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Abstract. We consider extending the AIXI agent by using multiple (or
even a compact class of) priors. This has the benefit of weakening the
conditions on the true environment that we need to prove asymptotic op-
timality. Furthermore, it decreases the arbitrariness of picking the prior
or reference machine. We connect this to removing symmetry between
accepting and rejecting bets in the rationality axiomatization of AIXI
and replacing it with optimism. Optimism is often used to encourage
exploration in the more restrictive Markov Decision Process setting and
it alleviates the problem that AIXI (with geometric discounting) stops
exploring prematurely.
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1 Introduction

In this article, we aim to define agents that adapt to asymptotically act optimally
for as large a class of environments as possible. This task is fundamental for Ar-
tificial General Intelligence with many authors [LH07] using it as a definition of
intelligence. In [Hut05] the AIXI agent is defined as a Bayesian reinforcement
learning agent with particular attention being put on using the class of all com-
putable environments as the hypothesis class. This agent has some interesting
optimality properties. Besides maximizing expected utility with respect to the
a-priori distribution by design, it is also Pareto optimal and self-optimizing when
this is possible for the considered class. It was, however, shown in [Ors10] that
at least with computable horizons, AIXI is not guaranteed to be asymptotically
optimal for all computable (deterministic) environments. Furthermore, [LH11]
shows that no agent can be.

Here we use multiple priors (or more generally multiple a-priori environments)
and the principle of optimism to define more explorative extensions of the AIXI
agent with the aim of being able to prove asymptotic optimality under weaker
conditions on the true environment. In other words, the agent can adapt success-
fully to a larger class of environments. The more priors used the more explorative
the agent will be; indeed we can even define the agent for all priors though the
convergence results will not apply and the agent can end up having no preference
between any of the actions in any situation. The meaningful cases include having
a compact class of strictly positive weight sequences wν , ν ∈ M for a countable
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hypothesis class M. We can, for example, consider a sequence αν > 0 and the
set of mixtures with weights satisfying ων ≥ αν and

∑
ν wν = 1.

In Section 2, we discuss the rational betting theory that has recently been
used to derive AIXI [SH11a] and in Section 3, after introducing the reinforcement
learning agent setting, we describe how the betting theory leads to active agents.
Furthermore, in Section 2, we weaken the assumptions to introduce (in Section
3) our extended AIXI agent. In [SH11a], rationality axioms were presented that
lead to the AIXI agent. Here we are going to extend AIXI by breaking the
symmetry between accepting and rejecting bets in an optimistic fashion and as
a consequence get a multiple-prior model. In the active AI setting where decisions
affect the environment, the optimism makes the agent more explorative, which
improves its chances of finding an optimal policy. Optimism has previously been
used to encourage exploration in the more restrictive setting of Markov Decision
Processes [SLL09]. Here we study general countable classes of environments.

In Section 3.2, we present our main results on asymptotic optimality under two
conditions on how the a priori environment(s) relate to the true environment. If
the a-priori environment ξ dominates an environment ν in the sense that ξ(·) ≥
wνν(·), then we know from the Blackwell-Dubins theorem [BD62] that ξ will
almost surely merge with ν in total variation distance under the followed policy.
This is, however, not enough for achieving asymptotic optimality. We will say
that ξ is optimistic for ν, if the expected value of following an optimal policy in ξ
is always higher than it is in ν. If ξ is both dominating ν and optimistic for ν, then
almost surely AIXI asymptotically achieves optimality. In this article, we extend
the class of environments that we can prove optimality for by replacing ξ with
a compact class of a-priori environments Ξ and decisions are taken according to
the policy that maximizes the expected value for the environment inΞ that is the
most optimistic in the current situation. To guarantee asymptotic optimality we
only need to assume that the optimistic environment is also optimistic relative
the true environment. In a separate article [SH12] we remove those two conditions
and replace them with the condition that the true environment lies in the class
of a-priori environments, which then essentially serves as a hypothesis class.

