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Abstract
The development of Artificial General Intelligence
(AGI) promises to be a major event. Along with its
many potential benefits, it also raises serious safety
concerns. The intention of this paper is to provide
an easily accessible and up-to-date collection of
references for the emerging field of AGI safety. A
significant number of safety problems for AGI have
been identified. We list these, and survey recent re-
search on solving them. We also cover works on
how best to think of AGI from the limited knowl-
edge we have today, predictions for when AGI will
first be created, and what will happen after its cre-
ation. Finally, we review the current public policy
on AGI.

1 Introduction
An Artificial General Intelligence (AGI) is an AI system that
equals or exceeds human intelligence in a wide variety of
cognitive tasks. This is in contrast to today’s AI systems
that solve only narrow sets of tasks. Future AGIs may pose
significant risks in addition to their many potential benefits
[Bostrom, 2014]. The goal of this paper is to survey the liter-
ature relevant to these risks and their prevention.

Why study the safety of AGI before it exists, and before
we even know whether it will ever exist? There are at least
two types of reasons for this. The first is pragmatic. If AGI is
created, and we do not know how to control it, then the out-
come could be catastrophic [Bostrom, 2014]. It is customary
to take precautions not only against catastrophes we know
will happen, but also against catastrophes that have only a
slight chance of occurring (for example, a city may decide
to build earthquake safe buildings, even if the probability of
an earthquake occurring is fairly low). As discussed in Sec-
tion 3, AGI has more than a small probability of occurring,
and it can cause significant catastrophes.

The second reason is scientific. Potential future AGIs
are theoretically interesting objects, and the question of how
humans can control machines more intelligent than them-
selves is philosophically stimulating. Section 2 summarizes
progress made on understanding AGI, and Sections 4 and 5
consider ways in which this understanding has helped us to
identify problems and generate solutions.

An extensive survey of the AGI safety literature was pre-
viously made by Sotala and Yampolskiy [2014]. Since then,
the field has grown significantly. More up-to-date references
are provided by this article, and by a number of recent re-
search agendas and problem collections [Russell et al., 2016;
Amodei et al., 2016; Leike et al., 2017; Stoica et al., 2017;
Soares and Fallenstein, 2017; Taylor et al., 2016]. A recent
inventory of AGI projects and their attitudes towards ethics
and safety also contributes to an overview of AGI safety re-
search and attitudes [Baum, 2017].

This paper is structured as follows. Progress on how to
think about yet-to-be-designed future AGI’s is described in
the first section (Section 2). Based partly on this understand-
ing, we next survey predictions for when AGI will be created
and what will happen after its creation (Section 3). We list
and discuss identified AGI safety problems (Section 4), as
well as proposals for solving or mitigating them (Section 5).
Finally, we review the current public policy on AGI safety
issues (Section 6), before making some concluding remarks
(Section 7).

2 Understanding AGI
A major challenge for AGI safety research is to find the right
conceptual models for plausible AGIs. This is especially
challenging since we can only guess at the technology, algo-
rithms, and structure that will be used. Indeed, even if we had
the blueprint of an AGI system, understanding and predicting
its behavior might still be hard: Both its design and its behav-
ior could be highly complex. Nonetheless, several abstract
observations and predictions are possible to make already at
this stage.

2.1 Defining Intelligence
Legg and Hutter [2007] propose a formal definition of intelli-
gence based on algorithmic information theory and the AIXI
theory [Hutter, 2005]. They compare it to a large number of
previously suggested definitions [Legg, 2007a]. Informally,
their definition states that:

“Intelligence measures an agent’s ability to achieve
goals in a wide range of environments.”

The definition is non-anthropomorphic, meaning that it can be
applied equally to humans and artificial agents. All present-
day AIs are less intelligent than humans according to this def-
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inition, as each AI is unable to achieve goals beyond a rather
narrow domain. These domains can be for example ATARI
environments [Mnih et al., 2015, 2016; Hessel et al., 2017],
board-games [Silver et al., 2016, 2017b,a], car-driving [Bo-
jarski et al., 2016; Huval et al., 2015]. However, a trend to-
wards greater generality can be observed, with e.g. car driving
being a more general task than Chess, and AlphaZero simul-
taneously achieving state of the art performance on several
challenging board games [Silver et al., 2017a].

Following the Legg-Hutter definition, we may expect that
a future, super-human AGI will be able to achieve more goals
in a wider range of environments than humans. The most in-
telligent agent according to this definition is AIXI, which has
been studied both mathematically and empirically; see Everitt
and Hutter [2018b]; Leike [2016]; Hutter [2012b, 2005] for
surveys. Safety work derived from AIXI is reviewed mostly
in Section 5.

The Legg-Hutter intelligence definition measures what
matters for control. The more intelligent an agent is, the more
control it will have over aspects of the environment relating
to its goals. If two agents with significantly different Legg-
Hutter intelligence have conflicting goals in a shared environ-
ment, then the more intelligent of the two will typically suc-
ceed and the less intelligent fail. This points to the risks with
increasingly intelligent AGIs: If their goals are not aligned
with ours, then there will likely be a point where their goals
will be achieved to the loss of ours [Russell, 2016].

