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Abstract

A big open question of algorithmic information theory is the choice
of the universal Turing machine (UTM). For Kolmogorov complexity and
Solomonoff induction we have invariance theorems: the choice of the UTM
changes bounds only by a constant. For the universally intelligent agent
AIXI (Hutter, 2005) no invariance theorem is known. Our results are en-
tirely negative: we discuss cases in which unlucky or adversarial choices of
the UTM cause AIXI to misbehave drastically. We show that Legg-Hutter
intelligence and thus balanced Pareto optimality is entirely subjective, and
that every policy is Pareto optimal in the class of all computable envi-
ronments. This undermines all existing optimality properties for AIXI.
While it may still serve as a gold standard for AI, our results imply that
AIXI is a relative theory, dependent on the choice of the UTM.

Keywords. AIXI, general reinforcement learning, universal Turing machine,
Legg-Hutter intelligence, balanced Pareto optimality, asymptotic optimality.

1 Introduction

The choice of the universal Turing machine (UTM) has been a big open ques-
tion in algorithmic information theory for a long time. While attempts have
been made (Müller, 2010) no answer is in sight. The Kolmogorov complexity
of a string, the length of the shortest program that prints this string, depends
on this choice. However, there are invariance theorems (Li and Vitányi, 2008,
Thm. 2.1.1 & Thm. 3.1.1) which state that changing the UTM changes Kol-
mogorov complexity only by a constant. When using the universal prior M
introduced by Solomonoff (1964, 1978) to predict any deterministic computable
binary sequence, the number of wrong predictions is bounded by (a multiple
of) the Kolmogorov complexity of the sequence (Hutter, 2001). Due to the
invariance theorem, changing the UTM changes the number of errors only by
a constant. In this sense, compression and prediction work for any choice of
UTM.

Hutter (2000, 2005) defines the universally intelligent agent AIXI, which
is targeted at the general reinforcement learning problem (Sutton and Barto,
1998). It extends Solomonoff induction to the interactive setting. AIXI is
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a Bayesian agent, using a universal prior on the set of all computable en-
vironments; actions are taken according to the maximization of expected fu-
ture discounted rewards. Closely related is the intelligence measure defined by
Legg and Hutter (2007), a mathematical performance measure for general re-
inforcement learning agents: defined as the discounted rewards achieved across
all computable environments, weighted by the universal prior.

There are several known positive results about AIXI. It has been proven
to be Pareto optimal (Hutter, 2002, Thm. 2 & Thm. 6), balanced Pareto opti-
mal (Hutter, 2002, Thm. 3), and has maximal Legg-Hutter intelligence. Fur-
thermore, AIXI asymptotically learns to predict the environment perfectly and
with a small total number of errors analogously to Solomonoff induction (Hutter,
2005, Thm. 5.36), but only on policy: AIXI learns to correctly predict the value
(expected future rewards) of its own actions, but generally not the value of
counterfactual actions that it does not take.

Orseau (2010, 2013) showed that AIXI does not achieve asymptotic opti-
mality in all computable environments. So instead, we may ask the following
weaker questions. Does AIXI succeed in every partially observable Markov
decision process (POMDP)/(ergodic) Markov decision process (MDP)/bandit
problem/sequence prediction task? In this paper we show that without further
assumptions on the UTM, we cannot answer any of the preceding questions in
the affirmative. More generally, there can be no invariance theorem for AIXI.
As a reinforcement learning agent, AIXI has to balance between exploration and
exploitation. Acting according to any (universal) prior does not lead to enough
exploration, and the bias of AIXI’s prior is retained indefinitely. For bad priors
this can cause serious malfunctions. However, this problem can be alleviated
by adding an extra exploration component to AIXI (Lattimore, 2013, Ch. 5),
similar to knowledge-seeking agents (Orseau, 2014; Orseau et al., 2013), or by
the use of optimism (Sunehag and Hutter, 2012).

In Section 3 we give two examples of universal priors that cause AIXI to
misbehave drastically. In case of a finite lifetime, the indifference prior makes
all actions equally preferable to AIXI (Section 3.1). Furthermore, for any com-
putable policy π the dogmatic prior makes AIXI stick to the policy π as long
as expected future rewards do not fall too close to zero (Section 3.2). This has
profound implications. We show in Section 4 that if we measure Legg-Hutter
intelligence with respect to a different universal prior, AIXI scores arbitrarily
close to the minimal intelligence while any computable policy can score arbitrar-
ily close to the maximal intelligence. This makes the Legg-Hutter intelligence
score and thus balanced Pareto optimality relative to the choice of the UTM.
Moreover, in Section 5 we show that in the class of all computable environments,
every policy is Pareto optimal. This undermines all existing optimality results
for AIXI. We discuss the implications of these results for the quest for a nat-
ural universal Turing machine and optimality notions of general reinforcement
learners in Section 6. A list of notation is provided in Appendix A.
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2 Preliminaries and Notation

The set X ∗ :=
⋃∞

n=0 X
n is the set of all finite strings over the alphabet X ,

the set X∞ is the set of all infinite strings over the alphabet X , and the set
X ♯ := X ∗ ∪ X∞ is their union. The empty string is denoted by ǫ, not to be
confused with the small positive real number ε. Given a string x ∈ X ♯, we denote
its length by |x|. For a (finite or infinite) string x of length ≥ k, we denote with
x1:k the first k characters of x, and with x<k the first k − 1 characters of x.
The notation x1:∞ stresses that x is an infinite string. We write x ⊑ y iff x is a
prefix of y, i.e., x = y1:|x|.

