
On Ensemble Techniques

for AIXI Approximation

Joel Veness1, Peter Sunehag2, and Marcus Hutter2

1 University of Alberta
2 Australian National University

veness@cs.ualberta.ca, {peter.sunehag,marcus.hutter}@anu.edu.au

Abstract One of the key challenges in AIXI approximation is model
class approximation - i.e. how to meaningfully approximate Solomonoff
Induction without requiring an infeasible amount of computation? This
paper advocates a bottom-up approach to this problem, by describing a
number of principled ensemble techniques for approximate AIXI agents.
Each technique works by efficiently combining a set of existing environ-
ment models into a single, more powerful model. These techniques have
the potential to play an important role in future AIXI approximations.

1 Introduction

In statistical data compression, one modeling approach used by many high per-
formance programs is to use an ensemble method to combine the predictions
of multiple statistical models (Mattern, 2012). Each model is typically tailored
towards a particular kind of structure that occurs in popular file types. By spe-
cifying a number of specialized models, as well as one or more general-purpose
models, excellent compression performance can be obtained across a variety of
file types. This approach is taken by the powerful PAQ family (Mahoney, 2005)
of data compressors, which currently obtain the best compression performance
across many well-known benchmarks.

Within reinforcement learning (Sutton and Barto, 1998), some efforts
(Veness et al., 2010, 2011) have recently been made towards approximating AIXI
(Hutter, 2005), an optimality notion for general reinforcement learning agents.
Impressively, these agents have been shown to be able to learn, from scratch, to
play TicTacToe, Pacman, Kuhn Poker, and other simple games by trial and error
alone – even the rules of each game were not communicated to the agent. The
mathematical framework used in these works can be considered a natural gen-
eralization of the statistical data compression setting to reinforcement learning.
The distinguishing feature of this setting is an extra source of side information
– namely, the history of actions chosen by some control algorithm – which is in-
corporated into a sequential, probabilistic framework. Inspired by the success of
ensemble methods within data compression, the goal of this paper is to explore
a number of principled techniques for combining one or more probabilistic mod-
els within reinforcement learning. We restrict our attention to that of universal

J. Bach, B. Goertzel, and M. Iklé (Eds.): AGI 2012, LNAI 7716, pp. 341–351, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

342 J. Veness, P. Sunehag, and M. Hutter

methods, i.e. methods that provide competitive theoretical guarantees with re-
spect to an interesting class of candidate environments. Our contribution is to
survey some general techniques from Bayesian statistics, online learning and on-
line convex programming and show how they can be used to define a variety of
principled ensemble techniques for information theoretic agents.

2 Background

We now describe our probabilistic agent setting. A more detailed overview of this
framework can be found in the work of Hutter (2005) and Veness et al. (2011).

Notation. A string x1x2 . . . xn of length n is denoted by x1:n. The prefix x1:j

of x1:n, j ≤ n, is denoted by x≤j or x<j+1. The notation generalises to blocks
of symbols: e.g. ax1:n denotes a1x1a2x2 . . . anxn and ax<j denotes the string
a1x1a2x2 . . . aj−1xj−1. The empty string is denoted by ε. The concatenation of
two strings s and r is denoted by sr. The finite action, observation, and reward
spaces are denoted by A,O, and R respectively. Also, X denotes the joint per-
ception space O ×R.

The following definition states that the environment takes the form of a prob-
ability distribution over possible observation-reward sequences conditioned on
actions taken by the agent.

Definition 1. An environment ρ is a sequence of parametrized probability mass
functions {ρ0, ρ1, ρ2, . . . }, where ρn : An → Density (Xn), that satisfies

∀a1:n∀x<n : ρn−1(x<n | a<n) =
∑

xn∈X
ρn(x1:n | a1:n). (1)

In the base case, we have ρ0(ε | ε) = 1.