2.2 Orthogonality
Bostrom’s [2012; 2014] orthogonality thesis states that essen-
tially any level of intelligence is compatible with any type of
goal. Thus it does not follow, as is sometimes believed, that a
highly intelligent AGI will realize that a simplistic goal such
as creating paperclips or computing decimals of π is dumb,
and that it should pursue something more worthwhile such as
art or human happiness. Relatedly, Hume [1738] argued that
reason is the slave of passion, and that a passion can never
rationally be derived. In other words, an AGI will employ
its intelligence to achieve its goals, rather than conclude that
its goals are pointless. Further, if we want an AGI to pursue
goals that we approve of, we better make sure that we de-
sign the AGI to pursue such goals: Beneficial goals will not
emerge automatically as the system gets smarter.

2.3 Convergent Instrumental Goals
The orthogonality thesis holds for the end goals of the system.
In stark contrast, the instrumental goals will often coincide
for many agents and end goals [Omohundro, 2008; Bostrom,
2012]. Common instrumental goals include:
• Self-improvement: By improving itself, the agent be-

comes better at achieving its end goal.
• Goal-preservation and self-preservation: By ensuring

that future versions of itself pursue the same goals, the
end goal is more likely to be achieved.
• Resource acquisition: With more resources, the agent

will be better at achieving the end goals.
Exceptions exist, especially in game-theoretic situations
where the actions of other agents may depend on the agent’s

goals or other properties [LaVictoire et al., 2014]. For exam-
ple, an agent may want to change its goals so that it always
chooses to honor contracts. This may make it easier for the
agent to make deals with other agents.

2.4 Formalizing AGI
Bayesian, history-based agents have been used to formal-
ize AGI in the so-called AIXI-framework [Hutter 2005; also
discussed in Section 2.1]. Extensions of this framework
have been developed for studying goal alignment [Everitt and
Hutter, 2018a], multi-agent interaction [Leike et al., 2016],
space-time embeddedness [Orseau and Ring, 2012], self-
modification [Orseau and Ring, 2011; Everitt et al., 2016],
observation modification [Ring and Orseau, 2011], self-
duplication [Orseau, 2014a,b], knowledge seeking [Orseau,
2014], decision theory [Everitt et al., 2015], and death and
suicide [Martin et al., 2016].

Some aspects of reasoning are swept under the rug by AIXI
and Bayesian optimality. Importantly, probability theory as-
sumes that agents know all the logical consequences of their
beliefs [Gaifman, 2014]. An impressive model of logical
non-omniscience has recently been developed by Garrabrant
[2016, 2017]. Notably, Garrabrant’s theory avoids Gödelian
obstacles for agents reasoning about improved versions of
themselves [Fallenstein and Soares, 2014]. There is also hope
that it can provide the foundation for a decision theory for
logically uncertain events, such as how to bet on the 50th digit
of π before calculating it.

2.5 Alternate Views
Drexler [private communication, 2017] argues that an AGI
does not need to be an agent that plans to achieve a goal.
An increasingly automatized AI research and development
process where more and more of AI development is being
performed by AI tools can become super-humanly intelligent
without having any agent subcomponent. Avoiding to imple-
ment goal-driven agents that make long-term plans may avoid
some safety concerns. Drexler [2015] outlines a theoretical
idea for how to keep AIs specialized. Relatedly, Weinbaum
and Veitas [2016], criticize the (rational) agent assumption
underpinning most AGI theory.

However, Bostrom [2014, Ch. 10] and Gwern [2016],
worry that the incentives for endowing a specialized tool AI
with more general capabilities will be too strong. The more
tasks that we outsource to the AI, the more it can help us.
Thus, even if it were possible in theory to construct a safe
tool AI, we may not be able to resist creating an agent AGI,
especially if several competing organizations are developing
AI and trying to reap its benefits. It is also possible that a
system of tool AIs obtain agent properties, even if all of its
subcomponents are specialized tool AIs.

3 Predicting AGI Development
Based on historical observations of economical and techno-
logical progress, and on the growing understanding of poten-
tial future AGIs described in Section 2, predictions have been
made both for when the first AGI will be created, and what
will happen once it has been created.
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3.1 When Will AGI Arrive?
There is an ongoing and somewhat heated debate about when
we can expect AGI to be created, and whether AGI is possi-
ble at all or will ever be created. For example, by extrapo-
lating various technology trends until we can emulate a hu-
man brain, Kurzweil [2005] argues that AGI will be created
around 2029. Chalmers [2010] makes a more careful philo-
sophical analysis of the brain-emulation argument for AI, and
shows that it defeats and/or avoids counter arguments made
by Lucas [1961], Dreyfus [1972], Searle [1980], and Penrose
[1994]. Chalmers is less optimistic about the timing of AGI,
and only predicts that it will happen within this century.

