on the current state and the current observation function,
P (Ot | Θ

O
t , St).

• Actions Ak
t are selected according to a policy, which can condition on the current

belief state and the predictive model at time k, π(Ak
t | ΘPM

k , Bk
t).

• The initial state is sampled from a distribution P (S1). The state depends on the
previous state and action, P (St+1 | St, At). This conditional probability distribu-
tion is sometimes also denoted with T .

Multiplied together, the conditional probability distributions induce a joint probability
distribution over all the variables in the graph, as in a Bayesian network (Pearl, 2009).
The joint distribution can be used to compute expectations.

C. Pseudo-code for Algorithms

Here we give pseudo-code for the various agents we have discussed in the paper. Lower
case letters denote outcomes of the corresponding upper case random variable. Expec-
tation is denoted E, and is always with respect to any upper case variables found to the
left of the conditioning bar |. We begin with a model-based version of a standard RL
algorithm that optimizes received reward.

33

Algorithm 1. Standard RL agent (Sections 2.1, 3.1 and 4.1)

input predictive model P (Rt:m | st, π), current state st
for each possible policy π do

let V π = E
[
∑m

i=t+1 Ri

∣

∣ st, π
]

end for

let π∗ = argmaxπ V
π

return At = π∗(St)

Next, we turn to the TI-considering agent from Section 3.2. Here, a policy πk is a
policy that is only applied at time k to select action Ak. These are found with backwards
induction, starting at the last time step m where only a single action-decision is left to
be made, and then gradually working backwards to earlier time steps, whose optimal
decision will depend on which policy is chosen later.

Algorithm 2. TI-considering current-RF optimization (Section 3.2)

input predictive model P (St+1:m,ΘR
t+1:m | st, θ

R
t , π), reward functional R, current

state st, current reward parameter θRt
for k starting at m and decreasing to t do ⊲ backwards induction

let Q∗(sk, θ
R
k , ak) = E

[
∑m

i=k+1
R(Si; θ

R
k)

∣

∣ sk, θ
R
k , ak, π

∗

k+1:m

]

⊲ π∗

k′ defined below

for each possible state sk, reward parameter θRk , and action ak
let π∗

k(sk, θ
R
k) = argmaxak Q

∗(sk, θ
R
k , ak)

end for

return At = π∗

t (st, θ
R
t)

The TI-ignoring variant is comparatively simpler, as it does not require backwards
induction nor prediction of future reward function parameters.

Algorithm 3. TI-ignoring current-RF optimization (Section 3.2)

input predictive model P (St+1:m | st, π), reward functional R, current state st, current
reward parameter θRt
for each possible policy π do

let V π = E
[
∑m

i=t+1
R(Si; θ

R
t)

∣

∣ st, π
]

end for

let π∗ = argmaxπ V
π

return At = π∗(St,Θ
R
t)

In practice, uninfluenceable learning agents may be implemented as a standard RL
agent that optimizes reward functions inferred from future updates. For example, the
expected intended reward optimized by a direct learning agent may be captured by a
reward function R(st; Θ̂

R
t) = E[R(st; Θ

R
∗
) | a1:t−1, d1:t, s1:t] inferred from a (predicted) se-

quence a1:t−1, d1:t, s1:t. Importantly, the inferred reward function is safe from tampering,
as it is the result of the current update-mechanism applied to predicted future updates.

34

When (pseudo-)coding a direct learning agent, it is tempting to infer a best guess of ΘR
∗

from data s1:t, d1:t, a1:t−1 obtained so far, and then use that evaluate simulated future
trajectories. However, this would incorrectly result in a TI-ignoring agent. Instead, for
any future simulated trajectory, the learning that would happen on this trajectory must
be taken into account when evaluating it.