Equation (1), called the chronological condition by Hutter (2005), captures the
natural constraint that action an has no effect on earlier perceptions x<n. For
convenience, we drop the index n in ρn from here onwards. Now, given an en-
vironment ρ, we define the predictive probability

ρ(xn | ax<nan) := ρ(x1:n | a1:n)/ρ(x<n | a<n) (2)

∀a1:n∀x1:n such that ρ(x<n | a<n) > 0. It now follows that

ρ(x1:n | a1:n) = ρ(x1 | a1)ρ(x2 | ax1a2) · · · ρ(xn | ax<nan). (3)

Definition 1 is used in two distinct ways. The first is to describe the true envir-
onment, which is typically not known by the agent. The second is to describe an
agent’s subjective model of the environment. This model is usually adaptive, and
will often only be an approximation to the true environment. To make the dis-
tinction clear, we will refer to an agent’s environment model when talking about

On Ensemble Techniques for AIXI Approximation 343

the agent’s model of the environment. Additionally, we introduce the notion of
an ε-positive environment model. This is defined as an environment model ρ
satisfying ρ(xn | ax<nan) ≥ ε for some real ε > 0, for all n ∈ N, for all x1:n ∈ Xn

and for all a1:n ∈ An. From here onwards we assume all environment models are
ε-positive.

Redundancy. We will also introduce a notion of regret, redundancy, which we
will later use to analyze the performance of our ensemble techniques. This is
defined as

− log2 μ(x1:n | a1:n)− min
ρ∈M

− log2 ρ(x1:n | a1:n)

for an arbitrary environment model μ, with respect to some class M of envir-
onment models. Our typical goal will be to show that the redundancy grows
o(n). Informally, such a result implies that the average performance of μ will
eventually match that of the best model in M as n gets large.

3 Ensemble Techniques

This section discusses a number of principled ways to construct an enriched en-
vironment model from two or more existing environment models. A competitive
analysis is given for each method, which justifies their usage in various situations.

3.1 Weighting / Model Averaging

A straightforward way to construct an adaptive environment model that can
perform nearly as well as any single model from a finite set of candidate envir-
onment models is to use Bayesian Model Averaging (also known as weighting).

Definition 2. Given a finite set of environment models M := {ρ1, ρ2, . . . } and
a prior weight wρ

0 > 0 for each ρ ∈ M such that
∑

ρ∈M wρ
0 = 1, the mixture

environment model is ξ(x1:n | a1:n) :=
∑

ρ∈M
wρ

0ρ(x1:n | a1:n).

The above can easily be shown (for example, see Proposition 1 in the work of
Veness et al. (2011)) to define a valid environment model. Because of this, we
can simply use

ξ(xn | ax<nan) = ξ(x1:n | a1:n) / ξ(x<n | a<n) (4)

to predict the next observation reward pair. Equation (4) can also be expressed
in terms of a convex combination of model predictions, with each model weighted
by its posterior probability. Formally,

ξ(xn | ax<nan) =

∑
ρ∈M

wρ
0ρ(x1:n | a1:n)

∑
ρ∈M

wρ
0ρ(x<n | a<n)

=
∑

ρ∈M
wρ

n−1ρ(xn | ax<nan),

344 J. Veness, P. Sunehag, and M. Hutter

where the posterior weight wρ
n−1 for environment model ρ is given by

wρ
n−1 :=

wρ
0ρ(x<n | a<n)∑

ν∈M
wν

0ν(x<n | a<n)
. (5)

This method is justified whenever there exists a model ρ∗ ∈ M that predicts
well, since

− log2 ξ(x1:n | a1:n) = − log2
∑

ρ∈M
wρ

0ρ(x1:n | a1:n) ≤ − log2 w
ρ∗
0 −log2 ρ∗(x1:n | a1:n), (6)

which implies that we suffer constant redundancy when using ξ in place of ρ∗.

Algorithm. The weights specified by Equation (5) can be maintained in O(|M|)
time and space by using the identity ρ(x1:n | a1:n) = ρ(x<n | a<n)ρ(xn | ax<na)
to incrementally maintain the probability of the data under each environment
model. Note however that in some special cases, more efficient techniques exist
with time complexity sublinear in |M|. One example is Context Tree Weight-
ing (Willems et al., 1995), which was used as the basis for our previous AIXI
approximations (Veness et al., 2010, 2011).

3.2 Switching / Tracking

While weighting provides an easy way to combine models, as an ensemble method
it is somewhat limited in that it only guarantees performance in terms of the best
single model in M. It is easy to imagine situations where this would be insuffi-
cient in practice. Instead, one could consider weighting over sequences of models
chosen from a fixed base class M. Variants of this fundamental idea have been
considered numerous times in the literature, for example by Volf and Willems
(1998); Herbster and Warmuth (1998) and Erven et al. (2008). We now show
how these ideas can be cast into our probabilistic agent setting, by describing an
adaptation of the FixedShare algorithm (Herbster and Warmuth, 1998). We
also provide a short competitive analysis.