2 Optimistic Rational Choice

In [SH11a, SH11b], AIXI was derived from rationality axioms inspired by the
traditional literature [NM44, Ram31, Sav54, deF37] on decision making under
uncertainty. Here we suggest replacing a symmetry condition between accepting
and rejecting bets with optimism. The new weaker condition says that if we
reject one side of a bet we must be prepared to accept the other side. The prin-
ciple of optimism results in a more explorative agent and leads to multiple-prior
models. Multiple-priors are also used in an approach sometimes called imprecise
probability [Wal00], though our work is distinguished from the imprecise prob-
ability approach by actually making a choice among the priors. Axiomatics of
multiple-prior models has been studied by [GS89, CMKO00]. These models can
be understood as quantifying the uncertainty in estimated probabilities by as-
signing a whole set (or range) of probabilities. In the passive prediction case when
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the decisions do not affect the environment, one often combines the multiple-
prior model with caution to achieve more risk averse decisions [CMKO00]. In
the active case, we need to take risk to generate experience that one can learn
successful behavior from and, therefore, optimism is appropriate.

2.1 Bets

The basic setting used in [SH11a] was inspired by the betting approach of
[Ram31, deF37]. In this setting we are about to observe an event from a fi-
nite (or countable) alphabet and we are offered a bet (contract) x = (x1, ..., xn)
where xi ∈ R is the reward received for the outcome i. We first introduce the
setting of [SH11a] and its main theorem for the finite case.

Definition 1 (Bet). Suppose that we are going to observe an event whose out-
come is represented by a symbol from an alphabet with m elements. A bet for
such an event is an element x = (x1, ..., xm) in R

m and xj is the reward received
if the outcome of the event is the j:th symbol.

Definition 2 (Decision Maker, Decision). A decision maker is a pair of
sets Z, Z̃ ⊂ R

m which defines exactly the bets that are acceptable Z and those
that are rejectable Z̃. In other words, a decision maker is a function from R

m to
{accepted, rejected, either, neither}. The function value is called the decision.

Next we present the axioms and representation theorem from [SH11a].

Definition 3 (Rationality). We say that the decision maker (Z, Z̃) is rational
if

1. Z ∪ Z̃ = R
m

2. x ∈ Z ⇐⇒ −x ∈ Z̃
3. x, y ∈ Z, λ, γ ≥ 0 ⇒ λx+ γy ∈ Z
4. ∀k xk > 0 ⇒ x ∈ Z \ Z̃
Theorem 1 (Existence of Probabilities, Sunehag&Hutter 2011). Given
a rational decision maker, there are numbers pi ≥ 0 that satisfy

{x |
∑

xipi > 0} ⊆ Z ⊆ {x |
∑

xipi ≥ 0}. (1)

Assuming
∑

i pi = 1 makes the numbers unique and we will use the notation
Pr(i) = pi.

Axiom 1 in Definition 3 is really describing the setting rather than an assump-
tion. It says that we must always choose at least one of accept or reject. Axioms
3 − 4 were motivated as follows in [SH11a]. If x ∈ Z and λ ≥ 0 then we want
λx ∈ Z since it is simply a multiple of the same bet. We also want the sum of two
acceptable bets to be acceptable. If we are guaranteed to win money we accept
the bet and we are not prepared to reject it. Axiom 2 is a symmetry condition
between accepting and rejecting which we are going to break in the optimistic
setting. In the optimistic setting we will still demand that if we reject x we must
accept −x but not the other way around.
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2.2 Rational Optimism

We present four axioms for rational optimism. They state properties that the
set of accepted and the set of rejected bets must satisfy. The first two relate
to optimism. The first one says that if a bet is not rejected it is accepted. The
second says that if x is rejected then −x must be accepted. In other words, if we
reject one side of a bet we must accept the opposite. This was also argued for in
the first set of axioms in the previous setting but in the optimistic setting we do
not have the opposite direction. Namely we do not say that if x is accepted then
−x is rejected. The other two axioms are about rational rejection. If we reject
two bets x and y, we reject λx + γy if λ ≥ 0 and γ ≥ 0. The final axiom says
that if the reward is guaranteed to be strictly negative we reject the bet. If the
⇒ in Axiom 2 was instead an ⇐⇒ we would have the same axioms as before,
just slightly differently expressed.