Surveys among AI researchers have found median predic-
tions for AGI between 2040 and 2061, with estimates varying
widely, from never to just a few years into the future [Baum et
al., 2011; Müller and Bostrom, 2016; Grace et al., 2017]. Al-
gorithmic progress have been tracked by Grace [2013], Eck
ersley and Nasser [2018], and AI Impacts [2018b], and the
costs of computing have been tracked by AI Impacts [2018b].
Notably, the computing power available for AI has doubled
roughly every 3-4 months in recent years [Amodei and Her-
nandez, 2018]. A new MIT course on AGI shows that the
AGI prospect is becoming more mainstream [Fridman, 2018].
Stanford has a course on AI safety [Sadigh, 2017]. Jilk [2017]
argues that an AGI must have a conceptual-linguistic faculty
in order to be able to access human knowledge or interact ef-
fectively with the world, and that the development of systems
with conceptual-linguistic ability can be used as an indicator
of AGI being near.

3.2 Will AGI Lead to a Technological Singularity?
As explained in Section 2.3, one of the instrumental goals
of almost any AGI will be self-improvement. The greater
the improvement, the likelier the end goals will be achieved.
This can lead to recursive self-improvement, where a self-
upgraded AGI is better able to find yet additional upgrades,
and so on. If the pace of this process increases, we
may see an intelligence explosion once a critical level of
self-improvement capability has been reached [Good, 1966;
Vinge, 1993; Kurzweil, 2005; Yudkowsky, 2008; Hutter,
2012a; Bostrom, 2014]. Already John von Neumann have
been quoted calling this intelligence explosion a singularity
[Ulam, 1958]. Singularity should here not be understood
in its strict mathematical sense, but more loosely as a point
where our models break.

Some counter arguments to the singularity have been struc-
tured by Walsh [2016], who argues that an intelligence explo-
sion is far from inevitable:

• Intelligence measurement: The singularity predicts an
increasingly rapid development of intelligence. How-
ever, it is not quite clear how we should measure intel-
ligence [Hutter, 2012]. A rate of growth that looks fast
or exponential according to one type of measurement,
may look ordinary or linear according to another mea-
surement (say, the log-scale).

• Fast thinking dog: No matter how much we increase the
speed at which a dog thinks, the dog will never beat a
decent human at chess. Thus, even if computers keep

getting faster, this alone does not entail their ever be-
coming smarter than humans.

• Anthropocentric: Proponents of the singularity often be-
lieves that somewhere around the human level of intel-
ligence is a critical threshold, after which we may see
quick recursive self-improvement. Why should the hu-
man level be special?

• Meta-intelligence, diminishing returns, limits of intelli-
gence, computational complexity: It may be hard to do
self-improvement or be much smarter than humans due
to a variety of reasons, such as a fundamental (physical)
upper bound on intelligence or difficulty of developing
machine learning algorithms.

These arguments are far from conclusive, however. In Life
3.0, Tegmark [2017] argues that AGI constitutes a third stage
of life. In the first stage, both hardware and software is
evolved (e.g. in bacteria). In the second stage, the hardware
is evolved but the software is designed. The prime exam-
ple is a human child who goes to school and improves her
knowledge and mental algorithms (i.e. her software). In the
third stage of life, both the software and hardware is designed,
as in an AGI. This may give unprecedented opportunities for
quick development, countering the anthropocentric argument
by Walsh. In relation to the limits of intelligence arguments,
Bostrom [2014] argues that an AGI may think up to a million
times faster than a human. This would allow it to do more
than a millennium of mental work in a day. Such a speed
difference would make it very hard for humans to control
the AGI. Powerful mental representations may also allow an
AGI to quickly supersede human intelligence in quality So-
tala [2017], countering the fast-thinking dog argument. The
possibility of brain-emulation further undermines the fast-
thinking dog argument. Yampolskyi [2017] also replies to
Walsh’s arguments.

Kurzweil’s [2005] empirical case for the singularity has
been criticized for lack of scientific rigor [Modis, 2006].
Modis [2002] argues that a logistic function fits the data bet-
ter than an exponential function, and that logistic extrapola-
tion yields that the rate of complexity growth in the universe
should have peaked around 1990.

In conclusion, there is little consensus on whether and
when AGI will be created, and what will happen after its cre-
ation. Anything else would be highly surprising, given that
no similar event have previously occurred. Nonetheless, AGI
being created within the next few decades and quickly super-
seding human intelligence seems like a distinct possibility.

