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Abstract

Most real-world problems have huge state and/or action spaces. Therefore,
a naive application of existing tabular solution methods is not tractable on
such problems. Nonetheless, these solution methods are quite useful if an
agent has access to a relatively small state-action space homomorphism of the
true environment and near-optimal performance is guaranteed by the map.
A plethora of research is focused on the case when the homomorphism is a
Markovian representation of the underlying process. However, we show that
near-optimal performance is sometimes guaranteed even if the homomorphism
is non-Markovian. Moreover, we can aggregate significantly more states by
lifting the Markovian requirement without compromising on performance. In
this work, we expand Extreme State Aggregation (ESA) framework to joint
state-action aggregations. We also lift the policy uniformity condition for
aggregation in ESA that allows even coarser modeling of the true environment.
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1 Introduction

The task of learning a near-optimal behavior from a sequence of experiences can
naturally be formulated as a Reinforcement Learning (RL) problem [18]. In a typical
RL framework, an agent interacts with an environment by taking an action and
receiving a feedback. The agent strives to maximize the expected positive feedback
from the environment over time.

It is typically assumed that the agent is facing a small state-action space1 Markov
Decision Process (MDP) so the agent can advise a stationary policy as a function
of state [13]. Unfortunately, the number of state-action pairs in most of real-world
problems is prohibitively large, e.g. driving a car, playing Go, personal assistance,
controlling a plant with real-valued inputs, and so forth. The agent can neither
simply visit each state-action pair nor can it keep record of these visits to learn a
near-optimal behavior. This explosion of state-action space is known as the curse
of dimensionality [18]. Therefore, it is essential for the agent to generalize over its
experiences in such a huge state-action space problem.

The curse of dimensionality is not a mere artifact of limited experience and
computation constraints if the problem has an infinite state-action space. In a
typical General Reinforcement Learning2 (GRL) framework the agent is faced with
an environment without any known structure. The GRL setup is arguably the most
general setup: it can represent MDP, k−MDP, partially observed MDP (POMDP)
and other typical environment models [6, 8]. But this generality comes at the cost
of an infinite state-action space: every agent-environment interaction generates a
unique history. Hence, there is no other option but to consider every history as a
unique state of the environment. Therefore, GRL suffers, inevitably, by the curse of
dimensionality.

Solving the curse of dimensionality is an active field of research. A typical solu-
tion is to provide (or learn) a finite state-action space model such that the agent can
perform near-optimal in the true environment. State aggregation, linear function
approximation [12], neural networks — a type of non-linear function approximation
— [18] are some well-celebrated solutions to the aforementioned problem. These
methods are collectively called generalization, aggregation or dimensionality reduc-
tion methods. We are going to refer to them loosely as abstraction/aggregation
procedures in this work.

Although most of the abstraction proposals concentrate on the state space re-
duction [1, 9], there is another equally important dimension of action space that
hinders the application of traditional RL methods to real-world problems. The
problem with a small state but huge — sometimes continuous — action space is
equally challenging for learning and planning, cf. continuous bandit problem [3].

A homomorphism framework originated by Whitt [20] is a well-studied solution
to handle the state-action space curse of dimensionality. In the homomorphism

1We refer a state and action space/pair jointly as a state-action space/pair.
2We formally define a typical GRL setup in Section 2.1.
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framework a problem of a large state-action space is solved by using an abstract
problem with a relatively small state-action space. The (near-)optimal policy of
the abstract problem is a solution if it is also a (near-)optimal policy in the true
environment.

It is important to highlight that homomorphism is not the only technique for
abstracting actions. The options framework is a competing method for temporal
action abstractions [17]. In the option/macro-action framework, the original ac-
tion space is augmented with long term/built-in policies [11]. The agent using an
option/marco-action commits to execute a fixed set of actions for a fixed (expected)
time duration. This temporal action abstraction framework is arguably more pow-
erful but beyond the scope of this work. Because, to the best of our knowledge,
there are no theoretical performance guarantees available for such methods, and
most probably such bounds might not exist.

In the homomorphism framework, it is typically assumed that the abstract prob-
lem is an MDP [14, 15, 19]. However, the size of the abstract state-action space can
be significantly reduced if non-MDP abstractions are possible [1, 9]. Moreover, the
reduction of abstract state-action space roughly3 translates into faster learning and
planning [16, 7].