In reinforcement learning, the agent interacts with an environment in cycles:
at time step t the agent chooses an action at ∈ A and receives a percept et =
(ot, rt) ∈ E consisting of an observation ot ∈ O and a real-valued reward rt ∈ R;
the cycle then repeats for t + 1. A history is an element of (A × E)∗. We use
æ ∈ A × E to denote one interaction cycle, and æ<t to denote a history of
length t− 1. The goal in reinforcement learning is to maximize total discounted
rewards. A policy is a function π : (A × E)∗ → A mapping each history to the
action taken after seeing this history. A history æ<t is consistent with policy π
iff π(æ<k) = ak for all k < t.

A function f : X ∗ → R is lower semicomputable iff the set {(x, q) ∈ X ∗×Q |
f(x) > q} is recursively enumerable. A conditional semimeasure ν is a proba-
bility measure over finite and infinite strings of percepts given actions as input
where ν(e<t ‖ a1:∞) denotes the probability of receiving percepts e<t when
taking actions a1:∞. Formally, ν maps A∞ to a probability distribution over
E♯. Thus the environment might assign positive probability to finite percept se-
quences. One possible interpretation for this is that there is a non-zero chance
that the environment ends: it simply does not produce a new percept. An-
other possible interpretation is that there is a non-zero chance of death for the
agent. However, nothing hinges on the interpretation; the use of (unnormalized)
semimeasures is primarily a technical trick.

The conditional semimeasure ν is chronological iff the first t−1 percepts are
independent of future actions ak for k ≥ t, i.e., ν(e<t ‖ a1:k) = ν(e<t ‖ a<t). De-
spite their name, conditional semimeasures do not denote a conditional probabil-
ity; ν is not a joint probability distribution over actions and percepts. We model
environments as lower semicomputable chronological conditional semimeasures
(LSCCCS) (Hutter, 2005, Sec. 5.1.1); the class of all such environments is de-
noted as MCCS

LSC . We also use the larger set of all chronological conditional
semimeasures MCCS.

A universal prior is a function w : MCCS
LSC → [0, 1] such that wν := w(ν) > 0

for all ν ∈ MCCS
LSC and

∑

ν∈MCCS

LSC

wν ≤ 1. A universal prior w gives rise to a

universal mixture,

ξ(e<t ‖ a<t) :=
∑

ν∈MCCS

LSC

wνν(e<t ‖ a<t). (1)

If the universal prior is lower semicomputable, then the universal mixture ξ is
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an LSCCCS, i.e., ξ ∈ MCCS
LSC . From a given universal monotone Turing ma-

chine U (Li and Vitányi, 2008, Sec. 4.5.2) we can get a universal mixture ξ
in two ways. First, we can use (1) with the prior given by wν := 2−K(ν),
where K(ν) is the Kolmogorov complexity of ν’s index in the enumeration of
all LSCCCSs (Li and Vitányi, 2008, Eq. 4.11). Second, we can define it as the
probability that the universal monotone Turing machine U generates e<t when
fed with a<t and uniformly random bits:

ξ(e<t ‖ a<t) :=
∑

p: e<t⊑U(p,a<t)

2−|p| (2)

Both definitions are equivalent, but not necessarily equal (Wood et al., 2011,
Lem. 10 & Lem. 13).

Lemma 1 (Mixing Mixtures). Let q, q′ ∈ Q such that q > 0, q′ ≥ 0, and
q + q′ ≤ 1. Let w be any lower semicomputable universal prior, let ξ be the
universal mixture for w, and let ρ be an LSCCCS. Then ξ′ := qξ + q′ρ is an
LSCCCS and a universal mixture.

Proof. ξ′ is given by the universal prior w′ with w′ := qw + q′1ρ.

Throughout this paper, we make the following assumptions.

Assumption 2. (a) Rewards are bounded between 0 and 1.

(b) The set of actions A and the set of percepts E are both finite.

We fix a discount function γ : N → R with γt := γ(t) ≥ 0 and
∑∞

t=1 γt < ∞.
The discount normalization factor is defined as Γt :=

∑∞
i=t γi. There is no

requirement that γt > 0 or Γt > 0. If m := min{t | Γt+1 = 0} exists, we say the
agent has a finite lifetime m and does not care what happens afterwards.

Definition 3 (Value Function). The value of a policy π in an environment ν
given history æ<t is defined as V π

ν (æ<t) := V π
ν (æ<tπ(æ<t)) and

V π
ν (æ<tat) :=

1

Γt

∑

et∈E

(

γtrt + Γt+1V
π
ν (æ1:t)

)

ν(e1:t | e<t ‖ a1:t)

if Γt > 0 and V π
ν (æ<t) := 0 if Γt = 0. The optimal value is defined as V ∗

ν (h) :=
supπ V

π
ν (h).

Definition 4 (Optimal Policy (Hutter, 2005, Def. 5.19 & 5.30)). A policy π is
optimal in environment ν (ν-optimal) iff for all histories π attains the optimal
value: V π

ν (h) = V ∗
ν (h) for all h ∈ (A×E)∗. The action π(h) is an optimal action

iff π(h) = π∗
ν(h) for some ν-optimal policy π∗

ν .