4 Problems with AGI
Several authors and organizations have published research
agendas that identify potential problems with AGI. Russell
et al. [2016] and the Future of Life Institute (FLI) take the
broadest view, covering societal and technical challenges in
both the near and the long term future. Soares and Fallen-
stein [2017] at the Machine Intelligence Research Institute
(MIRI) focus on the mathematical foundations for AGI, in-
cluding decision theory and logical non-omniscience. Several
subsequent agendas and problem collections try to bring the
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sometimes “lofty” AGI problems down to concrete machine
learning problems: Amodei et al. [2016] at OpenAI et al.,
Leike et al. [2017] at DeepMind, and Taylor et al. [2016] also
at MIRI. In the agenda by Stoica et al. [2017] at UC Berkeley,
the connection to AGI has all but vanished. For brevity, we
will refer to the agendas by the organization of the first au-
thor, with MIRI-AF the agent foundations agenda by Soares
and Fallenstein [2017] and MIRI-ML the machine learning
agenda by [Taylor et al., 2016]. Figure 1 shows some connec-
tions between the agendas. Figure 1 also makes connections
to research done by other prominent AGI safety institutions:
Oxford Future of Humanity Institute (FHI), Australian Na-
tional University (ANU), and Center for Human-Compatible
AI (CHAI).

Some clusters of problems appear in multiple research
agendas:

• Value specification: How do we get an AGI to work to-
wards the right goals? MIRI calls this value specifica-
tion. Bostrom [2014] discusses this problem at length,
arguing that it is much harder than one might naively
think. Davis [2015] criticizes Bostrom’s argument, and
Bensinger [2015] defends Bostrom against Davis’ criti-
cism. Reward corruption, reward gaming, and negative
side effects are subproblems of value specification high-
lighted in the DeepMind and OpenAI agendas.

• Reliability: How can we make an agent that keeps pur-
suing the goals we have designed it with? This is called
highly reliable agent design by MIRI, involving deci-
sion theory and logical omniscience. DeepMind consid-
ers this the self-modification subproblem.

• Corrigibility: If we get something wrong in the design
or construction of an agent, will the agent cooperate in
us trying to fix it? This is called error-tolerant design by
MIRI-AF and corrigibility by Soares et al. [2015]. The
problem is connected to safe interruptibility as consid-
ered by DeepMind.

• Security: How to design AGIs that are robust to ad-
versaries and adversarial environments? This involves
building sandboxed AGI protected from adversaries
(Berkeley), and agents that are robust to adversarial in-
puts (Berkeley, DeepMind).

• Safe learning: AGIs should avoid making fatal mistakes
during the learning phase. Subproblems include safe ex-
ploration and distributional shift (DeepMind, OpenAI),
and continual learning (Berkeley).

• Intelligibility: How can we build agent’s whose deci-
sions we can understand? Connects explainable deci-
sions (Berkeley) and informed oversight (MIRI). Deep-
Mind is also working on these issues, see Section 5.5
below.

• Societal consequences: AGI will have substantial legal,
economic, political, and military consequences. Only
the FLI agenda is broad enough to cover these issues,
though many of the mentioned organizations evidently
care about the issue [Brundage et al., 2018; DeepMind,
2017].

There are also a range of less obvious problems, which
have received comparatively less attention:

• Subagents: An AGI may decide to create subagents
to help it with its task [Soares et al. 2015, Orseau,
2014a,b]. These agents may for example be copies of the
original agent’s source code running on additional ma-
chines. Subagents constitute a safety concern, because
even if the original agent is successfully shut down,
these subagents may not get the message. If the sub-
agents in turn create subsubagents, they may spread like
a viral disease.

• Malign belief distributions: Christiano [2016] argues
that the universal distribution M [Solomonoff, 1964a,b,
1978; Hutter, 2005] is malign. The argument is some-
what intricate, and is based on the idea that a hypothe-
sis about the world often includes simulations of other
agents, and that these agents may have an incentive to
influence anyone making decisions based on the distri-
bution. While it is unclear to what extent this type of
problem would affect any practical agent, it bears some
semblance to aggressive memes, which do cause prob-
lems for human reasoning [Dennet, 1990].

• Physicalistic decision making: The rational agent
framework is pervasive in the study of artificial intelli-
gence. It typically assumes that a well-delineated entity
interacts with an environment through action and obser-
vation channels. This is not a realistic assumption for
physicalistic agents such as robots that are part of the
world they interact with [Soares and Fallenstein, 2017].

• Multi-agent systems: An artificial intelligence may be
copied and distributed, allowing instances of it to in-
teract with the world in parallel. This can significantly
boost learning, but undermines the concept of a single
agent interacting with the world.

While these problems may seem esoteric, a security mind-
set [Yudkowsky, 2017] dictates that we should not only pro-
tect ourselves from things that can clearly go wrong, but also
against anything that is not guaranteed to go right. Indeed,
unforeseen errors often cause the biggest risks. For this rea-
son, the biggest safety problem may be one that we have not
thought of yet – not because it would necessarily be hard to
solve, but because in our ignorance we fail to adopt measures
to mitigate the problem.

5 Design Ideas for Safe AGI
We next look at some ideas for creating safe AGI. There is
not always a clear line distinguishing ideas for safe AGI from
other AI developments. Many works contribute to both si-
multaneously.

5.1 Value Specification
RL and misalignment. Reinforcement learning (RL) [Sut-
ton and Barto, 1998] is currently the most promising frame-
work for developing intelligent agents and AGI. Combined
with Deep Learning, it has seen some remarkable recent suc-
cesses, especially in playing board games [Silver et al., 2016,
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Figure 1: Connections between problems stated in different AGI safety research agendas (for ANU, CHAI, and FHI, the
agendas are inferred from their recent publications).

