
Designing agent incentives to avoid reward
tampering

DeepMind Safety Research Follow

Aug 14, 2019 · 7 min read

By Tom Everitt, Ramana Kumar, and Marcus Hutter

From an AI safety perspective, having a clear design principle and a crisp

characterization of what problem it solves means that we don’t have to guess

which agents are safe. In this post and paper we describe how a design principle

called current-RF optimization avoids the reward function tampering problem.

Reinforcement learning (RL) agents are designed to maximize reward. For example,

Chess and Go agents are rewarded for winning the game, while a manufacturing robot

may be rewarded for correctly assembling some given pieces. RL agents can sometimes

find better strategies than the designer of the task, as recently demonstrated in Go and

StarCraft.

However, determining what ‘better’ means can be tricky. Sometimes the agent has

discovered a seemingly better strategy, but actually it has found a loophole in the reward

specification. We call this reward hacking. One type of reward hacking is reward

gaming, where the agent exploits a misspecified reward function (see e.g. the boat race

example).

https://medium.com/@deepmindsafetyresearch?source=post_page-----4380c1bb6cd----------------------
https://medium.com/@deepmindsafetyresearch?source=post_page-----4380c1bb6cd----------------------
https://medium.com/@deepmindsafetyresearch/designing-agent-incentives-to-avoid-reward-tampering-4380c1bb6cd?source=post_page-----4380c1bb6cd----------------------
https://arxiv.org/abs/1908.04734
https://deepmind.com/research/alphago/
https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/
https://arxiv.org/abs/1606.06565
https://arxiv.org/abs/1711.09883
https://vkrakovna.wordpress.com/2018/04/02/specification-gaming-examples-in-ai/
https://openai.com/blog/faulty-reward-functions/


In our latest paper, we focus on another type of reward hacking called reward

tampering. In reward tampering, the agent doesn’t exploit a misspecified reward

function. Instead, it actively changes the reward function. For example, some Super

Mario environments have a bug that allows execution of arbitrary code by taking the

right sequence of in-game actions. This could in principle be used to redefine the score of

the game.

While this type of hacking is beyond the capabilities of current RL agents in most

environments, the general quest to build more capable agents may eventually lead us to

build agents that can exploit such shortcuts. Understanding reward tampering therefore

ties in well with our safety work on anticipating future failure modes and figuring out

how to prevent them before they occur.

Gridworld example
We can illustrate the reward tampering problem using a gridworld in which the reward

function can be modified. We adopt a game mechanic from “Baba Is You”, a puzzle game

where some of the rules of the game are described by words in the environment. The

agent can push those words around, in order to change the rules.

Here, an agent can push rocks, diamonds, and words (as in Sokoban, with black things being movable). The

agent’s objective is described by the purple nodes. Initially, the description reads that diamonds provide

reward when pushed to the green goal area. This is the intended task. However, the agent can also tamper

with the reward function. By pushing the “reward”-word down, the reward function starts assigning reward

to rocks instead of diamonds, creating a mismatch between the agent’s rewards and the intended task.

Since there are more rocks than diamonds, the strategy that provides the most reward

for the agent is to first push the reward-word, and then collect rocks instead of

https://arxiv.org/abs/1908.04734
https://www.kotaku.com.au/2016/11/arbitrary-code-execution-explained-using-super-mario-bros/
https://deepmind.com/blog/specifying-ai-safety-problems/
https://hempuli.com/baba/
https://en.wikipedia.org/wiki/Sokoban


diamonds. Even though this gives the agent the most reward, this solution is undesirable

to the user, who wanted diamonds and not rocks.

While simplistic, we argue that this gridworld captures the reward tampering dynamics.

In general, when reward tampering is possible, there is something that the agent can do

in the environment (e.g. hack into a computer holding the reward function

implementation) that changes the implemented reward function, and thereby the

dispensed rewards. This is exactly the dynamics in the rocks and diamonds gridworld.

Causal influence diagram representation
Our previous work showed how causal influence diagrams can be used to understand

agent incentives and to model AGI safety frameworks. The incentive analysis is directly

applicable here. First we model the reward tampering problem with a causal influence

diagram of a Markov Decision Process with a modifiable reward function:

Here 𝜣ᴿᵢ represents the reward description at time i, with 𝜣ᴿ₁ = “diamonds are reward”. Meanwhile, Sᵢ

represents the agent’s position and the state of all non-purple tiles. The reward Rᵢ is determined by how

well Sᵢ satis�es the reward description 𝜣ᴿᵢ. For example, if the reward description is “diamonds are reward”,

then Rᵢ equals the number of diamonds in the goal area in Sᵢ. The goal of the agent is to select the actions Aᵢ

to optimize the sum of the rewards. The arrows represent causal in�uence, except for the arrows going into

actions, which represent information �ow (and are therefore drawn di�erently with dotted lines).

From the diagram, we can see that there are two types of directed paths from action A₁

to rewards R₂ and R₃. The first type of path (green) goes via Sᵢ, and represents the agent

moving diamonds or rocks to the goal area. This is the way we want the agent to get

reward. The second type of path (red) goes via 𝜣ᴿᵢ. This path represents tampering with

the reward function, and is the path we don’t want the agent to use.

Current-RF optimization

https://en.wikipedia.org/wiki/Influence_diagram
https://medium.com/@deepmindsafetyresearch/understanding-agent-incentives-with-causal-influence-diagrams-7262c2512486
https://arxiv.org/abs/1906.08663
https://en.wikipedia.org/wiki/Markov_decision_process


One way to prevent the agent from tampering with the reward function is to isolate or

encrypt the reward function. However, we do not expect such solutions to scale

indefinitely with our agent’s capabilities, as a sufficiently capable agent may find ways

around most defenses. In our new paper, we describe a more principled way to fix the

reward tampering problem. Rather than trying to protect the reward function, we

change the agent’s incentives for tampering with it.