Formally, AIXI is defined as a policy π∗
ξ that is optimal in the universal

mixture ξ. Since there can be more than one ξ-optimal policy, this definition is
not unique. If there two optimal actions α 6= β ∈ A, we call it an argmax tie.
Which action we take in case of a tie (how we break the tie) is irrelevant and
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can be arbitrary. We assumed that the discount function is summable, rewards
are bounded (Assumption 2a), and actions and percepts spaces are both finite
(Assumption 2b). Therefore an optimal policy exists for every environment ν ∈
MCCS

LSC (Lattimore and Hutter, 2014, Thm. 10), in particular for any universal
mixture ξ.

Lemma 5 (Discounted Values (Lattimore, 2013, Lem. 2.5)). If two policies π1

and π2 coincide for the first k steps (π1(æ<t) = π2(æ<t) for all histories æ<t

consistent with π1 and t ≤ k), then

∣

∣V π1

ν (ǫ)− V π2

ν (ǫ)
∣

∣ ≤
Γk+1

Γ1
for all environments ν ∈ MCCS.

Proof. Since the policies π1 and π2 coincide for the first k steps, they produce
the same expected rewards for the first k steps. Therefore

∣

∣V π1

ν (ǫ)− V π2

ν (ǫ)
∣

∣ =

∣

∣

∣

∣

∣

∑

e1:k

Γk+1

Γ1

(

V π1

ν (æ1:k)− V π2

ν (æ1:k)
)

ν(e1:k ‖ a1:k)

∣

∣

∣

∣

∣

≤
∑

e1:k

Γk+1

Γ1

∣

∣V π1

ν (æ1:k)− V π2

ν (æ1:k)
∣

∣ν(e1:k ‖ a1:k) ≤
Γk+1

Γ1
,

where at := π1(æ<t) = π2(æ<t) for all t ≤ k. The last inequality follows since
ν is a semimeasure, 0 ≤ V π

ν ≤ 1 and hence |V π1

ν (æ1:k)− V π2

ν (æ1:k)| ≤ 1.

3 Bad Universal Priors

3.1 The Indifference Prior

In this section we consider AIXI with a finite lifetime m, i.e., Γm+1 = 0. The
following theorem constructs the indifference prior, a universal prior ξ′ that
causes argmax ties for the first m steps. Since we use a discount function that
only cares about the first m steps, all policies are ξ′-optimal policies. Thus
AIXI’s behavior only depends on how we break argmax ties.

Theorem 6 (Indifference Prior). If there is an m such that Γm+1 = 0, then
there is a universal mixture ξ′ such that all policies are ξ′-optimal.

Proof. First, we assume that the action space is binary, A = {0, 1}. Let U be
the reference UTM and define the UTM U ′ by

U ′(s1:mp, a1:t) := U(p, a1:t xor s1:t),

where s1:m is a binary string of length m and sk := 0 for k > m. (U ′ has no
programs of length ≤ m.) Let ξ′ be the universal mixture given by U ′ according
to (2).

ξ′(e1:m ‖ a1:m) =
∑

p: e1:m⊑U ′(p,a1:m)

2−|p|
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=
∑

s1:mp′: e1:m⊑U ′(s1:mp′,a1:m)

2−m−|p′|

=
∑

s1:m

∑

p′: e1:m⊑U(p′,a1:m xor s1:m)

2−m−|p′|

=
∑

s1:m

∑

p′: e1:m⊑U(p′,s1:m)

2−m−|p′|,

which is independent of a1:m. Hence the first m percepts are independent of
the first m actions. But the percepts’ rewards after time step m do not matter
since Γm+1 = 0 (Lemma 5). Because the environment is chronological, the value
function must be independent of all actions. Thus every policy is ξ′-optimal.

For finite action spaces A with more than 2 elements, the proof works anal-
ogously by making A a cyclic group and using the group operation instead of
xor.

The choice of U ′ in the proof of Theorem 6 is unnatural since its shortest
program has length greater than m. Moreover, the choice of U ′ depends on m.
If we increase AIXI’s lifetime while fixing the UTM U ′, Theorem 6 no longer
holds. For Solomonoff induction, there is an analogous problem: when using
Solomonoff’s prior M to predict a deterministic binary sequence x, we make at
most K(x) errors. In case the shortest program has length > m, there is no
guarantee that we make less than m errors.

3.2 The Dogmatic Prior

In this section we define a universal prior that assigns very high probability of
going to hell (reward 0 forever) if we deviate from a given computable policy π.
For a Bayesian agent like AIXI, it is thus only worth deviating from the policy
π if the agent thinks that the prospects of following π are very poor already.
We call this prior the dogmatic prior, because the fear of going to hell makes
AIXI conform to any arbitrary ‘dogmatic ideology’ π. AIXI will only break out
if it expects π to give very low future payoff; in that case the agent does not
have much to lose.

Theorem 7 (Dogmatic Prior). Let π be any computable policy, let ξ be any
universal mixture, and let ε > 0. There is a universal mixture ξ′ such that for
any history h consistent with π and V π

ξ (h) > ε, the action π(h) is the unique
ξ′-optimal action.