2017a,b] and computer games [Mnih et al., 2015, 2016; Hes-
sel et al., 2017].

Aligning the goals of an RL agent with the goals of
its human supervisor comprises significant challenges, how-
ever [Everitt and Hutter, 2018]. These challenges include cor-
rect specification of the reward function, and avoiding that the
agent takes shortcuts in optimizing it. Such shortcuts include
the agent corrupting the observations on which the reward
function evaluates performance, modifying the reward func-
tion to give more reward, hijacking the reward signal or the
memory location of the reward, and, in the case of an inter-
actively learned reward function, corrupting the data train-
ing the reward function. Everitt and Hutter [2018] catego-
rize misalignment problems in RL, and suggest a number of
techniques for managing the various sources of misalignment.
The rest of this subsection reviews other work that has been
done on designing agents with correctly specified values.

Learning a reward function from actions and preferences.
One of the main challenges in scaling RL to the real world
includes designing the reward function. This is particularly
critical for AGI, as a poorly designed reward function would
likely lead to a misaligned agent. As an example of misalign-
ment, Clark and Amodei [2016] found that their boat racing
agent preferred going in circles and crashing into obstacles
instead of winning the race, due to a subtly misspecified re-
ward function. Lehman et al. [2018], Gwern [2011], and Ir-
pan [2018] have many more examples. Analogous failures in
AGIs could cause severe catastrophes. The DeepMind prob-
lem collection calls this a reward gaming problem. One po-
tential way around the problem of gameable reward functions
is to let the agent learn the reward function. This lets de-
signers offload some of the design work to powerful machine
learning techniques.

Inverse reinforcement learning (IRL) [Ng and Russell,
2000; Ziebart et al., 2008; Choi and Kim, 2011] is a frame-
work for learning a reward function from the actions of an
expert, often a human demonstrator. In one famous exam-
ple, Abbeel et al. [2007] taught an agent acrobatic helicopter
flight by observing the actions of a human pilot. Impressively,

the agent ultimately became better at flying than the pilot it
observed. However, a learned reward function cannot be bet-
ter than the data that trained it. If all training happens before
the agent is launched into the environment, then the data may
not properly describe situations that the agent reaches far into
its lifetime (a so-called distributional shift problem; Amodei
et al. 2016). For this reason, interactive training of the reward
function may be preferable, as it allows the training data to
adapt to any new situation the agent may encounter.

Cooperative inverse reinforcement learning (CIRL) is a
generalization of IRL that lets the expert and the agent act
simultaneously in the same environment, with the agent inter-
actively learning the expert’s preferences [Hadfield-Menell et
al., 2016]. Among other things, this allows the expert to take
demonstrative actions that are suboptimal according to his or
her reward function but more informative to the agent, with-
out the agent being led to infer an incorrect reward function.
The CIRL framework can be used to build agents that avoid
interpreting reward functions overly literally, thus avoiding
some misalignment problems with RL [Hadfield-Menell et
al., 2017b].

A reward functions can also be learned from a human rat-
ing short video clips of (partial) agent trajectories against
each other [Christiano et al., 2017]. For example, if the hu-
man consistently rates scenarios where the agent falls off a
cliff lower than other scenarios, then the learned reward func-
tion will assign a low reward to falling off a cliff. Using this
technique, a non-expert human can teach an agent complex
behaviors that would have been difficult to directly program
a reward function for. Warnell [2017] use a related approach,
needing only 15 minutes of human feedback to teach the
agent the ATARI game Bowling. In order to scale this method
to more complex tasks where evaluation is non-trivial, Irving
et al. [2018] propose letting two systems debate which option
is better, highlighting flaws in each others suggestions and
arguments. Ideally, following the debate will significantly
boost the human’s ability to make an informed evaluation.

On a fundamental level, learning from actions and learning
from preferences is not widely different. Roughly, a choice
of action a over action b can be interpreted as a preference

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

5445



for the future trajectories resulting from action a over the tra-
jectories resulting from action b. However, a few notable dif-
ferences can still be observed. First, at least in Christiano’s
[2017] framework, preferences always apply to past events.
In contrast, an action in the CIRL framework typically gives
information about which future events the human prefers. A
drawback is that in order for the action to carry information
about future events, the action must be chosen (somewhat)
rationally. Humans do not always act rationally; indeed, we
exhibit several systematic biases [Kahneman, 2011]. A naive
application of (C)IRL therefore runs the risk of inferring an
incorrect reward function. To address this, Evans et al. [2016]
develop a method for learning the reward function of agents
exhibiting some human-like irrationalities. Without assump-
tions on the type of irrationality the expert exhibits, noth-
ing can be learned about the reward function [Armstrong and
Mindermann, 2017]. In comparison, learning from prefer-
ences seems to require weaker rationality assumptions on the
human’s part, as correctly stating ones preferences may be
easier than acting rationally.