Definition 3. Given a finite set M = {ρ1, . . . , ρN}, N > 1, of environment
models and a switching sequence α = α2α3 . . . ∈ [0, 1]∞, for all n ∈ N, for all
x1:n ∈ Xn, the switching environment model with respect to M and α is defined
as

τα(x1:n | a1:n) :=
∑

i1:n∈In(M)

wα(i1:n)

n∏

k=1

ρik(xk | ax<kak) (7)

where In(M) := {1, 2, . . . , N}n and the prior over model sequences is recursively
defined by

wα(i1:n) :=

⎧
⎪⎨

⎪⎩

1 if i1:n = ε
1
N

if n = 1

wα(i<n)×
(
(1− αn)I[in = in−1] +

αn
N−1

I[in �= in−1]
)

otherwise,
(8)

On Ensemble Techniques for AIXI Approximation 345

Algorithm 1. SwitchMixture - τα(x1:n | a1:n)

Require: A finite model classM = {ρ1, . . . , ρN} such that N > 1
Require: A weight vector (w1, . . . , wN) ∈ R

N , with wi =
1
N

for 1 ≤ i ≤ N
Require: A switching sequence α2, α3, . . . , αn

1: r ← 1
2: for i = 1 to n do

3: r ←
N∑

j=1

wjρj(xi | ax<iai)

4: k ← (1− αi+1)N − 1

5: for j = 1 to N do
6: wj ← 1

N−1
[αi+1r + kwjρj(xi | ax<iai)]

7: end for
8: end for
9: return r

Now, using the same argument to bound − log2 τα(x1:n | a1:n) as we did in Equa-
tion 6, we see that the inequality

− log2 τα(x1:n | a1:n) ≤ − log2 wα(i1:n)− log2 ρi1:n(x1:n | a1:n) (9)

holds for any sequence of models i1:n ∈ In(M), where ρi1:n(x1:n | a1:n) denotes
the product

∏n
k=1 ρik(xk | ax<kak) of the sequence of conditional probabilities

defined by i1:n. Next, we state an upper bound on − log2 wα(i1:n) that holds for
any sequence of model indices.

Lemma 1. Given a base model class M and a decaying switch rate αt :=
1
t for

t ∈ N,
− log2 wα(i1:n) ≤ (m(i1:n) + 1) (log2 |M|+ log2 n) ,

for all i1:n ∈ In(M), where m(i1:n) :=
∑n

k=2 I[ik �= ik−1] denotes the number of
switches in i1:n.

Proof. See the work of Veness et al. (2012).

Combining Equation 9 with Lemma 1 gives the following bound.

Theorem 1. Given a base model class M and switch rate αt :=
1
t for t ∈ N,

for all n ∈ N, for all i1:n ∈ In(M),

− log2 τα(x1:n | a1:n) ≤ (m(i1:n) + 1) [log2 |M|+ log2 n]− log2 ρi1:n(x1:n | a1:n).

Thus if there exists an environment model ρi1:n with m(i1:n) � n that predicts
well, then τα will also predict well. In the case where the best sequence of models
satisfies m(i1:n) = 0, Theorem 1 gives an extra cost of log2 n bits compared to
a uniform weighting. Assuming both bounds are tight, log2 n can be thought of
as the cost of using switching in situations where weighting would have been
sufficient.

346 J. Veness, P. Sunehag, and M. Hutter

Algorithm. A direct computation of Equation 7 is intractable. For example,
given a history ax1:n and a model class M, the sum in Equation 7 would re-
quire |M|n additions. Fortunately, the structured nature of the model sequence
weights wα(i1:n) can be exploited to derive Algorithm 1. The same argument
used to derive the correctness of this procedure for the sequence prediction set-
ting (Veness et al., 2012) can be easily generalised to our agent setting. As-
suming that every conditional probability can be computed in constant time,
Algorithm 1 runs in Θ(n|M|) time and uses only Θ(|M|) space. Furthermore,
only Θ(|M|) work is required to process each new symbol.

3.3 Convex Mixing

This next section introduces convex mixing, a technique which, unlike weighting
or switching, can sometimes be expected to perform better than any single model
or sequences thereof from some base class of environment models M. The key
insight is to consider arbitrary convex combinations of the individual model
predictions at each time step. More formally, given a set of base environment
modelsM, consider the product of an arbitrary sequence of convex combinations
of the conditional probabilities determined by each environment model.

