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Abstract

Algorithmic complexity provides a mathematical formal notion of string
complexity. Building on this, one arrives at mathematical “gold standard”
(though incomputable) definitions of randomness, induction, similarity
and even intelligence. These definitions can be turned into practical al-
gorithms by using common compressors to approximate the universal so-
lutions. One can consider the theories as idealized cognition with respect
to which one can aim to describe actual biological cognition by listing
biases and limitations that need to be defined relative to some normative
reference.
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1 Introduction

Our world contains ubiquitous examples of phenomena relying on compact rep-
resentations. Some examples are the genome (Krakauer, 2002), human cogni-
tion (Chater, 1996, 1999; Chater and Vitdnyi, 2003) and natural languages (Zipf,
1949; Piantadosi et al., 2011) which all involve efficient use of resources. They all
involve a compact code and a method of translating the code into a result. The
field of algorithmic complexity (Solomonoff, 1964; Kolmogorov, 1965; Chaitin,
1969), sometimes called Kolmogorov complexity (Li and Vitdnyi, 2008) or Al-
gorithmic Information Theory (Hutter, 2007a), provides a mathematical theory
for such phenomena and also answers some fundamental theoretical questions
about randomness (Martin-Lof, 1966) as well as telling us how to ideally make
predictions about the future (Solomonoff, 1964; Hutter, 2007b; Rathmanner and
Hutter, 2011). The translation mechanism mentioned above is called the refer-
ence machine and is formalized as a universal Turing machine (UTM) (Turing,



1936). The codes are programs for this machine in the form of a binary string.
The result is an output of another binary string. The length of the shortest pro-
gram that leads to a certain output string is called the Kolmogorov complexity
of this string and can be interpreted as a measure of information content as
well as of simplicity. A string with lower Kolmogorov complexity than another
is considered simpler with respect to the used reference machine since it can
be described more succinctly. If a string can be represented in a substantially
shorter form than its naive representation, it is called compressible, otherwise
incompressible. Incompressible strings look random and incompressibility is
now the established definition for what it means for an individual sequence to
be random. Furthermore, algorithmic complexity provides a way of defining a
priori probabilities (Solomonoff, 1964) for different strings, where simpler strings
are deemed more likely. From these a priori probabilities, one can derive condi-
tional probabilities for the future as observations are made. These predictions
will converge towards the true probabilities under mild assumptions on the gen-
erating process (Solomonoff, 1978; Hutter, 2007b). The assigned probabilities
depend on the choice of reference machine since the Kolmogorov complexity
differs by up to an additive constant for any pair of machines. This constant
can make a big difference initially while the effect vanishes asymptotically. Al-
gorithmic probability has also been combined with reinforcement learning and
sequential decision theory to define an intelligent agent denoted AIXI, thereby
introducing the field of universal artificial intelligence (Hutter, 2005). The agent
follows a policy that maximizes expected utility with respect to the algorithmic
probabilities and the utilities are defined as a sum of discounted rewards.

Algorithmic complexity has the drawback of being incomputable, though
successful algorithms have been devised using practical compressors to com-
pute crude approximations of the true complexity (Li et al., 2004; Cilibrasi and
Vitanyi, 2005; Veness et al., 2011). We will mention these as we outline the
basic theory in the next section and then we discuss the possibility of using
algorithmic complexity to provide an idealized theory of cognition. It has been
argued that this model of learning resolves the “poverty of stimulus” problem
with human language acquisition (Solomonoff, 1964; Perfors et al., 2006; Hsu
et al., 2013). The article ends with a summary in Section 4.

2 Basic Definitions and Results

In this section, we present the formal definitions and basic results in algorith-
mic complexity, algorithmic randomness, algorithmic probability and universal
artificial intelligence. We refer to Hutter (2005); Li and Vitanyi (2008) for com-
prehensive studies.

2.1 Algorithmic Complexity

Given a Universal Turing Machine (UTM) U, we define the Kolmogorov com-
plexity K (x) of a string « to be the length of the shortest program that makes



U output . Formally
K(z) = min{((p) : U(p) = o}

where £(p) is the length of p and U(p) = x means that U outputs x when given
program p on the input tape. That U outputs = can be given several precise
meanings. For example it can mean that z is printed on the output tape and then
the machine halts or that z is first printed and then the machine continues. K
is defined by demanding that U halts after = is printed but the other mentioned
variant as well as several others differs from K by at most O(log K). We here
state all properties (equalities and inequalities) only up to such a logarithmic
term and they, therefore, are true for a whole range of variations on K.