Definition 4 (Rational Optimism). We say that the decision maker Z, Z̃ ⊂
R

m is a rational optimist if

1. x /∈ Z̃ ⇒ x ∈ Z
2. x ∈ Z̃ ⇒ −x /∈ Z̃
3. x, y ∈ Z̃ and λ, γ ≥ 0 ⇒ λx + γy ∈ Z̃
4. xk < 0 ∀k ⇒ x ∈ Z̃ \ Z
Theorem 2 (Existence of a set of probabilities). Given a rational optimist,
there is a set P of probability vectors (pi), that satisfy

{x | ∃(qi) ∈ P :
∑

xiqi > 0} ⊆ Z ⊆ {x | ∃(qi) ∈ P :
∑

xiqi ≥ 0}. (2)

One can always replace P with an extreme set the size of the alphabet.

Proof. Properties 2 and 3 tell us that the closure ¯̃Z of Z̃ is a (one sided) convex

cone. Let P = {(pi) ∈ R
m | ∑

pixi ≤ 0 ∀(xi) ∈ ¯̃Z}. Then, it follows from

convexity that ¯̃Z = {(xi) | ∑
xipi ≤ 0 ∀(pi) ∈ P}. Property 4 tells us that it

contains all the elements of only strictly negative coefficients and this implies
that for all (pi) ∈ P , pi ≥ 0 for all i. We can directly conclude that Z ⊆
{x | ∃(qi) ∈ P :

∑
xiqi ≥ 0} and furthermore, it follows from property 2 that

{x | ∑xipi > 0} ⊆ Z for all (pi) ∈ P . Normalizing to
∑

pi = 1 does not change
anything. Property 1 tells us that Z ⊆ {x | ∃(qi) ∈ P :

∑
xiqi ≥ 0}. �


2.3 Making Choices

If we want to go from decisions on accepting or rejecting bets to a setting where
we choose between different bets xj , j = 1, 2, 3, ..., we define preferences by saying
that x is better or equal (as in equally good) than y if x− y ∈ Z̄ (the closure of
Z), while it is worse or equal if x−y is rejectable. For the first form of rationality
stated in Definition 3, the consequence is that one chooses the option with the
highest expected utility. If we instead consider optimistic rationality, and if there
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is (pi) ∈ P such that
∑

xipi ≥
∑

yiqi ∀(qi) ∈ P then
∑

pi(xi − yi) ≥ 0 and,
therefore, x− y ∈ Z̄. Therefore, if we choose the bet xj by

argmax
j

max
p∈P

∑
xj
ipi

we are guaranteed that this bet is preferable to all other bets but not necessarily
strictly so, even if maxp∈P

∑
xj
ipi is strictly larger than all competitors.

3 Intelligent Agents

We will consider an agent [RN10, Hut05] that interacts with an environment
through performing actions at from a finite set A and receives observations
ot from a finite set O and rewards rt from a finite set R ⊂ [0, 1]. Let H =
∪n(A×O×R)n be the set of histories and let ε be the empty history. A function
ν : H×A → O×R is called a deterministic environment. A function π : H → A
is called a (deterministic) policy or an agent. We define the value function V
based on geometric discounting by V π

ν (ht−1) =
∑∞

i=t γ
i−tri where the sequence

ri are the rewards achieved by following π from time step t onwards in the
environment ν after having seen ht−1.

Instead of viewing the environment as a function H×A → O×R we can equiv-
alently write it as a function ν : H×A×O×R → {0, 1}where we write ν(o, r|h, a)
for the function value of (h, a, o, r). It equals zero if in the first formulation (h, a)
is not sent to (o, r) and 1 if it is. In the case of stochastic environments we in-
stead have a function ν : H× A× O ×R → [0, 1] such that

∑
o,r ν(o, r|h, a) =

1 ∀h, a. Furthermore, we define ν(ht|π) := ν(or1:t|π) := Πt
i=1ν(oiri|ai, hi−1)

where ai = π(hi−1). ν(·|π) is a probability measure over strings or sequences
as will be discussed in the next section and we can define ν(·|π, ht−1) by con-
ditioning ν(·|π) on ht−1. We define V π

ν (ht−1) := Eν(·|π,ht−1)

∑∞
i=t γ

i−tri and
V ∗
ν (ht−1) := maxπ V

π
ν (ht−1). Given a countable class of environments M and

strictly positive prior weights wν for all ν ∈ M, we define the a-priori environ-
ment ξ by letting ξ(·) =

∑
wνν(·) and the AIXI agent is defined by following

the policy
π∗ := argmax

π
V π
ξ (ε).