Definition 4. Given a finite set of ε-positive environment models M and a
sequence of weights λ := {λ1, λ2, . . . }, where each λi := { λρ

i }ρ∈M such that
λρ
i ∈ R, λρ

i ≥ 0 and
∑

ρ∈M λρ
i = 1 for i ∈ N, the convex environment model with

respect to λ is defined as

νλ(x1:n | a1:n) :=
n∏

i=1

∑

ρ∈M
λρ
i ρ(xi | ax<iai). (10)

The above can easily be seen to define a valid chronological measure.

Proposition 1. A convex environment model is an environment model.

Proof. As each environment model ρ ∈ M is ε-positive, every conditional probab-
ility ρ(xk | ax<kak) is well defined. Therefore we just need to check that Equation
(1) is satisfied. Now, ∀a1:n ∈ An and ∀x<n ∈ Xn−1 observe that

∑

xn∈X
νλ(x1:n | a1:n) =

∑

xn∈X

n∏

i=1

∑

ρ∈M
λρ
i ρ(xi | ax<iai)

= νλ(x<n | a<n)
∑

xn∈X

∑

ρ∈M
λρ
n ρ(xn | ax<nan)

= νλ(x<n | a<n)
∑

ρ∈M
λρ
n

∑

xn∈X
ρ(xn | ax<nan)

= νλ(x<n | a<n)
∑

ρ∈M
λρ
n

= νλ(x<n | a<n),

On Ensemble Techniques for AIXI Approximation 347

Algorithm 2. ConvexMixture - νλ(x1:n|a1:n)

Require: A history ax1:n ∈ (A× X)n, n ∈ N

Require: An initial weight vector λ1 ∈ Δ|M|−1

Require: A sequence η1, η2, . . . , ηn, of positive, real-valued step sizes

1: r ← 1
2: for i = 1 to n do
3: r ← r ×∑

ρ∈M λρ
i ρ(xi | ax<iai)

4: λi+1 = SimplexProject(λi − ηi∇�i(λi ; xi))
5: end for
6: return r

which is what we need. The first three steps follow from Equation (10) and stand-
ard calculations, the fourth step follows from Equation (2), and the final step
follows since

∑
ρ∈M λρ

n = 1 by definition.

Adaptive Convex Mixing. We will now show how to apply the framework of
online convex programming (Zinkevich, 2003; Hazan, 2006) to dynamically (i.e.

as a function of ax1:n) produce a sequence of weights λ̂ whose redundancy

− log2 νλ̂(x1:n | a1:n)− min
λ∗∈Δ|M|−1

⎧
⎨

⎩− log2

n∏

i=1

∑

ρ∈M
λρ
∗ρ(xi | ax<iai)

⎫
⎬

⎭ (11)

grows O(
√
n) with respect to the best set of constant weights in Δ|M|−1, for all

n ∈ N and for all x1:n ∈ Xn, where Δk denotes the standard k-simplex. This
can be considered as an alternative to weighting over the probability simplex,
which will invariably require more restrictive assumptions on the environment
model in order to gain computational tractability.

To begin with, we require a sequence of history dependent convex loss func-
tions. These can be obtained by noticing that

− log2 νλ(x1:n | a1:n) =
n∑

i=1

− log2
∑

ρ∈M
λρ
i ρ(xi | ax<iai),

which lets us naturally define the loss function at time n ∈ N to be

�n(λn ; ax1:n) := − log2
∑

ρ∈M
λρ
n ρ(xn | ax<nan).

The next proposition shows us that this class of loss functions is convex.

Proposition 2. ∀n ∈ N, ∀ax1:n ∈ (A×X)n, �n(· ; ax1:n) is convex.