We also define the conditional complexity K (z|y) which is the length of the
shortest program to output x given y as side information. For example, if y is
a string that only differs from = by missing the last bit, then the program only
has to add that bit and such a program is very short even if x is a long complex
string by itself. K(z|y) tells us how much information there is in x that is not
in y. Furthermore, we define the joint complexity K (z,y) as the length of the
shortest program to output first x and then y. This can be much shorter than
the sum of the shortest programs to output the individual strings since they
can have much in common. It can, however, not be much longer than the sum
of those since one can always create a program that first runs p; that outputs
x and then runs ps that outputs y. The extra length is the length of the extra
code needed for the command to first run one program and then another and is
is at most a constant that does not depend on x,y,p; or ps. A profound result
that connects all the mentioned concepts is

K(z,y) = K(x) + K(ylz) = K(y) + K(zly)

where = should, as everywhere in this article, be interpreted as being up to a
logarithm and not as exact equality. This result can be rewritten as a property
that is called “symmetry of information”, stating that

K(z) - K(z[y) = K(y) — K(ylx).

This relation informally means that the amount of information y has about x
(K(x) — K(z|y)) is the same as what x has about y. The involved quantity
provides one measure of how similar they are but it is not formally a distance.
However, one can transform it to

K(z) — K(zly)

d(z,y) =1- K@.y)

which satisfies the distance measure properties and still says that two strings are
similar if they have a large amount of mutual information. Another alternative
to defining a distance is D(z,y) which is the length of the shortest program that
converts z to y and y to x. It can be proven (Bennett et al., 1998; Mahmud,
2009) that within a constant term

D(z,y) := max{ K (z[y), K(y|z)}



which means that it is about as hard converting both ways as the hardest of
the two directions. Both d and D are universal distance functions in the sense
that if two strings are close for any computable distance function (satisfying
some mild properties) then they are also close as measured by d or D. In other
words, d and D pick up any possible computable regularity between any two
given strings.

A normalized version of D called the normalized compression distance

-  max{K(z|y), K(y|x)}
D(z,y) = max{K(z), K(y)}

was introduced by Li et al. (2004) where it was also proven to be universal.
Furthermore, Li et al. (2004) introduced practical approximations using common
compressors, namely they defined the normalized compression distance by

Z(zy) — min{Z(z), Z(y)}
max{Z(x), Z(y)}

where Z(x) is the size of the compression of z. By using NC'D as a similarity
measure the authors of Li et al. (2004) inferred an evolutionary tree from DNA
sequences as well as the language tree from the text of the UN declaration of
human rights in 52 languages. Other applications include clustering of music
as well as finding the phylogenetic tree of chain letters (Bennett et al., 2003;
Cilibrasi and Vitédnyi, 2005). This method of clustering is sometimes referred
to as algorithmic clustering or clustering by compression.

NCD(z,y) :==

2.2 Algorithmic Randomness

Tt is clear that K (z) < £(x), where < is up to a logarithm as always (though
here true for a constant) and ¢(z) is the length of the string, since one can
write a program that says Print(z). The extra constant length is the Print
command. If there is no shorter program than this, i.e. K(z) > £(z) we say
that = is incompressible and random. The notion of randomness based on
incompressibility is also called Martin-Lof randomness (Martin-Lof, 1966) and
has been found to be similar to human perception of randomness (Griffiths and
Tenenbaum, 2003). Intuitively something is random if no regularities can be
found in the string.

2.3 Algorithmic Probability

Based on a chosen reference machine U, the algorithmic a priori probability of

a string «x is
M(z) = Z 2~
pU(p)=x
which can be interpreted as the probability that the string x is the output

from U if zeros and ones are placed by independent balanced coin flips on the
input tape. The sum of terms 2~4?) for all programs p (in a prefix free set of



programs) is upper bounded by 1, according to Kraft’s inequality. They do not
sum to exactly one and M is actually just a semi-measure though it can be
renormalized to a proper probability measure. Given any string x, one would
then say that the probability of the next bit being a one is

M(x1)

M(1|z) := M (20) < M(zl)’

M (x) is closely approximated by 27%(*), This is because much of the mass of

M(x) comes from the shortest program. Furthermore, one can prove (Li and
Vitdnyi, 2008) that if one samples a string from M, one will with high proba-
bility get a string of low complexity. This is in accordance with the principle
of favoring simplicity, which is often called Occam’s razor. Algorithmic com-
plexity and algorithmic probability provide a mathematical formalization of this
principle.