The model of the environment can be a crude approximation of the true environ-
ment: mapping every history to a single state, a fixed discretization of continuous
action space and so on. Therefore, a coarse reduction is not a direct measure of
quality of the abstraction: the agent can be arbitrarily worse off in the true environ-
ment. Nevertheless, we prefer short maps, i.e. small aggregated state-action space,
since the agent can learn faster as compared to a non-aggregation based agent: it
has more data available to learn with the same amount of experience. But, it is only
possible if the abstraction has a bounded performance loss guarantee, i.e. the agent
does not loose much if it considers the aggregated model as the true environment.

It has recently been shown that the MDP restriction is not a necessary condi-
tion for near-optimal performance guarantees in state-only abstractions of GRL [6].
In this work, we use similar notation and techniques of Hutter [6] but investigate
and prove optimality bounds for non-MDP state-action homomorphisms in GRL.
Since state abstraction is a special case of homomorphism (the action space is not
reduced/mapped), our work is a generalization of Extreme State Aggregation (ESA)
[6].

The homomorphism framework has been extended beyond MDPs to finite-state
POMDPs [21]. As mentioned earlier, GRL has an infinite set of histories and no
two histories are alike. We can represent a finite-state POMDP environment as a
history-based process by imposing a structure that there is an internal MDP that
generates the observations and rewards. The GRL framework, by design, is more
powerful and expressive than a finite-state POMDP [21, 8]. Therefore, our results
are more general than finite-state POMDP homomorphisms.

3Although reduction of state-action space is necessary for faster learning/planning but not
sufficient [10].
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Contributions. We expand ESA performance guarantees to joint state-action ag-
gregations that scale beyond MDPs. We make another important technical contri-
bution by relaxing the policy uniformity condition in ESA. In ESA, the states are
aggregated together if they have the same policy. We show that this requirement
can be relaxed and states with approximately similar policies can also be aggregated
together with little performance loss. It enables us to have near-optimal maps with,
considerably, coarsely aggregated state-action pairs.

The rest of the paper is structured as follows. Section 2 lays the foundations
of our homomorphism setup. In Section 3, we motivate the importance of non-
MDP homomorphism by an example. Section 4 contains the key elements required
to prove the main results. Section 5 contains the main results of this work. In
Section 6, we discuss and conclude the paper. We provide all the omitted proofs
and lemmas in Appendix A and B, respectively. Appendix C provides a detailed
list of notation. Section D provides another example non-MDP homomorphism.

2 Preliminaries

This section provides the required notation, a typical GRL framework and our ho-
momorphism setup. We consider a simple agent-environment setup [18]. The agent
has a finite set of actions A. The environment receives an action from the agent and
gives a standard observation from a finite set of observations O and a real-valued
reward from a finite set R⊆R. The agent interacts with the environment in cycles
and in each cycle the agent performs an action and receives an observation and
reward from the environment. This agent-environment interaction generates a pos-
sibly infinite history from an infinite set of histories H :=

⋃∞
t=0(A×O×R)t. Hence,

the original state-action space is the history-action space4, i.e. H×A. Similarly,
we define an abstract finite state space S and action space B to form the abstract
state-action space, i.e. S×B.

We use a consistent notation throughout the paper unless otherwise stated. We
use ∆(·) to denote a probability distribution over its argument, ‖·‖1 expresses a first
norm, x̃ is a local variable and x′ is a different member of the same set. We use a
shorthand notation ∀f(x)=y to imply ∀x,y :f(x)=y. A detailed list of notation is
provided in Appendix C. We often make references to the results presented later in
the paper. The reader is not encouraged to follow these justifying references in the
first reading.

2.1 General Reinforcement Learning Framework

This section provides a formal layout of a typical GRL framework and some as-
sumptions we make about the setup. We start our setup by defining two center

4In general, histories are considered as the states of the environment, so we interchangeably call
the history-action space the original state-action space.
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pieces of any RL setup: the environment and the agent/policy5. The environ-
ment, also referred as the original process P , is defined as a stochastic mapping
from a history-action pair to a distribution over the observation-reward pairs, i.e.
P :H×A→∆(O×R). The history-based agent/policy Π is defined to be a function
that stochastically maps a history to the actions as Π:H→∆(A).