Yet another approach to learning a reward function is to
learn it from stories [Riedl and Harrison, 2016].

Approval-directed agents. In a series of blog posts, Chris-
tiano [2014] suggests that AGIs should be designed to max-
imize approval for their actions rather than trying to reach
some goal. He argues that approval-directed systems have
many of the same benefits of goal-directed systems while
avoiding some of their worst pitfalls. Christiano [2015] and
Cotra [2018] outline a method for how approval-directed
agents can be chained together in a hierarchy, boosting the
accuracy of the approvals of the human at the top of the chain.

Reward corruption. Reinforcement learning AGIs may hi-
jack their reward signal and feed themselves maximal reward
[Ring and Orseau, 2011]. Interestingly, model-based agents
with preprogrammed reward functions are much less prone to
this behavior [Everitt et al., 2016; Hibbard, 2012]. However,
if the reward function is learned online as discussed above, it
opens up the possibility of reward learning corruption. An
AGI may be tempted to influence the data training its reward
function so it points towards simple-to-optimize reward func-
tions rather than harder ones [Armstrong, 2015]. Everitt et
al. [2017] show that the type of data the agent receives mat-
ter for reward learning corruption. In particular, if the reward
data can be cross-checked between multiple sources, then the
reward corruption incentive diminishes drastically. Everitt et
al. also evaluate a few different approaches to reward learn-
ing, finding that the human action-data provided in CIRL is
much safer than the reward-data provided in standard RL, but
that CIRL is not without worrying failure modes.

Side effects. An AGI that becomes overly good at opti-
mizing a goal or reward function that does not fully capture
all human values, may cause significant negative side effects
[Yudkowsky, 2009]. The paperclip maximizer that turns the
earth and all humans into paperclips is an often used example

[Bostrom, 2014], now available as a highly addictive com-
puter game [Lantz, 2017]. Less extreme examples include
companies that optimize profits and cause pollution and other
externalities as negative side effects.

The most serious side effects seem to occur when a target
function is optimized in the extreme (such as turning the earth
into paperclips). Quantilization can avoid over-optimization
under some assumptions [Everitt et al. 2017; Taylor, 2016].
Another more specific method is to “regularize” reward by
the impact the policy is causing [Armstrong and Levinstein,
2017]. How to measure impact remains a major open ques-
tion, however.

Connections to economics. The goal alignment problem
has several connections to the economics literature. It may
be seen as an instance of Goodhart’s law [Goodheart, 1975]
which roughly states that any measure of performance ceases
to be a good measure once it is optimized for. Mannheim and
Garrabrant [2018] categorize instances of Goodhart’s law. It
may also be seen as a principal-agent problem: The connec-
tions have been fleshed out by Hadfield-Menell and Hadfield
[2018].

5.2 Reliability
Self-modification. Even if the reward function is correctly
specified, an AGI may still be able to corrupt either the reward
function itself or the data feeding it. This can happen either
intentionally if such changes can give the agent more reward,
or accidentally as a side effect of the agent trying to improve
itself (Section 2.3).

A utility self-preservation argument going back to at least
Schmidhuber [2007] and Omohundro [2008] says that agents
should not want to change their utility functions, as that will
reduce the utility generated by their future selves, as mea-
sured by the current utility function. Everitt et al. [2016] for-
malize this argument, showing that it holds under three non-
trivial assumptions: (1) The agent needs to be model-based,
and evaluate future scenarios according to its current utility
function; (2) the agent needs to be able to predict how self-
modifications affect its future policy; and (3) the reward func-
tion itself must not endorse self-modifications. In RL [Sutton
and Barto, 1998], model-free agents violate the first assump-
tion, off-policy agents such as Q-learning violate the sec-
ond, and the third assumption may fail especially in learned
reward/utility functions (Section 5.1). Hibbard [2012] and
Orseau [2011] Hibbard [2012] and Orseau and Ring [2011]
also study the utility self-preservation argument.

5.3 Corrigibility
By default, agents may resist shutdown and modifications due
to the self-preservation drives discussed in Section 2.3. Three
rather different approaches have been developed to counter
the self-preservation drives.

Indifference. By adding a term or otherwise modifying the
reward function, the agent can be made indifferent between
some choices of future events, for example shutdown or soft-
ware corrections [Armstrong, 2017]. For example, this tech-
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nique can be used to construct variants of popular RL algo-
rithms that do not learn to prevent interruptions [Orseau and
Armstrong, 2016].

Ignorance. Another option is to construct agents that be-
have as if a certain event (such as shutdown or software mod-
ification) was certain not to happen [Everitt et al., 2016]. For
example, off-policy agents such as Q-learning behave as if
they will always act optimally in the future, thereby effec-
tively disregard the possibility that their software or policy be
changed in the future. Armstrong [2017] show that ignorance
is equivalent to indifference in a certain sense.