Sequence prediction. Ray Solomonoff developed a theory of sequence pre-
diction using M, including his “Prediction Error Theorem” (Solomonoff, 1978)
stating that
In(2)

2

Y w@)(M(O0lz) — p(0a))* < K (u)

ze{0,1}*

for any computable measure p. This implies, by rewriting the left-hand-side as
dieo D e()=j #(@) (M (Ofz) — u(0]x))?, that with p-probability one

M (zp|z129. . 20—1) = p(Tp|T122.. 20 1)

as n — oo and that using M we can learn any computable measure. How long
it takes depends on the complexity of the true measure.

Induction. If one is interested in finding the explanation for the data and not
only about predicting the future one needs to choose a program. The measure
M can be understood as a mixture of all computable sequences by choosing
prior probability Pr(p) = 2%) for the program p generating the sequence. The
minimum message length (Wallace and Boulton, 1968) (or minimum description
length (Rissanen, 1978)) approach chooses the program
p" :=argmin{/(p) : U(p) = «}
This is the least complex hypothesis that fits the observed data. The choice
can also be understood as maximizing the posterior probability Pr(p|d) =
Pr(d|p)Pr(p)/Pr(d). This latter expression also extends to having a prior over
classes of stochastic hypothesis where a trade-off between how well data fits the
hypothesis (i.e. log Pr(d|v)) and the prior probability log Pr(v) (that can be
based on algorithmic complexity (Hutter, 2005; Li and Vitényi, 2008)) is made
by choosing
v* := arg min{—(log Pr(d|v) + log Pr(v))}.



2.4 Intelligent Agents

In this section, we consider an agent (Russell and Norvig, 2010; Hutter, 2005)
that interacts with an environment through performing actions a; from a finite
set A and receives observations o; from a finite set O and rewards r; from a
finite set R C [0,1]. Let H = (A x O x R)* be the set of histories. A function
v:HxA— OxTRis called a deterministic environment. It is called a stochastic
environment if instead the resulting (o, r) is stochastic. A function 7 : H — A
is called a (deterministic) policy or an agent. The value function V is defined
based on geometric discounting by V;™(hy—1) = > ,=, 7'~ 'r; where the sequence
r; are the rewards achieved by following « from time step ¢ onwards in the
environment v after having seen h; 1 € H. If the environment is stochastic we
define V' using an expectation.

Given a countable class of environments M and strictly positive prior weights
w, for all v € M, the a-priori environment £ is defined by letting £(-) =
> w,r(-) and a rational agent (Hutter, 2005) is defined by following the policy

7" = argmax V" (¢)

where € is the empty initial history. In particular the AIXI agent (Hutter,
2005) is based on the same construction of a Solomonoff prior M as in the
sequence prediction case, by weighting each computable environment based on
how short implementations it has on the given reference machine. Though
the agent is incomputable, practical approximations exist, e.g. MC-AIXI-CTW
(Veness et al., 2011).

3 Cognition and Algorithmic Complexity

Human cognition is naturally very complex as it is an artifact of evolution.
However, it is still meaningful to try to identify some of the fundamental princi-
ples that are involved with some consistency. After all, cognition operates with
limited resources and has evolved to support survival. Cognitive science has
discovered many systematic biases (Kahneman et al., 1982) but a question is
biases from what ideal. The ideal is usually assumed to be rationality (Chater
and Oaksford, 1999; Tenenbaum et al., 2011) in the decision theoretic sense of
the word, i.e. expected utility maximization with respect to some a priori prob-
abilities. Another general principle is a preference for simplicity (Chater, 1996,
1999; Chater and Vitanyi, 2003). Starting with rationality and a preference for
simplicity, algorithmic complexity, as we have described in Section 2, provides
a formal “gold standard” theory for sequence prediction, choosing hypotheses,
judging similarity, deciding what is random and acting rationally.

Language acquisition. Noah Chomsky has famously argued (Chomsky, 2005)
that the “poverty of stimulus” makes the language learning observed in children
impossible without an innate grammar. The argument is centered around the
lack of negative examples. It has been argued that a rational simplicity-biased



approach, formalized using information theory, can in fact perform this task
(Solomonoff, 1964; Perfors et al., 2006; Hsu et al., 2013). This simplicity bias is
replacing the need for an innate grammar but can possibly be viewed as a soft
version of the same, i.e. a preference for certain syntax, based on what is judged
to be simple given the reference machine.