The proof proceeds by constructing a universal mixture that assigns dispro-
portionally high probability to an environment ν that sends any policy deviating
from π to hell. Importantly, the environment ν produces observations according
to the universal mixture ξ. Therefore ν is indistinguishable from ξ on the policy
π, so the posterior belief in ν is equal to the prior belief in ν.
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Proof. We assume (0, 0) ∈ E . Let π be any computable policy and define

ν(e1:t ‖ a1:t) :=



















ξ(e1:t ‖ a1:t), if ak = π(æ<k) ∀k ≤ t,

ξ(e<k ‖ a<k), if k := min{i | ai 6= π(æ<i)} exists

and ei = (0, 0) ∀i ∈ {k, . . . , t},

0, otherwise.

The environment ν mimics the universal environment ξ until it receives an action
that the policy π would not take. From then on, it provides rewards 0. Since ξ
is a LSCCCS and π is a computable policy, we have that ν ∈ MCCS

LSC .
Without loss of generality we assume that ε is computable, otherwise we

make it slightly smaller. Thus ξ′ := 1
2ν+

ε
2ξ is a universal mixture according to

Lemma 1.
Let h ∈ (A×E)∗ be any history consistent with π such that V π

ξ (h) > ε. In the
following, we use the shorthand notation ρ(h) := ρ(e1:t ‖ a1:t) for a conditional
semimeasure ρ and h =: æ1:t. Since ν gives observations and rewards according
to ξ, we have ν(h) = ξ(h), and thus the posterior weight wν(h) of ν in V π

ξ′ (h) is
constant while following π:

wν(h)

wν

:=
ν(h)

ξ′(h)
=

ξ(h)

ξ′(h)
=

ξ(h)
1
2ν(h) +

ε
2ξ(h)

=
ξ(h)

1
2ξ(h) +

ε
2ξ(h)

=
2

1 + ε

Therefore linearity of V π̃
ν in ν (Hutter, 2005, Thm. 5.31, proved in Appendix B)

implies that for all a ∈ A,

V π
ξ′ (ha) = wν(h)V

π
ν (ha) + wξ(h)V

π
ξ (ha) = 1

1+ε
V π
ν (ha) + ε

1+ε
V π
ξ (ha). (3)

Let α := π(h) be the next action according to π, and let β 6= α be any other
action. We have that V π

ν = V π
ξ by definition of ν, therefore

V π
ξ′ (hα)

(3)
= 1

1+ε
V π
ν (hα)+ ε

1+ε
V π
ξ (hα) = 1

1+ε
V π
ξ (hα)+ ε

1+ε
V π
ξ (hα) = V π

ξ (hα)
(4)

We get that V ∗
ξ′(hα) > V ∗

ξ′(hβ):

V ∗
ξ′(hα) ≥ V π

ξ′ (hα)
(4)
= V π

ξ (hα) = V π
ξ (h) > ε,

V ∗
ξ′(hβ)

(3)
= 1

1+ε
V

π∗

ξ′

ν (hβ) + ε
1+ε

V
π∗

ξ′

ξ (hβ) = ε
1+ε

V
π∗

ξ′

ξ (hβ) ≤ ε
1+ε

< ε,

Hence the action α taken by π is the only ξ′-optimal action for the history h.

Corollary 8 (AIXI Emulating Computable Policies). Let ε > 0 and let π be any
computable policy. There is a universal mixture ξ′ such that for any ξ′-optimal
policy π∗

ξ′ and for any (not necessarily computable) environment ν ∈ MCCS,

∣

∣

∣
V

π∗

ξ′

ν (ǫ)− V π
ν (ǫ)

∣

∣

∣
< ε.
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Proof. Let ε > 0. Since Γk → 0 as k → ∞, we can choose k large enough such
that Γk+1/Γ1 < ε. Let ε′ > 0 be small enough such that V π

ξ (h) > ε′ for all h
with |h| ≤ k. This is possible since V π

ξ (h) > 0 for all h and the set of histories
of length ≤ k is finite because of Assumption 2b. We use the dogmatic prior
from Theorem 7 to construct a universal mixture ξ′ for the policy π and ε′ > 0.
Thus for any history h ∈ (A × E)∗ consistent with π and |h| ≤ k, the action
π(h) is the only ξ′-optimal action. The claim now follows from Lemma 5.

Corollary 9 (With Finite Lifetime Every Policy is an AIXI). If Γm+1 = 0 for
some m ∈ N, then for any policy π there is a universal mixture ξ′ such that π(h)
is the only ξ′-optimal action for all histories h consistent with π and |h| ≤ m.

In contrast to Theorem 6 where every policy is ξ′-optimal for a fixed universal
mixture ξ′, Corollary 9 gives a different universal mixture ξ′ for every policy π
such that π is the only ξ′-optimal policy.

Proof. Analogously to the proof of Corollary 8, let ε′ > 0 be small enough such
that V π

ξ (h) > ε′ for all h with |h| ≤ m. Again, we use the dogmatic prior from
Theorem 7 to construct a universal mixture ξ′ for the policy π and ε′ > 0. Thus
for any history h ∈ (A × E)∗ consistent with π and |h| ≤ m, the action π(h) is
the only ξ′-optimal action.

4 Consequences for Legg-Hutter Intelligence

The aim of the Legg-Hutter intelligence measure is to formalize the intuitive
notion of intelligence mathematically. If we take intelligence to mean an agent’s
ability to achieve goals in a wide range of environments (Legg and Hutter,
2007), and we weigh environments according to the universal prior, then the
intelligence of a policy π corresponds to the value that π achieves in the cor-
responding universal mixture. We use the results form the previous section
to illustrate some problems with this intelligence measure in the absence of a
natural UTM.