Proof. Denote gn(λ) :=
∑

ρ∈M λρ
n ρ(xn | ax<nan) and h(x) := − log2(x). First

observe that as a linear function, gn is concave. Also, note that the extended-
value extension of h, defined by

h̃(x) =

{− log2 x if x ∈ (0,∞],
∞ otherwise

348 J. Veness, P. Sunehag, and M. Hutter

Algorithm 3. SimplexProject(w)

Require: A vector w = (w1, . . . , wd) ∈ R
d for d ≥ 2

1: i = 1, s = −1
2: y ← SortDescending(w1, . . . , wd)

3: loop
4: s = s+ yi
5: r = s/i
6: if i = d or r ≥ yi−1 then
7: t← r
8: break loop
9: end if
10: i← i+ 1
11: end loop

12: for i = 1 to d do
13: wi ← max(0, wi − t)
14: end for

15: return w

is non-increasing on R. Therefore, since h is convex, it follows (see Section 3.2.4
of (Boyd and Vandenberghe, 2004)) that for all n ∈ N, �n(·, ax1:n) is convex.

The gradient ∇�n(λn ; ax1:n) of the loss with respect to λn can now be determ-
ined by repeatedly using the identity

∂�n
∂λρ

n
=

−ρ(xn | ax<nan)

ln 2
∑

ν∈M λν
n ν(xn | ax<nan)

,

for all ρ ∈ M, to construct the relevant |M|-dimensional column vector. Note
that due to the ε-positive assumption, we can bound each coefficient in the
gradient by

∣∣∣∣
−ρ(xn | ax<nan)

ln 2
∑

ν∈M λν
n ν(xn | ax<nan)

∣∣∣∣ ≤
1

ln 2
∑

ν∈M λν
nε

=
1

ε ln 2
,

which implies that

‖∇�n(λn ; ax1:n)‖2 ≤
√

|M| 1

ε ln 2
. (12)

Theoretical Analysis. Since we have cast our problem into the framework of
online convex programming, the argument of Zinkevich (2003) can be used to
state a redundancy bound for convex environment models. This analysis assumes
the existence of a known upper bound G := sup1≤i≤n ||∇li(λi; ax1:i)||2 on the
l2-norm of the gradients as well as on the diameter D := maxc1,c2∈C ‖c1 − c2‖2
of the convex set (the simplex for us) that we perform the optimization over.
The result, formulated by Hazan (2006) in Theorem 2.1 (page 12), says that by
setting ηi =

D
G
√
i
, the cumulative regret after n steps is bounded by 3GD

√
n.

On Ensemble Techniques for AIXI Approximation 349

Theorem 2. Using Algorithm 2 with a step size of ηi =
ε ln 2√

i
for 1 ≤ i ≤ n,

max
λ∗∈Δ|M|−1

⎧
⎨

⎩log2

n∏

i=1

∑

ρ∈M
λρ
∗ρ(xi | ax<iai)

⎫
⎬

⎭− log2 νλ̂(x1:n | a1:n) ≤ 3|M|√n

ε ln 2

Proof. The result follows by using Proposition 2, the fact that the diameter D of
Δ|M|−1 is

√|M|, the bound (12) that gives us G and the theorem by Zinkevich
(2003) as formulated by Hazan (2006) in Theorem 2.1.

Algorithm. Algorithm 2 shows how to efficiently compute a convex mixture en-
vironment. It uses the notation λi to compactly denote the vector (λρ1

i , . . . λ
ρ|M|
i)

formed from the weights of each environment model in M at time i. The
subroutine SimplexProject projects an arbitrary vector in R

|M| onto the
closest (in terms of Euclidean Distance) point inside the probability simplex
Δ|M|−1. The pseudocode for this routine, derived from the technique presented
by Chen and Ye (2011), is given in Algorithm 3; it runs in O(|M| log |M|) time.
The SortDescending subroutine in Algorithm 3 returns a vector y whose
components y1, . . . , yd are a permutation of the components of the input vec-
tor satisfying y1 ≥ y2 · · · ≥ yd. The overall complexity of the algorithm (not
including the cost of running the models in M) is O(n|M| log |M|), and can be
computed incrementally using O(|M| log |M|) time to process each percept.

3.4 A Second Order Method

Additionally, we can exploit a stronger property of our class of loss functions to
describe a more computationally demanding algorithm with better redundancy
behaviour. To do this, we begin by showing that our class of loss functions is
α-exp-concave. Recall that a function f is said to be α-exp-concave for a real
α > 0 if the function exp{−αf(·)} is concave.

Proposition 3. ∀n ∈ N, ∀ax1:n ∈ (A×X)n, �n(· ; ax1:n) is 1-exp-concave.