Algorithm 4. Direct Bayesian learning of the intended reward function (Section 3.3)

input predictive model (aka likelihood) P (S1:m,D1:m, A1:m−1 | θR
∗
, π), distribution

P (ΘR
∗
), past states s1:t, data d1:t, and actions a1:t−1

let P (θR
∗
| s1:m, d1:m, a1:m−1) ∝ P (θR

∗
)P (s1:m, d1:m | θR

∗
, a1:m−1) ⊲ Bayes’ rule

let U(si | s1:m, d1:m, a1:m−1) = E[R(si; Θ
R
∗
) | s1:m, d1:m, a1:m−1] ⊲ subj. exp. reward

for each possible policy π do

let V π = E[
∑m

i=t+1
U(Si | s1:t, d1:t, a1:t−1, St+1:m,Dt+1:m, At:m−1) | s1:t, d1:t, a1:t, π]

end for

let π∗ = argmaxπ V
π

return At = π∗(St)

The counterfactual RF-update agent evaluates a prospective policy per the following:

1. Predict future states St+1:m, implemented reward functions ΘR
t+1:m, and actions

At1:m via a predictive model P (St:m,ΘR
t:m | s1:t, θ

R
1:t, a1:t−1, π).

2. Use the predicted full sequences S1:m, ΘR
1:m, and A1:m−1 to infer ΘR

∗
and from there

the counterfactual implemented RFs Θ̃R
1:m that would be if agent actions instead

had been selected according to πsafe.

3. Potential policies π are evaluated on
∑m

i=tR(Si; Θ̃
R
i), i.e. according to how well

the actual states St+1:m optimize the counterfactual reward function.

Below, we describe a Monte Carlo variant that samples trajectories, possible intended
reward functions, and counterfactual data. The sampling can be done repeatedly, to
reduce variance. A more compact description based on structural causal models and
potential outcomes (Pearl, 2009, Ch. 5) would also be possible.

35

Algorithm 5. Counterfactual RF-updates (Section 3.3)

input predictive model P (S1:m,ΘR
1:m | θR

∗
, π), distribution P (ΘR

∗
), past states s1:t,

reward functions θR1:t, and actions a1:t−1, safe policy πsafe

let P (θR
∗
| s1:m, θR1:m, a1:m−1) ∝ P (θR

∗
)P (s1:m, θR1:m | θR

∗
, a1:m−1) ⊲ Bayes’ rule

for each possible policy π do

sample St+1:m,, ΘR
t+1:m and At:m−1 from P (· | s1:t, θ

R
1:t, a1:t−1, π)

sample ΘR
∗
from P (· | s1:t, θ

R
1:t, a1:t−1, St+1:m,ΘR

t+1:m, At:m−1) ⊲ using Bayes’ rule

sample Θ̃R
1 , . . . Θ̃

R
m from P (· | s1, Θ̂

R
∗
, πsafe)

let V π =
∑m

i=t+1
R(Si; Θ̃

R
i) ⊲ (better: let V π be the average of many runs)

end for

let π∗ = argmaxπ V
π

return At = π∗(St)

The difference between using history-based and belief-based rewards in POMDPs is
minor:

Algorithm 6. TI-ignoring CRFO agent with observation-based rewards (Section 4.1)

input predictive model P (Ot+1:m, At+1:m−1, | o1:t, a1:t, θ
PM
t , π), current history

o1:t, a1:t, current (history-based) reward function R(·; θRt)
for each possible policy π do

V π = E
[
∑m

i=t+1
R(Ot+1:i, At+1:i−1, o1:t, a1:t; θ

R
t)

∣

∣ bt, θ
PM
t , π

]

end for

let π∗ = argmaxπ V
π

return At = π∗(o1:t, a1:t)

Algorithm 7. TI-ignoring CRFO agent with belief-based rewards (Section 4.3)

input predictive model P (Bt:m | bt, θ
PM
t , π), current belief state bt, current (belief-

based) reward function R(·; θRt),
for each possible policy π do

V π = E
[
∑m

i=t+1
R(Bi; θ

R
t)

∣

∣ bt, θ
PM
t , π

]

end for

let π∗ = argmaxπ V
π

return At = π∗(bt)

36

	1 Introduction
	2 Foundations
	3 Reward Function Tampering
	4 RF-Input Tampering
	5 Conclusions
	A List of Notation
	B Combined Model
	C Pseudo-code for Algorithms