Uncertainty. In the CIRL framework [Hadfield-Menell et
al., 2016], agents are uncertain about their reward function,
and learn about the reward function through interaction with
a human expert. Under some assumptions on the human’s
rationality and the agent’s level of uncertainty, this leads to
naturally corrigible agents [Hadfield-Menell et al. 2017a;
Wängberg, 2017]. Essentially, the agent will interpret the
human’s act of shutting them down as evidence that being
turned off has higher reward than remaining turned on. In
some cases where the human is likely to make suboptimal
choices, the agent may decide to ignore a shut down com-
mand. There has been some debate about whether this is a
feature [Milli et al., 2017] or a bug [Carey, 2018].

Continuous testing. Arnold and Scheutz [2018] argue that
an essential component of corrigibility is to detect misbehav-
ior as early as possible. Otherwise, significant harm may be
caused without available corrigibility equipment having been
put to use. They propose an ethical testing framework that
continually monitors the agent’s behavior on simulated ethics
tests.

5.4 Security
Adversarial counterexamples. Deep Learning [e.g.
Goodfellow et al., 2016] is a highly versatile tool for ma-
chine learning, and a likely building block for future AGIs.
Unfortunately, it has been observed that small perturbations
of inputs can cause severe misclassification errors [Szegedy
et al., 2013; Goodfellow et al., 2014; Evtimov et al., 2017;
Athalye et al., 2017].

In a recent breakthrough, Katz et al. [2017] extend the
Simplex algorithm to neural networks with rectified linear
units (Relus). Katz et al. call the extended algorithm Relu-
Plex, and use it to successfully verify the behavior of neural
networks with 300 Relu nodes in 8 layers. They gain insight
into the networks’ behaviors in certain important regions, as
well as the sensitivity to adversarial perturbations.

5.5 Intelligibility
While it is infamously hard to understand exactly what a
deep neural network has learned, recently some progress has
been made. DeepMind’s Psychlab uses tests from psychol-
ogy implemented in a 3D environment to understand deep
RL agents. The tests led them to a simple improvement
of the UNREAL agent [Leibo et al., 2018] Zahavy et al.

[2016] instead use the dimensionality reduction technique t-
SNE on the activations of the top neural network layer in
DQN [Mnih et al., 2015]. revealing how DQN represents
policies in ATARI games. Looking beyond RL, Olah et al.
[2017] summarize work on visualization of features in image
classification networks in a beautiful Distill post. Another
line of work tries to explain what text and speech networks
have learned Alvarez-Melis and Jaakkola, 2017; Belinkov
and Glass, 2017; Lei et al., 2016].

5.6 Safe learning
During training, a standard Deep RL agent such as DQN com-
mits on the order of a million catastrophic mistakes such as
jumping off a cliff and dying [Saunders et al., 2017]. Such
mistakes could be very expensive if they happened in the real
world. Further, we do not want an AGI to accidentally set off
all nuclear weapons in a burst of curiosity late in its training
phase. Saunders et al. [2017] propose to fix this by train-
ing a neural network to detect potentially catastrophic actions
from training examples provided by a human. The catastro-
phe detector can then override the agent’s actions whenever
it judges an action to be too dangerous. Using this technique,
they manage to avoid all catastrophes in simple settings, and
a significant fraction in more complex environments. A sim-
ilar idea was explored by Lipton et al. [2016]. Instead of
using human-generated labels, their catastrophe detector was
trained automatically on the agent’s catastrophes. Unsurpris-
ingly, this reduces but does not eliminate catastrophic mis-
takes. A survey over previous work on safe exploration in RL
is provided by [Garcia and Fernandez, 2015].

6 Public Policy on AGI
Recommendations. In a collaboration spanning 14 organi-
zations, Brundage et al. [2018] consider scenarios for how
AI and AGI may be misused and give advice for both policy
makers and researchers. Regulation of AI remains a contro-
versial topic, however. On the one hand, Erdeleyi and Gold-
smith [2018] call for global regulatory body. Others worry
that regulations may limit the positive gains from AI [Gurkay-
nak et al. 2016; Nota, 2015], and recommend increased pub-
lic funding for safety research [Nota, 2015]. Baum [2017b] is
also wary of regulation, but for slightly different reasons. He
argues that extrinsic measures such as regulations run the risk
of backfiring, making AI researchers look for ways around
the regulations. He argues that extrinsic measures such as reg-
ulations may backfire, and instead recommends working on
social norms and other measures that make developers want
to develop safe AI. Armstrong et al. [2016] counterintuitively
find that information sharing between teams developing AGI
exacerbates the risk of an AGI race.

Policy makers. Although public policy making is often
viewed as the domain of public bodies, it should be remem-
bered that many organizations such as corporations, univer-
sities and NGOs frequently become involved through advo-
cacy, consulting, and joint projects. Indeed, such involve-
ment can often extend to de facto or “private” regulation via
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organizational guidelines, organizational policies, technical
standards and similar instruments.