Proof. ∀n ∈ N, ∀ax1:n ∈ (A×X)n, observe that

exp{−α �n(λn ; ax1:n)} =

⎛

⎝
∑

ρ∈M
λρ
n ρ(xn | ax<nan)

⎞

⎠
α

.

Thus when α = 1, exp{−α �n(· ; ax1:n)} is a convex combination of conditional
probabilities, which is a concave function. Hence �n(· ; ax1:n) is 1-exp-concave.

This property, along with our previous upper bound on the Euclidean norm
of the gradient of the loss, permits us to use the second order OnlineNew-
tonStep method of Hazan et al. (2006) in place of Algorithm 2. The resultant
method would enjoy a guaranteed redundancy of O(log n), at the cost of a more
complicated implementation whose space complexity is O(|M|2), and whose per

350 J. Veness, P. Sunehag, and M. Hutter

time-step complexity is O(|M|2) plus the cost of solving a convex quadratic
program to compute a generalized projection onto the probability simplex. We
defer a more thorough empirical comparison between these two approaches to
future work.

4 Conclusion

This paper has described a number of principled ensemble techniques for univer-
sal reinforcement learning agents. Each technique works by efficiently combining
a set of existing environment models into a single, more powerful model. We ex-
pect these techniques to play an important role in future AIXI approximations.
For example, the MC-AIXI agent could be extended by using these techniques
to combine multiple instantiations of FAC-CTW, with each instantiation us-
ing a different notion of context as per Section 9.3 of the work of Veness et al.
(2011).

Acknowledgments. This work was supported by ARC grant DP0988049.

References

Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press (2004)
Chen, Y., Ye, X.: Projection Onto A Simplex. ArXiv e-prints 1101.6081 (January 2011)
Van Erven, T., Grünwald, P., De Rooij, S.: Catching Up Faster in Bayesian Model

Selection and Model Averaging. In: Platt, J.C., Koller, D., Singer, Y., Roweis, S.
(eds.) Advances in Neural Information Processing Systems 20, pp. 417–424. MIT
Press, Cambridge (2008)

Hazan, E.: Efficient algorithms for online convex optimization and their applications.
PhD thesis, Princeton, NJ, USA (2006)

Hazan, E., Kalai, A., Kale, S., Agarwal, A.: Logarithmic Regret Algorithms for Online
Convex Optimization. In: Lugosi, G., Simon, H.U. (eds.) COLT 2006. LNCS (LNAI),
vol. 4005, pp. 499–513. Springer, Heidelberg (2006)

Herbster, M., Warmuth, M.K.: Tracking the best expert. Machine Learning 32, 151–178
(1998)

Hutter, M.: Universal Artificial Intelligence: Sequential Decisions Based on Algorithmic
Probability. Springer (2005)

Mahoney, M.: Adaptive weighing of context models for lossless data compression. Tech-
nical report, Florida Institute of Technology (2005)

Mattern, C.: Mixing strategies in data compression. In: Data Compression Conference
(DCC), pp. 337–346 (2012)

Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press (1998)
Veness, J., Ng, K.S., Hutter, M., Silver, D.: Reinforcement learning via AIXI approx-

imation. In: Proc. 24th AAAI Conference on Artificial Intelligence, Atlanta, pp.
605–611. AAAI Press (2010)

Veness, J., Ng, K.S., Hutter, M., Uther, W., Silver, D.: A Monte Carlo AIXI approx-
imation. Journal of Artificial Intelligence Research 40, 95–142 (2011)

On Ensemble Techniques for AIXI Approximation 351

Veness, J., Ng, K.S., Hutter, M., Bowling, M.H.: Context Tree Switching. In: Data
Compression Conference (DCC), pp. 327–336 (2012)

Volf, P.A.J., Willems, F.M.J.: Switching between two universal source coding al-
gorithms. In: Data Compression Conference, pp. 491–500 (1998)

Willems, F.M.J., Shtarkov, Y.M., Tjalkens, T.J.: The Context Tree Weighting Method:
Basic Properties. IEEE Transactions on Information Theory 41, 653–664 (1995)

Zinkevich, M.: Online convex programming and generalized infinitesimal gradient as-
cent. In: ICML, pp. 928–936 (2003)

	On Ensemble Techniques for AIXI Approximation
	Introduction
	Background
	Ensemble Techniques
	Weighting / Model Averaging
	Switching / Tracking
	Convex Mixing
	A Second Order Method

	Conclusion
	References