3.1 Rational Optimistic Sequential Decisions

There are some extensions to the results from Section 2 needed to reach the full
AI (generic reinforcement learning) case we have in mind, but the procedure
for doing this has already been outlined in [SH11a]. The first extension is to
reactive environments where the outcome is affected by the choice made. One
then chooses between different actions to take. It was concluded that it follows
from the rationality axioms that there is a probability (pji ) for the outcome i
given action j, and the action given a bet x = (xi) is chosen by

argmax
j

∑
xip

j
i .
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The extension to finitely many sequential decisions is simply about considering
the choice to be made to be a choice of policy π (previously j). The discounted
value

∑
rtγ

t achieved then plays the role of the bet xi and the decision on what
policy to follow is taken according to

argmax
π

V π
ξ

where ξ is the probabilistic a priori belief (the pji ) and V π
ξ =

∑
pji (

∑
ritγ

t) where

rit is the reward achieved at time t in outcome sequence i in an enumeration of
all the possible histories. The rational optimist takes the decision

π◦ := argmax
π

max
ξ∈Ξ

V π
ξ

for a set of beliefs (environments) Ξ (corresponds to P before) which we will
assume is compact in the metric topology of the total variation distance as in
[SH12].

3.2 Asymptotic Optimality

In this section we will first prove that AIXI is asymptotically optimal if its a-
priori environment ξ is both dominating the true environment μ in the sense
of ξ(·) ≥ cμ(·) and optimistic in the sense that V ∗

ξ (ht) ≥ V ∗
μ (ht) (for large

t). We extend this by replacing ξ with a compact (with respect to the total
variation distance) set Ξ and prove that we then only need there to be, for each
ht (for t large), some ξ ∈ Ξ such that V ∗

ξ (ht) ≥ V ∗
μ (ht). The first domination

property is most easily satisfied for ξ(·) = ∑
ν∈M wνν(·) with wν > 0 where M

is a countable class of environments with μ ∈ M. We are going to provide one
simple example for the first theorem to illustrate what it is saying in a simple
setting while after the second theorem we discuss the example that we really
have in mind. This example addresses the AIXI agent as it was introduced in
[Hut05] with a Solomonoff prior and the problem of defining a natural Universal
Turing Machine [Mül10].

Theorem 3. Suppose that ξ(·) ≥ cμ(·) for some c > 0 and μ is the true envi-
ronment. Also suppose that there almost surely is T1 < ∞ such that V ∗

ξ (ht) ≥
V ∗
μ (ht) ∀t ≥ T1. Suppose that the policy π∗ acts according to the AIXI agent

based on ξ in μ. Then there is almost surely, for every ε > 0, a time T < ∞
such that V π∗

μ (ht) ≥ V ∗
μ (ht)− ε ∀t ≥ T .

Proof. Due to the dominance we can (using the Blackwell-Dubins merging of
opinions theorem [BD62]) say that almost surely there is for every ε′ > 0, a
T < ∞ such that d(ξ(·|ht, π

∗), μ(·|ht, π
∗)) < ε where d is the total variation

distance. This implies that |V π∗
ξ (ht) − V π∗

μ (ht)| < ε′
1−γ := ε which means that,

if T ≥ T1, V
π∗
μ (ht) ≥ V ∗

ξ (ht)− ε ≥ V ∗
μ (ht)− ε. �
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Example 1 (Line Environment). Consider an agent who, when given a class of
environments, will always choose its prior based on simplicity which is in ac-
cordance with Occam’s razor [Hut05]. First let us look at a class M of two
environments which both have six states s1, ..., s6 and two actions L (left) and
R (right). Action R changes sk to sk+1, L to sk−1. Also L in s1 or R in
s6 result in staying. We start at s1. Being at s1 yields a reward of 0, while
s2, s3, s4, s5 give reward −1 and the reward in s6 depends on the environment.
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In one of the environments ν1, this reward is −1 while in ν2 it is 1. Since ν2 is
not simpler than ν1 it will not have higher weight and if γ is only modestly high
we will not explore along the line despite that in ν2 it would be optimal to do
so. However, if we define another environment ν3 by letting the reward at s6 be
really high, then when including ν3 in the mixture, the agent will end up with
an a priori environment ξ that is optimistic for ν1 and ν2 and we can guarantee
optimality for any γ.