Sequential decision making. The AIXI agent (Hutter, 2005) is formalizing
the same combination of simplicity and rationality as in the sequence prediction
setting, for the sequential decision making setting. The sequential decision
setting, where you make a sequence of decisions that does affect the environment,
is far more complicated than performing inference from gathered data. In the
sequential setting you are gathering data as you act in the environment and to
gather useful data is important as well as achieving high immediate rewards.
The data you gather at one time point allows you to make better decisions later
on and receive more reward then. This is known as the exploration-exploitation
dilemma. A common method to deal with this when building reinforcement
learning agents is to introduce optimism into the agent (Szita and Lorincz,
2008; Sunehag and Hutter, 2012a). Optimism is also a principle that applies
broadly in human decision making (Weinstein, 1980) and a case can be made
that it should be considered another fundamental principle rather than a bias
to overcome. The AIXI agent can be modified (Sunehag and Hutter, 2012b)
to incorporate optimism in a manner consistent with multiple-prior expected
utility (Gilboa and Schmeidler, 1989), though reversing pessimism to optimism.
These agents have better guarantees for asymptotic optimality, consistent with
the empirical observation that the practical MC-AIXI-CTW agent needs more
exploration heuristically added for good performance.

Two other issues are the choice of discount function and the choice of refer-
ence machine. In this article we described AIXI based on geometric discounting
while the fully general formulation can be found in Hutter (2005). Humans often
display a more hyperbolic than geometric discount scheme (Laibson, 1997). The
geometric discount is often considered preferable because it is time consistent
(Lattimore and Hutter, 2014).

Finally, it has been discussed (Li and Vitdnyi, 2008) what a natural choice of
reference machine would be. The choice will matter as long as we are considering
a limited amount of data while asymptotically it does not. An agent based on
cellular automata might have a very different sense of what is simple than a
human does. The concept of a natural Turing machine could be interpreted
as a reference machine that provides a notion of simplicity that agrees with
human judgement. The computer programming languages we create to make
it easier for us to program computers, capture to some extent a human notion
of simplicity. The attempts at finding a more objective notion of a natural
Turing machine have so far failed and such a choice might not exist (Miiller,
2010). A recently suggested alternative (Sunehag and Hutter, 2014) is to learn
a reference machine for which Occams razor is true as a proposition about the
relevant world.

Defining and measuring intelligence. Given a reference machine and the



corresponding universal mixture environment &, the quantity V" has been con-
sidered as a universal intelligence measure (Legg and Hutter, 2007). It has much
in common with more narrow standard human I.Q. tests where a person’s task
is to see patterns in e.g. a sequences of numbers and guess their continuation.
In principle, one can argue for any next number and find intricate mathemati-
cal patterns motivating very different answers. What makes the answers well-
defined is that there is an implicit simplicity bias. The continuation should be
based on the simplest pattern. If one can find the simplest program explaining
what has so far been observed from an unknown environment and take actions
as if that is the true environment, one receives high reward in expectation and
hence, a high intelligence score when measured by V{". This universal measure
can be seen as a more complex generalization of human I.Q. tests which have
actually been successfully attacked by machine intelligence (Sanghi and Dowe,
2003). This achievement has lead to the conclusion that current 1.Q). tests are
too narrow to measure general machine intelligence which can be taylored to
the task (Dowe and Hernndez-Orallo, 2012). An approximation to the univer-
sal test has recently been introduced (Legg and Veness, 2011) and applied to
test a number of agents and even more recently a large class of challenging
environments has been created using Atari games (Bellemare et al., 2013).

4 Summary

Algorithmic complexity provides a formalization of the notions of simplicity and
complexity. It leads up to a formal universal theory of sequence prediction, in-
duction, similarity and randomness based on simplicity-biased rationality, prin-
ciples suggested as idealized human cognition. Further, for the more difficult
sequential decision making setting algorithmic complexity can again together
with rationality be used to define a universal intelligent agent as well as a uni-
versal measure and definition of intelligence. For the sequential decision making
setting, there are indications that further principles like optimism should be
considered fundamental and not unwanted biases. Practical approximations of
the otherwise incomputable theories discussed have been built based on com-
mon compression algorithms and have been successfully used for a range of
practical applications including clustering of sequence data like DNA, text and
music. Further, algorithmic complexity has also simplified proofs in mathemat-
ics and resolved philosophical problems including “problems of induction” in
the philosophy of science and the problem with “Maxwell’s demon” in statistical
mechanics.
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