The agent has to maximize the expected sum of rewards it gets from the en-
vironment. But this sum can diverge if the agent keeps on adding infinitely many
positive rewards. There are, at least, two options to rectify this problem by either
assuming a finite sum of rewards or letting the agent discount its future rewards.

Assumption 1. (Geometric discounting) We assume a geometric discounting over
the rewards — i.e. the agent discounts its future rewards by a constant discount
factor γ∈ [0,1).

This discounting of rewards serves a dual purpose for the agent, first, it eliminates
the problem of infinite sum and second it serves as a parameter for the effective
future rewards the agent should care about. A small discount factor makes the
agent short sighted and a large discount factor lets the agent be more concerned
about future rewards. The goal of the agent is to maximize the expected discounted
sum of rewards which is generally expressed with Bellman equations of (action-)value
functions [18]. The agent tries to maximize this value function and strives to reach
the most valuable states. We define the action-value function QΠ for any history
h∈H and action a∈A as

QΠ(h, a) :=
∑

õ∈O,r̃∈R

P (õr̃|ha)
(
r̃ + γV Π(h̃)

)
(1)

where h̃ :=haõr̃ is an extended history and the corresponding value function V Π is
defined as

V Π(h) :=
∑
ã∈A

QΠ(h, ã)Π(ã|h). (2)

The (action-)value functions are maximized if the agent is following an optimal
policy Π∗ ∈ argmaxΠ̃V

Π̃. In general the environment can dispense any real-valued
reward. But, for a simplified analysis we assume that rewards are bounded and
positive.

Assumption 2. (Bounded positive reward) We assume bounded and positive re-
wards and without loss of generality we assume R :⊆ [0,1].

It is easy to see that the bounded rewards bound the (action-)value functions
between zero and 1/(1−γ).

5While it can be argued that an agent and a policy are two separate entities, in this work we
use them interchangeably.
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2.2 Homomorphism Setup

We define a homomorphism as a surjective mapping ψ from the original state-action
space H×A to the abstract state-action space S×B.

For a succinct exposition, we also define a few marginalized mapping functions.
These marginalized maps do not have any special significance other than making
the notation a bit simpler.

Histories mapped to an sb-pair. For a given abstract action b∈B, we define a
marginalized abstract state map as

ψ−1
b (s) := {h ∈ H | ∃a ∈ A : ψ(h, a) = (s, b)} . (3)

Actions mapped to an sb-pair. Similarly, we also define a marginalized abstract
action map for any abstract state s∈S and history h∈H as

ψ−1
s (b) := {a ∈ A | ψ(h, a) = (s, b)} . (4)

It is important to note that ψ−1
s (b) is also a function of history. This dependence

is always clear from the context, so we suppress it in the notation.

Abstract states mapped by a history. By a slight abuse of notation we overload
ψ, and define a history to abstract state marginalized map as

ψ(h) := {s ∈ S | ∃a ∈ A, b ∈ B : ψ(h, a) = (s, b)}. (5)

Histories mapped to an abstract state. Finally, an abstract state to history
marginalized map is defined as

ψ−1(s) := {h ∈ H | ∃a ∈ A, b ∈ B : ψ(h, a) = (s, b)}. (6)

In this work, we assume a structure for the aggregation map ψ. The general
unstructured case is left for future research.

Assumption 3. (ψ(h)=s) We assume that an abstract state is determined only by
the history — i.e. ψ(h,a) :=(s=f(h),b), where f is any fixed surjective function of
history and is independent of actions a and b.

The above assumption implies that ψ(h) is singleton. This is not only a technical
necessity but a requirement to make the mapping causal, i.e. the current history h
corresponds to a unique state s independent of the next action taken by the agent.
If we drop this assumption then the current history might resolve to a different state
based on the next (future) action taken by the agent.