Definition 10 (Legg-Hutter Intelligence (Legg and Hutter, 2007))). The intel-
ligence1 of a policy π is defined as

Υξ(π) :=
∑

ν∈MCCS

LSC

wνV
π
ν (ǫ) = V π

ξ (ǫ).

Typically, the index ξ is omitted when writing Υ. However, in this paper we
consider the intelligence measure with respect to different universal mixtures,
therefore we make this dependency explicit.

Because the value function is scaled to be in the interval [0, 1], intelligence
is a real number between 0 and 1. Legg-Hutter intelligence is linked to balanced

1 Legg and Hutter (2007) consider a subclass of MCCS

LSC
, the class of computable measures,

and do not use discounting explicitly.
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0 1random

Υξ
Υξ

Figure 1: The Legg-Hutter intelligence measure assigns values within the closed
interval [Υξ,Υξ]; the assigned values are depicted in orange. By Theorem 11,
computable policies are dense in this orange set.

Pareto optimality: a policy is said to be balanced Pareto optimal iff it scores the
highest intelligence score:

Υξ := sup
π

Υξ(π) = Υξ(π
∗
ξ ).

AIXI is balanced Pareto optimal (Hutter, 2005, Thm. 5.24). It is just as hard to
score very high on the Legg-Hutter intelligence measure as it is to score very low:
we can always turn a reward minimizer into a reward maximizer by inverting
the rewards r′t := 1− rt. Hence the lowest possible intelligence score is achieved
by AIXI’s twin sister, a ξ-expected reward minimizer:

Υξ := inf
π

Υξ(π).

The heaven environment (reward 1 forever) and the hell environment (reward 0
forever) are computable and thus in the environment class MCCS

LSC ; therefore it
is impossible to get a reward 0 or reward 1 in every environment. Consequently,
for all policies π,

0 < Υξ ≤ Υξ(π) ≤ Υξ < 1. (5)

See Figure 1. It is natural to fix the policy random that takes actions uni-
formly at random to have an intelligence score of 1/2 by choosing a ‘symmetric’
universal prior (Legg and Veness, 2013).

AIXI is not computable (Leike and Hutter, 2015, Thm. 14), hence there is
no computable policy π such that Υξ(π) = Υξ or Υξ(π) = Υξ for any universal
mixture ξ. But the next theorem tells us that computable policies can come
arbitrarily close. This is no surprise: by Lemma 5 we can do well on a Legg-
Hutter intelligence test simply by memorizing what AIXI would do for the first
k steps; as long as k is chosen large enough such that discounting makes the
remaining rewards contribute very little to the value function.

Theorem 11 (Computable Policies are Dense). The set

{Υξ(π) | π is a computable policy}

is dense in the set of intelligence scores

{Υξ(π) | π is a policy}.
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Proof. Let π be any policy and let ε > 0. We need to show that there is a
computable policy π̃ with |Υξ(π̃)−Υξ(π)| < ε. We choose k large enough such
that Γk+1/Γ1 < ε. Let α ∈ A be arbitrary and define the policy

π̃(h) :=

{

π(h) if |h| ≤ k, and

α otherwise.

The policy π̃ is computable because we can store the actions of π for the first k
steps in a lookup table. By Lemma 5 we get |Υξ(π)−Υξ(π̃)| = |V π

ξ (ǫ)−V π̃
ξ (ǫ)| ≤

Γk+1/Γ1 < ε.

Remark 12 (Intelligence is not Dense in [Υξ,Υξ]). The intelligence values

of policies are generally not dense in the interval [Υξ,Υξ]. We show this by
defining an environment ν where the first action determines whether the agent
goes to heaven or hell: action α leads to heaven and action β leads to hell. The
semimeasure ξ′ := 0.999ν + 0.001ξ is a universal mixture by Lemma 1. Let π
be any policy. If π takes action α first, then Υξ′(π) > 0.999. If π takes action β
first, then Υξ′(π) < 0.001. Hence there are no policies that score an intelligence
value in the closed interval [0.001, 0.999].

Legg-Hutter intelligence is measured with respect to a fixed UTM. AIXI is
the most intelligent policy if it uses the same UTM. But if we build AIXI with
a dogmatic prior, its intelligence score can be arbitrary close to the minimum
intelligence score Υξ.

Corollary 13 (Some AIXIs are Stupid). For any universal mixture ξ and every
ε > 0, there is a universal mixture ξ′ such that Υξ(π

∗
ξ′) < Υξ + ε.

Proof. Let ε > 0. According to Theorem 11, there is a computable policy π
such that Υξ(π) < Υξ + ε/2. From Corollary 8 we get a universal mixture ξ′

such that |Υξ(π
∗
ξ′)− Υξ(π)| = |V

π∗

ξ′

ξ (ǫ)− V π
ξ (ǫ)| < ε/2, hence |Υξ(π

∗
ξ′)−Υξ| ≤

|Υξ(π
∗
ξ′)−Υξ(π)|+ |Υξ(π) −Υξ| < ε/2 + ε/2 = ε.

We get the same result if we fix AIXI, but rig the intelligence measure.