Professional organizations have already taken a leading
role. The IEEE, for example, is developing guidelines on
Ethically Aligned Design [IEEE, 2017a,b]. Meanwhile, the
ACM and the SIGAI group of AAAI have co-operated to
establish a new joint conference on AI, ethics and society,
AIES. Economic policy and technical standards organizations
have also started to engage: for example, the OECD has es-
tablished a conference on “smart policy making” around AI
developments [OECD, 2017] and ISO/IEC has established a
technical committee on AI standards [ISO/IEC, 2017]. Cor-
porations and corporate consortia are also involved, typically
through the public-facing aspects of their own corporate poli-
cies [Intel, 2017; IBM, 2018] or through joint development of
safety policies and recommendations which consortia mem-
bers will adopt [Partnership on AI, 2016].

Finally, in addition to the traditional public roles of
academia and academics, there are an increasing number
of academically affiliated or staffed AI organizations. With
varying degrees of specificity, these work on technical, eco-
nomic, social and philosophical aspects of AI and AGI. Or-
ganizations include the Future of Humanity Institute (FHI),
the Machine Intelligence Research Institute (MIRI), the Cen-
tre for the Study of Existential Risk (CSER) and the Future
of Life Institute (FLI).

Current policy anatomy. It could be said that public pol-
icy on AGI does not exist. More specifically, although work
such as Baum [2017] highlights the extent to which AGI is a
distinct endeavor with its own identifiable risk, safety, ethics
(RISE) issues, public policy AGI is currently seldom separa-
ble from default public policy on AI taken as a whole (PPAI).
Existing PPAI are typically structured around (a) significant
financial incentives (e.g. grants, public-private co-funding
initiatives, tax concessions) and (b) preliminary coverage of
ethical, legal and social issues (ELSI) with a view to more de-
tailed policy and legislative proposals later on [Miller et al.,
2018; FTI Consulting, 2018].

In the case of the EU, for example, in addition to experi-
mental regulation with its new algorithmic decision-making
transparency requirements in [EUR-lex, 2016, Article 22,
General Data Protection Regulation] its various bodies and
their industry partners have committed over 3 billion Euro to
AI and robotics R&D and engaged in two rounds of public
consultation on the European Parliament’s proposed civil law
liability framework for AI and robotics [Ansip, 2018]. How-
ever, the much demanded first draft of an overarching policy
framework is still missing, being slated for delivery by the
European Commission no earlier than April 2018.

Elsewhere, spurred into action by the implications of the
AlphaGo victory and China’s recent activities (outlined be-
low), South Korea and Japan have already rapidly com-
menced significant public and public-private investment pro-
grams together with closer co-ordination of state bodies, in-
dustry and academia [Ha, 2016; Volodzsko, 2017]. Japan is
also additionally allowing experimental regulation in some
economic sectors [Takenaka, 2017]. The UK has started work

on a preliminary national policy framework on robotics and
AI [UK Parliament, 2017; Hall and Presenti, 2017], and have
established a national Centre for Data Ethics and Innovation
[CSER, 2017].

Current policy dynamics. Although there is substantial
positive co-operation between universities, corporations and
other organizations, there is a negative dynamic operating
the nation-state, regional and international context. Contrary
to the expert recommendations above, there is increasing
rhetoric around an AI “arms race” [Cave and OhEigeartaigh,
2018], typified by President Vladimir Putin’s September 2017
comment that “... whoever becomes the leader in [the AI]
sphere will become the leader in the world” [Apps, 2017].
Relatedly, China’s 8 July 2017 AI policy announcement in-
cluded being the global leader in AI technology by 2030
[PRC State Council, 2017; Kania, 2018; Ding, 2018]. It
also included aims of “creating a safer, more comfortable and
convenient society.” Alongside this policy shift has been in-
creased Sino-American competition for AI talent [Cyranoski,
2018]. In the US, the Obama Administration began consul-
tation and other moves towards a federal policy framework
for AI technology investment, development and implementa-
tion [Agrawal et al. 2016; White House OSTP, 2016]. How-
ever, the Trump Administration abandoned the effort to focus
mainly on military spending on AI and cyber-security [Metz,
2018].

Policy outlook. Given the above, looking forward it would
appear that the organizations noted above will have to work
hard to moderate the negative dynamic currently operating
at the nation-state, regional and international level. Useful
guidance for researchers and others engaging with public pol-
icy and regulatory questions on AI is given by 80 000 Hours
[2017]. Further references on public policy on AGI can be
found in [Sotala and Yampolskiy 2014; Dafoe, 2017].

7 Conclusions
AGI promises to be a major event for humankind. Recent re-
search has made important progress on how to think about po-
tential future AGIs, which enables us to anticipate and (hope-
fully) mitigate problems before they occur. This may be cru-
cial, especially if the creation of a first AGI leads to an “intel-
ligence explosion”. Solutions to safety issues often have more
near-term benefits as well, which further adds to the value of
AGI safety research.

It is our hope that this summary will help new researchers
enter the field of AGI safety, and provide traditional AI re-
searchers with an overview of challenges and design ideas
considered by the AGI safety community.

References1

[Amodei et al., 2016] Dario Amodei, Chris Olah, Jacob
Steinhardt, Paul Christiano, John Schulman, and Dan
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