A homomorphic map ψ lets the agent merge the experiences from P and induces
a history-based abstract process Pψ. Formally, for all ψ(h,a) = (s,b) and any next
abstract state s′, we express Pψ as

Pψ(s′r|ha) :=
∑

õ:ψ(haõr)=s′

P (õr|ha). (7)
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The map ψ also induces a history-based abstract policy Πψ as

Πψ(b|h) :=
∑

ã∈ψ−1
s (b)

Π(ã|h). (8)

It is clear from (7) and (8) that the induced abstract process and policy are in
general non-Markovian, i.e. both are functions of the history h and not only the
abstract state s.

Non-MDP homomorphisms. In this work we consider two types of non-
Markovian homomorphisms: a) Q-uniform homomorphisms, where the state-action
pairs are merged if they have close Q-values, i.e. QΠ(h,a) ≈ QΠ(h′,a′) for all
ψ(h,a)=ψ(h′,a′), and b) V-uniform homomorphisms, when the merged state-action
pairs have close values , i.e. V Π(h)≈V Π(h′) for all ψ(h) =ψ(h′). A formal treat-
ment of these non-MDP homomorphisms is provided in the main results section. In
both Q and V-uniform homomorphisms, Pψ can be history-dependent, in result, the
abstract process is non-MDP.

3 Motivation for Non-MDP Homomorphisms

In this section we motivate the importance of non-MDP homomorphisms by an
example. We show that a non-MDP homomorphism can cater to a large set of
domains and allows more compact representations.

Navigational Grid-world. Let us consider a simplified version of the asymmetric
grid-world example by Ravindran and Barto [15] in Figure 1. In this navigational
domain, the goal of an agent Π is to navigate the grid to reach the target cell T .
The unreachable cells are grayed-out. The agent receives a large positive reward if
it enters the cell T , otherwise a small negative reward is given to the agent at each
time-step. The agent is capable of moving in the four directions, i.e. up, down, left
and right. This domain has an almost similar transition and reward structure across
a diagonal axis. We call this an approximate MDP axis and denote it by ≈MDP.
This axis of symmetry enables us to create a homomorphism of the domain using
approximately half of the original state-space (see Figure 2).

This grid-world example has primarily been studied in the context of either
exact, approximate or Bounded parameter MDP (BMDP) homomorphisms [15]:
the abstract model approximately preserves the one-step dynamics of the original
environment. However, as we later prove in this paper (see Theorem 8ii), some non-
MDP homomorphisms can also be used to find a near-optimal policy in the original
process. We motivate the need of non-MDP homomorphisms, first, by highlighting
the fact6 that in the grid-world domain, the states with similar dynamics have similar
optimal action-values. Afterwards, we modify the grid-world domain such that the

6This section is an informal motivation, we formally deal with this fact in the main results
section (Theorem 6i).
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T

Π

Π

≈MDP

Figure 1: The original navigational grid-world with the axis of approximate symme-
try. The gray cells are not reachable. The target cell is at the top right corner. The
figure shows two possible positions of the agent and corresponding optimal actions.

modified grid-world does not have an approximate MDP symmetry axis, but still
has the same approximate optimal action-values symmetry.

We apply Value Iteration (VI) [2] with some fixed but irrelevant parameters on
the grid world (see Figure 3). The grid world has the same approximate symmetry
axis for the optimal values, denoted by ≈Q-uniform axis. It is easy to see that each
merged state in Figure 2 has the same action-values. Hence, the ≈MDP axis is also
an ≈Q-uniform axis in the grid-world.

Modified Navigational Grid-world. Now we modify the grid world such that
it does not have an ≈MDP axis (Figure 1) but it still has the same ≈Q-uniform
axis (Figure 3). The idea is to take a pair of merged states from Figure 1 and
change the reward and transition probabilities such that the states no longer have
similar one-step dynamics but still have similar action-values. For example, let us
consider the cells highlighted with dashed borders in Figure 3 and denote the cell
in the bottom half with s23. Let u,d,pu and pd denote the actions up and down,
and the probabilities to reach the desired cell by taking the corresponding action,
respectively. Let ru and rd be the expected rewards for each action in the state s23.
In general, we get an under-determined set of equations for the action-value function
at state s23 as

Q∗(s23, a) =

{
ru + 0.73γpu + 3.01γ if a = u

rd − 0.73γpd + 3.74γ if a = d.
(9)