Note that the example above is only supposed to show how the optimism condi-
tion can be satisfied for a subclass of the class one has a prior over. It will almost
never be satisfied for the whole class. In the next theorem we prove that for the
extended agent with a class of priors, only one of them needs to be optimistic
at a time while we need all to be dominant.

Theorem 4. Suppose that Ξ is a compact set for the total variation topology
(maximized over all policies and histories) of a-priori environments such that
for each ξ ∈ Ξ there is cξ,μ > 0 such that ξ(·) ≥ cξ,μμ(·) where μ is the true
environment. Also suppose that there almost surely is T1 < ∞ such that for
t ≥ T1 there is ξ ∈ Ξ such that V ∗

ξ (ht) ≥ V ∗
μ (ht). Suppose that the policy π◦ acts

according to the rational optimistic agent based on Ξ in μ. Then there is almost
surely, for every ε > 0, a time T < ∞ such that V π◦

μ (ht) ≥ V ∗
μ (ht)− ε ∀t ≥ T .

The theorem is proven by combining the proof technique from the previous the-
orem with the following lemma. We have made this lemma easier by formulating
it for time t = 0 (when the history is the empty string ε), though when proving
Theorem 4 it is used for a later time point when the environments in the class
have merged sufficiently in the sense of total variation diameter.

Lemma 1 (Optimism is nearly optimal). Suppose that an infinite history
h has been generated by running π◦ in the environment μ. Given ε > 0 there is
ε̃ > 0 such that V π◦

μ (ε) ≥ maxπ V
π
μ (ε)− ε if

|V π◦
ν1 (ht)− V π◦

ν2 (ht)| < ε̃ ∀t, ∀ν1, ν2 ∈ Ξ.

Proof. Let ν∗ht
be the environment in argmaxν maxπ V

π
ν (ht) that π◦ use to

choose the next action at+1 after experiencing ht. Define ν̂ by letting

ν̂(otrt|ht−1, a) = ν∗ht−1
(otrt|ht−1, a).
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We will show that this implies that V π◦
ν̂ ≥ maxν∈M,π V

π
ν where V π

ν denotes
V π
ν (ε). Let

ν̂s(otrt|ht−1, a) =

{
ν̂(otrt|ht−1, a) ∀ht−1, for t ≤ s

ν̂s(otrt|ht−1, a) = ν∗hs
(otrt|ht−1, a) ∀ht−1, for t > s.

ν̂1 equals ν∗ε at all time points and thus V π
ν̂1

= V π
ν∗
ε
. Let R̂ν

t be the expected accu-

mulated (discounted) reward (E
∑t

i=1 γ
i−1ri) when following π◦ in environment

ν up to time t.

max
π2:∞

V π◦
0:1π2:∞

ν̂2
= max

π1:∞
(R̂

ν∗
ε

1 + γEh1|ν∗
ε ,π

◦V π1:∞
ν∗
h1

(h1)) ≥

max
π1:∞

(R̂
ν∗
ε

1 + γEh1|ν∗
ε ,π

◦V π1:∞
ν∗
ε

(h1)) = max
π

V π
ν̂1

since maxπ V
π
ν∗
h1

(h1)) ≥ maxπ V
π
ν (h1)) ∀ν ∈ M. In the same way,

max
πk:∞

V
π◦

0:k−1πk:∞
ν̂k

≥ max
πk−1:∞

V
π◦

0:k−2πk−1:∞
ν̂k−1

∀k

and it follows that V π◦
ν̂ ≥ maxπ,ν∈M V π

ν . To conclude the proof, we show that
if ε̃ is small enough, then

|V π◦
ν̂ − V π◦

μ | < ε (3)

where μ is the true environment. That (3) is true is shown by induction. ν̂1 ∈ M
and, therefore, (3) holds with ν̂1 instead of ν̂ if ε̃ ≤ ε. ν̂k and ν̂k+1 are identical
for the first k time step so |V π◦