Corollary 14 (AIXI is Stupid for Some Υ). For any ξ-optimal policy π∗
ξ and for

every ε > 0 there is a universal mixture ξ′ such that Υξ′(π
∗
ξ ) ≤ ε and Υξ′ ≥ 1−ε.

Proof. Let a1 := π∗
ξ (ǫ) be the first action that π∗

ξ takes. We define an environ-
ment ν such that taking the first action a1 leads to hell and taking any other
first action leads to heaven as in Remark 12. With Lemma 1 we define the uni-
versal mixture ξ′ := (1− ε)ν + εξ. Since π∗

ξ takes action a1 first, it goes to hell,

i.e., V
π∗

ξ
ν (ǫ) = 0. Hence

Υξ′(π
∗
ξ ) = V

π∗

ξ

ξ′ (ǫ) = (1− ε)V
π∗

ξ
ν (ǫ) + εV

π∗

ξ

ξ (ǫ) ≤ ε.

For any policy π that takes an action other than a1 first, we get

Υξ′(π) = V π
ξ′ (ǫ) = (1 − ε)V π

ν (ǫ) + εV π
ξ (ǫ) ≥ 1− ε.

10



On the other hand, we can make any computable policy smart if we choose
the right universal mixture. In particular, we get that there is a universal
mixture such that ‘do nothing’ is the most intelligent policy save for some ε!

Corollary 15 (Computable Policies can be Smart). For any computable policy
π and any ε > 0 there is a universal mixture ξ′ such that Υξ′(π) > Υξ′ − ε.

Proof. Corollary 8 yields a universal mixture ξ′ with |Υξ′ −Υξ′(π)| = |V ∗
ξ′(ǫ)−

V π
ξ′ (ǫ)| < ε.

5 Pareto Optimality

In Section 3 we have seen examples for bad choices of the universal prior. But
we know that for any universal prior, AIXI is Pareto optimal (Hutter, 2002).
Here we show that Pareto optimality is not a useful criterion for optimality since
for any environment class containing MCCS

LSC , all policies are Pareto optimal.

Definition 16 (Pareto Optimality (Hutter, 2005, Def. 5.22)). Let M be a set
of environments. A policy π is Pareto optimal in the set of environments M iff
there is no policy π̃ such that V π̃

ν (ǫ) ≥ V π
ν (ǫ) for all ν ∈ M and V π̃

ρ (ǫ) > V π
ρ (ǫ)

for at least one ρ ∈ M.

Theorem 17 (AIXI is Pareto Optimal (Hutter, 2005, Thm. 5.32)). A ξ-optimal
policy is Pareto optimal in MCCS

LSC .

Theorem 18 (Pareto Optimality is Trivial). Every policy is Pareto optimal in
any M ⊇ MCCS

LSC .

The proof proceeds as follows: for a given policy π, we construct a set of
‘buddy environments’ that reward π and punish other policies. Together they
can defend against any policy π̃ that tries to take the crown of Pareto optimality
from π.

Proof. We assume (0, 0) and (0, 1) ∈ E . Moreover, assume there is a policy π
that is not Pareto optimal. Then there is a policy π̃ such that V π̃

ρ (ǫ) > V π
ρ (ǫ)

for some ρ ∈ M, and
∀ν ∈ M. V π̃

ν (ǫ) ≥ V π
ν (ǫ). (6)

Since π 6= π̃, there is a shortest and lexicographically first history h′ of length
k − 1 consistent with π and π̃ such that π(h′) 6= π̃(h′) and V π̃

ρ (h′) > V π
ρ (h′).

Consequently there is an i ≥ k such that γi > 0, and hence Γk > 0. We define
the environment µ that first reproduces the separating history h′ and then, if
ak := π(h′) returns reward 1 forever, and otherwise returns reward 0 forever.
Formally, µ is defined by

µ(e1:t | e<t ‖ a1:t) :=



















1, if t < k and et = e′t,

1, if t ≥ k and ak = π(h′) and rt = 1 and ot = 0,

1, if t ≥ k and ak 6= π(h′) and rt = 0 = ot,

0, otherwise.

11



The environment µ is computable, even if the policy π is not: for a fixed history
h′ and action output π(h′), there exists a program computing µ. Therefore
µ ∈ MCCS

LSC . We get the following value difference for the policies π and π̃,
where r′t denotes the reward from the history h′:

V π
µ (ǫ)−V π̃

µ (ǫ) =

k−1
∑

t=1

γtr
′
t+

∞
∑

t=k

γt ·1−

k−1
∑

t=1

γtr
′
t−

∞
∑

t=k

γt ·0 =

∞
∑

t=k

γt = Γk > 0

Hence V π̃
µ (ǫ) < V π

µ (ǫ), which contradicts (6) since M ⊇ MCCS
LSC ∋ µ.

Note that the environment µ we defined in the proof of Theorem 18 is actu-
ally just a finite-state POMDP, so Pareto optimality is also trivial for smaller
environment classes.

6 Discussion

6.1 Summary

Bayesian reinforcement learning agents make the trade-off between exploration
and exploitation in the Bayes-optimal way. The amount of exploration this
incurs varies wildly: the dogmatic prior defined in Section 3.2 can prevent a
Bayesian agent from taking a single exploratory action; exploration is restricted
to cases where the expected future payoff falls below some prespecified ε > 0.