In the original navigational grid-world problem pu=pd=1, i.e. each action leads
deterministically to the indented reachable cell, and ru=rd=rn, where rn is a fixed
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T

π

Figure 2: A possible MDP homomorphism by merging the mirror state-action pairs
together. The presence of a hashed cell indicates that it is not an exact homomor-
phism. The agent π solves the problem in this abstract domain.

small negative reward. We can break the ≈MDP similarity by setting7 pu=pd :=0,
i.e. the actions behave in the opposite way in the lower half, ru := rn+0.73γ and
rd := rn−0.73γ, without changing the ≈Q-uniform similarity. In fact, we can have
infinite combinations of rewards and transitions to get a set of modified domains
since the set of equations (9) is under-determined.

This set of modified domains, by design, no longer allows the approximate MDP
homomorphism of Figure 2. Every state is different in terms of reward and tran-
sition structure across the ≈MDP axis of Figure 1. Any one-step model similarity
abstraction would be approximately of the same size as the original problem. How-
ever, if we consider Q-uniform homomorphisms, i.e. state-action pairs are merged if
the action-values are close, then the set of modified domains has a same Q-uniform
homomorphism.

In GRL, it is natural to assume that the (expected) rewards are function of
realized history. The above modification argument is more likely to hold in a GRL
setting: the reward and transition similarity might be hard to satisfy. Therefore,
a GRL agent is better to consider such non-MDP homomorphisms to cover more
domains with a single abstract model. Now we ask the main question, does such
a non-MDP homomorphism, e.g. Q-uniform homomorphism, have a guaranteed
solution for the original problem? In the next section, we answer this question in
affirmative for Q-uniform homomorphisms (Theorem 8ii), but in negative for V-
uniform homomorphisms with a weaker positive result (Theorem 10ii).

7pu = 0 implies that the action u now takes the agent to the down cell and vice versa for the
action d.
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Figure 3: The optimal values at each approachable cell. The bold-faced values are
not exactly matched across the symmetry axis.

4 Key Elements to Go Beyond MDPs

This section introduces the key elements of the paper that enables us to prove
performance bounds for non-MDP homomorphisms.

4.1 A Stochastic Inverse and Surrogate MDP

The key idea to get a near-optimal policy of the true environment P is to transform
Pψ into a surrogate MDP on the abstract state-action space. Afterwards, the optimal
policy of this surrogate MDP is uplifted to P . This technique of casting a non-MDP
process as an MDP has been used in ESA [6]. To get this surrogate MDP, we
define a stochastic inverse B of the homomorphism ψ as a probability measure over
the history-action space given an abstract state-action pair, formally, B : S×B→
∆(H×A). Moreover, we require B(ha|sb) :=0 for any ψ(h,a) 6=(s,b). The surrogate
MDP is defined as

pB(s′r′|sb) :=
∑

h̃∈H,ã∈A

Pψ(s′r′|h̃ã)B(h̃ã|sb). (10)

It might seem like a paradoxical idea to solve a non-Markovian Pψ using an MDP
pB, but the paradox is superficial. It is the stochastic inverse that complements
the non-Markovianness of Pψ. Finding such an inverse algorithmically, hence the
surrogate MDP, is not a trivial task in general [6].

This action-dependent stochastic inverse separates our work from the action-
independent weighting function considered by Abel et al. [1]. Although, learning of
such weighting function is beyond the scope of this paper, an action-independent
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weighting function is not learnable. Because, when this weighting function is built
from the true sampling distribution, it becomes action-dependent. Hutter [6] con-
structs such a learnable action-dependent inverse for the state abstraction case.
Fortunately, the choice of B becomes irrelevant in Q-uniform homomorphisms (see
Theorem 8), however this is not the case in V-uniform homomorphisms (see Theorem
10).

Similar to the original process, we also define the (action-)value functions for
the surrogate MDP pB on the abstract state-action space S×B with an abstract
state-based policy π. The action-value function is given as

qπ(s, b) :=
∑

s̃∈S,r̃∈R

pB(s̃r̃|sb) (r̃ + γvπ(s̃)) (11)

where the value function is

vπ(s) :=
∑
b̃∈B

qπ(s, b̃)π(b̃|s). (12)

An abstract state-based optimal policy π∗ is a value maximizer, i.e. π∗ ∈
argmaxπ̃v

π̃.