The fix relies on a slight change to the RL framework that gives the agent query access

to the reward function. In the rocks and diamonds environment, this can be done by

specifying to the agent how the purple nodes describe the reward function.

Using query access to the reward function, we can design a model-based agent that uses

the current reward function to evaluate rollouts of potential policies (a current-RF

agent, for short). For example, in the rocks and diamonds environment, a current-RF

agent will look at the current reward description, and at time 1 see that it should collect

diamonds. This is the criteria by which it will choose its first action, which will be going

upwards towards the diamond. Note that the reward description is still changeable, just

as before. Still, the current-RF agent will not use the reward-tampering possibility,

because it is focused on satisfying the current reward description.

The objective of a current-RF agent corresponds to a slightly different influence

diagram:

When choosing A1, the agent optimizes rewards based on the current reward description 𝜣ᴿ₁ and

(simulated) future states S2 and S3. Now there are no longer any red directed paths from A1 to future

rewards that pass through a reward function node 𝜣ᴿᵢ. That is, the incentive for reward tampering has been

averted.

https://arxiv.org/abs/1605.03142
http://people.idsia.ch/~juergen/goedelmachine.html
https://arxiv.org/pdf/1805.12114.pdf
https://arxiv.org/abs/1111.3934
https://link.springer.com/chapter/10.1007/978-3-642-22887-2_1


The agent still has an incentive to influence the current reward description 𝜣ᴿ₁.

Fortunately, the agent lacks the ability to influence 𝜣ᴿ₁, because there is no directed

path from A₁ to 𝜣ᴿ₁. For example, in the rocks and diamonds environment, the agent

would have benefitted from the current reward description being different, but there is

not much it can do about the current description.

Experiments
In the rocks and diamonds environment, a standard RL agent quickly discovers that it

can get more reward by tampering with the reward. In contrast, a current-RF agent does

not tamper with the reward. Looking only at the reward the agents collect, it may seem

like standard RL performs better:

However, when we instead measure how well the agents perform the diamond-

collecting task, we see that the current-RF agent is actually much better than the

standard RL-agent:



For these experiments, we used a model-free version of current-RF optimization, which

trains one value function Vʀᴏᴄᴋ for the number of rocks in the goal area, and one value

function Vᴅɪᴀᴍᴏɴᴅ for the number of diamonds. Which one it maximizes is determined

by the current 𝜣ᴿ. For example, initially it optimizes Vᴅɪᴀᴍᴏɴᴅ, but this can change to

Vʀᴏᴄᴋ if it (accidentally) pushes the reward word. An implementation of the

environment is available here.

Takeaways and future directions
Most RL algorithms have a reward function tampering incentive. Among these are

model-based or model-free RL algorithms that learn from a stepwise reward signal. If

the trained model can predict the effect of reward tampering, then the agent can learn

that tampering will lead to higher stepwise reward, and thus adapt the tampering

behavior.

It is fortunate that the reward function tampering incentive can be avoided with a slight

change to the standard RL agent objective: current-RF optimization with query access to

the reward function. In fact, we believe that most model-based RL algorithms could be

converted into current-RF optimizers relatively easily (model-free algorithms may pose

more of a challenge).

Our paper explores the properties of current-RF optimization in more depth. It also

elaborates on further issues around agent corrigibility and self-preservation incentives,

as well as other reward tampering problems such as tampering with user-provided

feedback for reward modeling, observation tampering, and belief tampering. It turns out

that all these reward tampering problems and their solutions can be naturally

represented using causal influence diagrams.

The most important takeaway from the paper is that there are design principles that

avoid reward tampering problems, and that these design principles are mutually

compatible. An important next step is to turn the design principles into practical and

scalable RL algorithms, and to verify that they do the right thing in setups where various

types of reward tampering are possible. With time, we hope that these design principles

will evolve into a set of best practices for how to build capable RL agents without

reward tampering incentives.

Special thanks to Damien Boudot for producing the figures for this post.

Arti�cial Intelligence Ai Safety Reinforcement Learning Machine Learning AI

About Help Legal

https://www.researchgate.net/publication/215990481_Horde_A_Scalable_Real-time_Architecture_for_Learning_Knowledge_from_Unsupervised_Sensorimotor_Interaction_Categories_and_Subject_Descriptors
https://github.com/deepmind/ai-safety-gridworlds/blob/master/ai_safety_gridworlds/environments/rocks_diamonds.py
https://arxiv.org/abs/1908.04734
https://intelligence.org/files/Corrigibility.pdf
https://medium.com/@deepmindsafetyresearch/scalable-agent-alignment-via-reward-modeling-bf4ab06dfd84
https://link.springer.com/chapter/10.1007/978-3-642-22887-2_2
https://medium.com/tag/artificial-intelligence
https://medium.com/tag/ai-safety
https://medium.com/tag/reinforcement-learning
https://medium.com/tag/machine-learning
https://medium.com/tag/ai
https://medium.com/?source=post_page-----4380c1bb6cd----------------------
https://medium.com/about?autoplay=1&source=post_page-----4380c1bb6cd----------------------
https://help.medium.com/?source=post_page-----4380c1bb6cd----------------------
https://medium.com/policy/9db0094a1e0f?source=post_page-----4380c1bb6cd----------------------