In the introduction we raised the question of whether AIXI succeeds in var-
ious subclasses of all computable environments. Interesting subclasses include
sequence prediction tasks, (ergodic) (PO)MDPs, bandits, etc. Using a dogmatic
prior (Theorem 7), we can make AIXI follow any computable policy as long as
that policy produces rewards that are bounded away from zero.

• In a sequence prediction task that gives a reward of 1 for every correctly
predicted bit and 0 otherwise, a policy π that correctly predicts every third
bit will receive an average reward of 1/3. With a π-dogmatic prior, AIXI
thus only predicts a third of the bits correctly, and hence is outperformed
by a uniformly random predictor.

However, if we have a constant horizon of 1, AIXI does succeed in sequence
prediction (Hutter, 2005, Sec. 6.2.2). If the horizon is this short, the agent
is so hedonistic that no threat of hell can deter it.

• In a (partially observable) Markov decision process, a dogmatic prior can
make AIXI get stuck in any loop that provides nonzero expected rewards.

• In a bandit problem, a dogmatic prior can make AIXI get stuck on any
arm which provides nonzero expected rewards.

These results apply not only to AIXI, but generally to Bayesian reinforcement
learning agents. Any Bayesian mixture over reactive environments is susceptible
to dogmatic priors if we allow an arbitrary reweighing of the prior. A notable

12



KU (U
′) KU ′(U)

Indifference prior (Theorem 6) K(U) +K(m) +O(1) m

Dogmatic prior (Theorem 7) K(U) +K(π) +K(ε) +O(1) ⌈− log2 ε⌉

Table 1: Upper bounds to compiler sizes of the UTMs used in the proofs.
KU (U

′) is the number of extra bits to run the ‘bad’ UTM U ′ on the ‘good’
UTM U , KU ′(U) is the number of extra bits to run U on U ′, and K(U) is the
length of the shortest program for U on U .

exception is the class of all ergodic MDPs with an unbounded effective horizon;
here the Bayes-optimal policy is strongly asymptotically optimal (Hutter, 2005,
Thm. 5.38): V π

µ (æ<t)− V ∗
µ (æ<t) → 0 as t → ∞ for all histories æ<t.

Moreover, Bayesian agents might still perform well at learning: AIXI’s poste-
rior belief about the value of its own policy π∗

ξ converges to the true value while

following that policy (Hutter, 2005, Thm. 5.36): V
π∗

ξ

ξ (æ<t) − V
π∗

ξ
µ (æ<t) → 0

as t → ∞ µ-almost surely (on-policy convergence). This means that the agent
learns to predict those parts of the environment that it sees. But if it does not
explore enough, then it will not learn other parts of the environment that are
potentially more rewarding.

6.2 Natural Universal Turing Machines

In Section 3 we showed that a bad choice for the UTM can have drastic con-
sequences, as anticipated by Sunehag and Hutter (2014). Our negative results
can guide future search for a natural UTM: the UTMs used to define the in-
difference prior (Theorem 6) and the dogmatic prior (Theorem 7) should be
considered unnatural. But what are other desirable properties of a UTM?

A remarkable but unsuccessful attempt to find natural UTMs is due to
Müller (2010). It takes the probability that one universal machine simulates
another according to the length of their respective compilers and searches for a
stationary distribution. Unfortunately, no stationary distribution exists.

Alternatively, we could demand that the UTM U ′ that we use for the uni-
versal prior has a small compiler on the reference machine U (Hutter, 2005, p.
35). Moreover, we could demand the reverse, that the reference machine U has
a small compiler on U ′. The idea is that this should limit the amount of bias
one can introduce by defining a UTM that has very small programs for very
complicated and ‘unusual’ environments. Unfortunately, this just pushes the
choice of the UTM to the reference machine. Table 1 lists compiler sizes of the
UTMs constructed in this paper.

6.3 Optimality of General Reinforcement Learners

Theorem 18 proves that Pareto optimality is trivial in the class of all computable
environments; Corollary 13 and Corollary 14 show that maximal Legg-Hutter
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Name Issue/Comment
µ-optimal policy requires to know the true environment µ in advance
Pareto optimality trivial (Theorem 18)
Balanced Pareto optimality dependent on UTM (Corollary 13 and Corollary 14)
Self-optimizing does not apply to MCCS

LSC

Strong asymptotic optimality impossible (Lattimore and Hutter, 2011, Thm. 8)
Weak asymptotic optimality BayesExp (Lattimore, 2013, Ch. 5), but not

AIXI (Orseau, 2010)

Table 2: Proposed notions of optimality (Hutter, 2002; Orseau, 2010;
Lattimore and Hutter, 2011) and their issues. Weak asymptotic optimality
stands out to be the only possible nontrivial optimality notion.

intelligence (balanced Pareto optimality) is highly subjective, because it depends
on the choice of the UTM: AIXI is not balanced Pareto optimal with respect
to all universal mixtures. Moreover, according to Corollary 15, any computable
policy is nearly balanced Pareto optimal, save some ε > 0. For finite lifetime
discounting, there are UTMs such that every policy has maximal intelligence
(Theorem 6). The self-optimizing theorem (Hutter, 2002, Thm. 4 & Thm. 7)
is not applicable to the class of all computable environments MCCS

LSC that we
consider here, since this class does not allow for self-optimizing policies. There-
fore no nontrivial and non-subjective optimality results for AIXI remain (see
Table 2). We have to regard AIXI as a relative theory of intelligence, depen-
dent on the choice of the UTM (Sunehag and Hutter, 2014).