4.2 Representative Abstract Policy

As discussed earlier, we are primarily interested in the optimal policies of the sur-
rogate MDP. However, it is also interesting to consider a general policy case (e.g.
Theorems 4, 5, 7 and 9) akin to an on-policy result where we uplift a representative
policy. We use any arbitrary member as a representative policy πR on the abstract
state s.

πR(·|s) := Πψ(·|h̃), for some h̃ ∈ ψ−1(s). (13)

This arbitrary choice of representative introduces a policy representation error
εΠ for each abstract state s, expressed as

εΠ(s) := sup
h̃∈ψ−1(s)

∥∥∥πR(·|s)− Πψ(·|h̃)
∥∥∥

1
. (14)

This representation error is small/zero when the induced abstract policy Πψ is
approximately/piecewise constant, i.e. Πψ(·|h)=Πψ(·|h′) for all ψ(h)=ψ(h′).

It is easy to see that the state aggregation mapping function φ of ESA setup8 is
a special case of our generalized mapping function ψ. We can mimic any φ by using
a ψφ with identity transformation over action spaces — i.e. ψφ(h,a) :=(φ(h),a).

In the next section, we provide the main results of this work. We construct a
near-optimal policy for the original process from the surrogate MDP even if the
homomorphism is non-MDP.

8The reader is encouraged to see [6] for more details about φ.
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5 Main Results

In this section, we prove that under some conditions an optimal policy of the ab-
stract process losses only a faction of the value when uplifted in the original process.
Also, these results hold even when the marginalized process in not an MDP. We an-
alyze three types of homomorphisms in this work: MDP, Q-Uniform and V-Uniform
homomorphisms. Both Q and V-Uniform homomorphisms are non-Markovian by
definition. In general, MDP and Q-Uniform homomorphisms admit a deterministic
near-optimal policy of the original process, while V-Uniform homomorphisms do
not.

5.1 Markov Decision Process Homomorphisms

A homomorphism is an MDP homomorphism if the induced abstract process Pψ is
an MDP. Then, there exists a process pMDP such that for all ψ(h,a)=(s,b) and for
all s̃ and r̃, it holds:

Pψ(s̃r̃|ha) = pMDP(s̃r̃|sb). (15)

Using the above condition in (10), renders pB=pMDP and independent of B. The
condition (15) is a stronger version of the bisimulation condition [4] that is gener-
alized to joint history-action pairs. This condition is strong enough to preserve the
optimal (action-)value functions of the original process (see Theorem 6). But, it is
not strong enough to preserve arbitrary policy (action-)value functions (see Theorem
4). Unless we define a notion of action-value function representative and a corre-
sponding representation error. For an abstract state-action pair, the representative
action-value is defined as

QΠ(ψ−1(s, b)) := QΠ(h̃, ã), for some ψ(h̃, ã) = (s, b) (16)

and the representation error of the action-value function is expressed as

εQ(s) := sup
h̃,ã,b̃:ψ(h̃,ã)=(s,b̃)

∣∣∣QΠ(ψ−1(s, b̃))−QΠ(h̃, ã)
∣∣∣ . (17)

Similar to εΠ, this representation error is small/zero if the action-value func-
tion is approximately/piecewise constant. At this point, we have all the required
components properly defined to state the first theorem of the paper.

Theorem 4. (ψMDPΠ) Let ψ be a homomorphism such that Pψ is an MDP, then for
any policy Π and all ψ(h,a)=(s,b) it holds:∣∣qπR(s, b)−QΠ(h, a)

∣∣ ≤ γεmax

1− γ
and∣∣vπR(s)− V Π(h)

∣∣ ≤ εmax

1− γ

where εmax :=maxs̃∈S

(
εQ(s̃)+ εΠ(s̃)

1−γ

)
.
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Proof. See Appendix A.

The above theorem shows that the surrogate MDP approximately preserves the
(action-)value functions of the original process for any arbitrary policy. However,
these (action-)value functions are preserved exactly if we further impose a policy
uniformity condition in addition to an MDP assumption.