ν̂k
− V π◦

ν̂k+1
| < γkε̃. We conclude that

|V π◦
ν̂1 − V π◦

ν̂ | < ε̃

1− γ

and if ε̃+ ε̃
1−γ ≤ ε then (3) holds and the proof is complete. �


Proof. of Theorem 4. Due to the compactness, there is almost surely for every
ε′, a T < ∞ such that d(ξ(·|ht, π

◦), μ(·|ht, π
◦)) < ε ∀ξ ∈ Ξ ∀t ≥ T . This means

that |V π
ξ (ht)− V π

μ (ht)| < ε′
1−γ := ε ∀ξ ∈ Ξ. Applying Lemma 1 to the ξ that is

optimistic at time T proves the result.

Example 2. For any Universal Turing Machine (UTM) U the corresponding
Solomonoff distribution ξU , (see [LV93] for details) is dominant for any lower
semi-computable semi-measure over infinite sequences. [Hut05] extends these
constructions to the active case and defines (for each U) an environment that is
dominant for all lower semi-computable environments and defines the AIXI agent
based on it. The AIXI agent would have uniquely defined the most intelligent
agent according to the underlying sense of intelligence (maximizing expected
reward), if the choice of UTM was clear. Many have without success tried to
find a single “natural” Turing machine and there might in fact be no such ma-
chine [Mül10]. With the approach that we introduce in this article one can pick
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finitely many machines that one considers to be natural. Though this does not
fully resolve the issue of having to make arbitrary choices, it alleviates it by no
longer demanding a unique choice of UTM. We can consider an enumeration of
all UTMs Ui and let the agent Agentn be based on the first n machines. Agentn
has better guarantees than Agentm (in the sense of Theorem 4) if n > m. The
conclusion does, however, not carry through to a limiting case. Note, that if we
instead combine finitely many machines into one by letting the first few bits
represent a choice of machine, the resulting environment will not be optimistic
for all the environments that we achieve optimism for with the multiple-prior
approach.

4 Conclusions

We extended AIXI to a multiple-prior setting using the principle of optimism.
This decreases the arbitrariness of picking an a-priori environment or a reference
machine to base a Solomonoff prior on. Furthermore, we show that this leads to
asymptotic optimality guarantees for more environments. We also explain that
this extension is related to replacing symmetry with optimism in the recently
introduced axiomatization of AIXI.

In a separate article [SH12], we perform a different sort of analysis where it
is not assumed that all the environments in Ξ are dominating the true environ-
ment μ. The analysis, however, adds the assumption that the true environment
is a member of this class of environments. The a priori environments are then
naturally thought of as a hypothesis class rather than mixtures over some hy-
pothesis class. In this article we note, that there is no mathematical difference
between a class of environments that is considered a hypothesis class and one
that is considered a class of a priori environments. However, in the case where
we consider Ξ to be a hypothesis class, Ξ has to be very large to yield an agent
that is guaranteed asymptotic optimality for many environments (the environ-
ments in Ξ), while in the case when it represents a mixture over a hypothesis
class, a singleton Ξ (the AIXI case) is already a powerful agent. Another dis-
tinction is that in the case studied in [SH12], we need a mechanism for excluding
environments from the class as they become inconsistent with experience.

A practical agent that builds upon the ideas of this article and the companion
article [SH12], is a variation of a Bayesian reinforcement learning agent. A com-
mon way of implementing a practical Bayesian agent is that one samples several
environments from the posterior and then act for a period of time according to
what would give the highest expected value when averaging the expected value
over the sampled environments. Instead we here suggest acting optimistically
with respect to those sampled environments who are then, for a period of time,
basically treated as a restricted hypothesis class. In the MDP case this is close
to what the BOSS algorithm [ALL09] is doing.
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