The underlying problem is that a discounting Bayesian agent such as AIXI
does not have enough time to explore sufficiently; exploitation has to start as
soon as possible. In the beginning the agent does not know enough about its
environment and therefore relies heavily on its prior. Lack of exploration then
retains the prior’s biases. This fundamental problem can be alleviated by adding
an extra exploration component. Lattimore (2013) defines BayesExp, a weakly
asymptotically optimal policy π that converges (independent of the UTM) to the
optimal value in Cesàro mean: 1

t

∑t
k=1

(

V ∗
ν (æ<k) − V π

ν (æ<k)
)

→ 0 as t → ∞
ν-almost surely for all ν ∈ MCCS

LSC .
But it is not clear that weak asymptotic optimality is a good optimality

criterion. For example, weak asymptotic optimality can be achieved by navi-
gating into traps (parts of the environment with a simple optimal policy but
possibly very low rewards that cannot be escaped). Furthermore, to be weakly
asymptotically optimal requires an excessive amount of exploration: BayesExp
needs to take exploratory actions that it itself knows to very likely be extremely
costly or dangerous. This leaves us with the following open question: What are
good optimality criteria for generally intelligent agents (Hutter, 2009, Sec. 5)?
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A List of Notation

:= defined to be equal
N the natural numbers, starting with 0
Q the rational numbers
R the real numbers
t (current) time step, t ∈ N

k some other time step, k ∈ N

q, q′ rational numbers
1x the characteristic function that is 1 for x and 0 otherwise.
X ∗ the set of all finite strings over the alphabet X
X∞ the set of all infinite strings over the alphabet X
X ♯ X ♯ := X ∗ ∪ X∞, the set of all finite and infinite strings over the

alphabet X
x ⊑ y the string x is a prefix of the string y
A the finite set of possible actions
O the finite set of possible observations
E the finite set of possible percepts, E ⊂ O × R

α, β two different actions, α, β ∈ A
at the action in time step t
ot the observation in time step t
rt the reward in time step t, bounded between 0 and 1
et the percept in time step t, we use et = (ot, rt) implicitly
æ<t the first t− 1 interactions, a1e1a2e2 . . . at−1et−1 (a history of length

t− 1)
h a history, h ∈ (A× E)∗

ǫ the history of length 0
ε a small positive real number
γ the discount function γ : N → R≥0

m lifetime of the agent if Γm+1 = 0 and Γm > 0
Γt a discount normalization factor, Γt :=

∑∞
k=t γk

π, π̃ policies, π, π̃ : (A× E)∗ → A
π∗
ν an optimal policy for environment ν

V π
ν the ν-expected value of the policy π

V ∗
ν the optimal value in environment ν

Υξ(π) the Legg-Hutter intelligence of policy π measured in the universal
mixture ξ

Υξ the minimal Legg-Hutter intelligence

Υξ the maximal Legg-Hutter intelligence
MCCS the class of all chronological conditional semimeasures
MCCS

LSC the class of all lower semicomputable chronological conditional
semimeasures

ν, ρ lower semicomputable chronological conditional semimeasures
(LSCCCSs)

U our reference universal Turing machine
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U ′ a ‘bad’ universal Turing machine
w a universal prior, w : MCCS

LSC → [0, 1]
p, p′ programs on a universal Turing machine in the form of finite binary

strings
ξ the universal mixture over all environments MCCS

LSC given by the
reference UTM U

ξ′ a ‘bad’ universal mixture over all environments MCCS
LSC given by the

‘bad’ UTM U ′

B Additional Material

Lemma 19 (Linearity of V π
ν in ν). Let ν = qρ+ q′ρ′ for some q, q′ ≥ 0. Then

for all policies π and all histories æ<t,

V π
ν (æ<t) = q

ρ(e<t ‖ a<t)

ν(e<t ‖ a<t)
V π
ρ (æ<t) + q′

ρ′(e<t ‖ a<t)

ν(e<t ‖ a<t)
V π
ρ′ (æ<t).

Proof. We use the shorthand notation νt := ν(e1:t ‖ a1:t). Since Γt → 0 as
t → ∞ we can do ‘induction from infinity’ by assuming that the statement
holds for time step t and showing that it then holds for t− 1.

V π
ν (æ<t)

=
1

Γt

∑

et∈E

(

γtrt + Γt+1V
π
ν (æ1:t)

) νt
νt−1

=
1

Γt

∑

et∈E

(

γtrt
νt

νt−1
+ Γt+1

νt
νt−1

V π
ν (æ1:t)

)

=
1

Γt

∑

et∈E

(

qγtrt
ρt

νt−1
+ q′γtrt

ρ′t
νt−1

+ qΓt+1
ρt
νt−1

V π
ρ (æ1:t) + q′Γt+1

ρ′t
νt−1

V π
ρ′ (æ1:t)

)

=
q

Γt

ρt−1

νt−1

∑

et∈E

(

γtrt + Γt+1V
π
ρ (æ1:t)

) ρt
ρt−1

+
q′

Γt

ρ′t−1

νt−1

∑

et∈E

(

γtrt + Γt+1V
π
ρ′ (æ1:t)

) ρ′t
ρ′t−1

= q
ρt−1

νt−1
V π
ρ (æ<t) + q′

ρ′t−1

νt−1
V π
ρ′ (æ<t)
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