Theorem 5. (ψMDPΠ=) Let ψ be a homomorphism such that Pψ is an MDP and
Π(·|h)=Π(·|h′) (i.e. the policy similarity condition holds) for some policy Π and for
all ψ(h)=ψ(h′). Then for all ψ(h,a)=(s,b) it holds:

qπR(s, b) = QΠ(h, a) and vπR(s) = V Π(h).

Proof. See Appendix A.

Theorems 4 and 5 are important but not very useful results. As already discussed,
we are interested in the (near-)optimal policies of the original process. And, we want
to find the abstract policies that can be lifted with a performance guarantee from
the abstract state-action space to the original history-action space.

Theorem 6. (ψMDP∗) Let ψ be a homomorphism such that Pψ is an MDP, then for
all ψ(h,a)=(s,b) it holds:

(i) q∗(s,b)=Q∗(h,a) and v∗(s)=V ∗(h).

(ii) V ∗(h)=V Π̆(h)

where Π̆(h) :∈ψ−1
s (π∗(s)) for any ψ(h)=s.

Proof. See Appendix A.

For any MDP homomorphism, the performance guarantee is provided by The-
orem 6ii. The abstract optimal policy π∗ is also an optimal policy for the original
process when lifted to the original history-action space.

5.2 Q-Uniform Homomorphisms

In this section, we relax the MDP condition (see Equation 15) on the abstract-
process provided by the homomorphism. We show that there still exists an abstract
policy that is near-optimal in the original process (see Theorem 8ii). We start with
proving a value loss bound for an arbitrary policy when the action-value function of
the original process is approximately ψ-uniform.
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Theorem 7. (ψQΠ) Assume
∣∣QΠ(h,a)−QΠ(h′,a′)

∣∣≤ε for some policy Π and for all
ψ(h,a)=ψ(h′,a′). Then for all ψ(h,a)=(s,b) it holds:

∣∣QΠ(h, a)− qπR(s, b)
∣∣ ≤ ε+

γε(s)

1− γ
and∣∣V Π(h)− vπR(s)

∣∣ ≤ ε(s)

1− γ

where ε(s) :=2ε+ εΠ(s)
1−γ .

Proof. See Appendix A.

The following theorem improves the optimal policy value loss bounds, cf. Theo-
rem 7, and establishes the existence of a near-optimal policy of the original history-
action space in the abstract state-action space.

Theorem 8. (ψQ∗) Let |Q∗(h,a)−Q∗(h′,a′)| ≤ ε for all ψ(h,a) =ψ(h′,a′), then for
all ψ(h,a)=(s,b) it holds:

(i) |Q∗(h,a)−q∗(s,b)|≤ 2ε
1−γ and

|V ∗(h)−v∗(s)|≤ 2ε
1−γ .

(ii) 0≤V ∗(h)−V Π̆(h)≤ 4ε
(1−γ)2

where Π̆(h) :∈ψ−1
s (π∗(s)) for any ψ(h)=s.

Proof. See Appendix A.

It is important to note that Theorem 8 holds for any stochastic inverse B. Every
choice of B gives a different surrogate MDP pB, so the theorem provides a near-
optimal performance guarantee for the uplifted abstract optimal policies of any pos-
sible surrogate MDP. Therefore, for any non-MDP Q-uniform homomorphism and
a fixed B there exists an uplifted near-optimal policy (Π̆ from Theorem 8ii).

5.3 V-Uniform Homomorphisms

All the previous results are valid for any choice of the stochastic inverse B. How-
ever, for V-uniform homomorphisms, the results are explicitly dependent on B (see
Theorem 9 and 10). We need a couple of more entities to express the results of
this section. We denote the B-average of the action-value function of the original
process as

〈QΠ(ψ−1(s, b))〉B :=
∑

h̃∈H,ã∈A

QΠ(h̃, ã)B(h̃ã|sb). (18)
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Furthermore, we can decompose B into two distinct parts: action dependent and
independent. With an abuse of notation, assume an arbitrary joint distribution B
over H,A,S and B. By using the chain rule of probability distributions on B,

B(ha|sb) = B(h|sb)B(a|bhs)

=
B(hs)B(b|hs)

B(sb)
B(a|bhs)

(a)
=

B(hs)B(b|h)

B(sb)
B(a|bh)

= B(h|s)B(b|h)

B(b|s)
B(a|bh)

= B(h|s)︸ ︷︷ ︸
action-independent

·

action-dependent︷ ︸︸ ︷(
B(ab|h)

B(b|s)

)
(19)

(a) follows from Assumption 3, the state is determined only by the history.

Using the action-dependent part from (19), we define a history and state based
induced measure on the original action space for any B and an abstract state based
policy π as

Bπ(a|hs) :=
∑
b̃∈B

(
B(ab̃|h)

B(b̃|s)

)
π(b̃|s). (20)

This seemingly complex and arbitrary relationship has a well-structured expla-
nation. If approximately, the B distribution is linked to the actual dynamics of
an agent π acting in the abstract state-action space, i.e. B(b|s) ≈ π(b|s), then
Bπ(a|hs)≈B(a|h), which is effectively a shadow agent induced by the agent π on
the original history-action space.

To prove a result analogous to Theorem 7 for a V-uniform homomorphism, we
need to impose an extra condition on B, cf. Theorem 7, which requires a structure
on B and/or on the underlying original process. For general B, there exist some
known counter examples [6].

Theorem 9. (ψV Π) Let
∣∣V Π(h)−V Π(h′)

∣∣≤ε for some policy Π and for all ψ(h)=
ψ(h′), and

∣∣∑
ã∈AQ

Π(h,ã)BπR(ã|hs)−V Π(h)
∣∣≤εB for all s=ψ(h), then it holds:

∣∣〈QΠ(ψ−1(s, b))〉B − qπR(s, b)
∣∣ ≤ γ(ε+ εB)

1− γ
and∣∣V Π(h)− vπR(s)

∣∣ ≤ ε+ εB
1− γ

.

Proof. See Appendix A.
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In Theorem 7, we had an absolute loss-bound for action-value functions but in
Theorem 9 we only have a B-average relationship. So far, we were able to get a
near-optimal performance guarantee when the optimal policy of a surrogate MDP is
uplifted to the original process (see Theorems 6ii and 8ii). However, there does not
exist such a near-optimal performance guarantee for V-uniform homomorphisms.
A deterministic abstract policy could be arbitrarily worse off when uplifted to the
original process [6, Theorem 10] in V-uniform state-abstractions, which are a special
case of V-uniform homomorphisms. However, a relatively weak result is still possible.

Theorem 10. (ψV ∗) Let |V ∗(h)− V ∗(h′)| ≤ ε for all ψ(h) = ψ(h′) and
|
∑

ã∈AQ
∗(h,ã)Bπ∗(ã|hs)−V ∗(h)| ≤ εB for all s= ψ(h), then for all ψ(h,a) = (s,b)

it holds:

(i) |〈Q∗(ψ−1(s,b))〉B−q∗(s,b)|≤ 3γ(ε+εB)
(1−γ)2 and

|V ∗(h)−v∗(s)|≤ 3(ε+εB)
(1−γ)2 .

(ii) If ε+εB =0 then ψ(h,Π∗(h))=(s,π∗(s)) for all ψ(h)=s.

Proof. See Appendix A.

In the approximate case, i.e. ε+εB>0, Theorem 10 is not as useful as Theorem
8 because of the missing performance guarantee, cf. Theorem 8ii. However, it is
still an important theorem for the exact V-uniform homomorphisms, i.e. ε+εB=0.
In that case, it is guaranteed that the optimal actions of all member histories are
mapped to the same abstract optimal action (see Theorem 10ii).

6 Discussion, Outlook and Conclusion

In this paper we analyzed approximate homomorphisms of a general history-based
environment. The main idea was to find a deterministic policy in the abstract state-
action space such that, when uplifted, it is a near-optimal policy in the original
problem. Using the surrogate MDP technique, we proved near-optimal performance
bounds for both MDP (Theorem 6ii) and Q-uniform homomorphisms (Theorem 8ii).
In general, there does not exist a near-optimal deterministic uplifted policy for V-
uniform homomorphisms. However, we proved a weaker result (Theorem 10ii) for
the exact V-uniform homomorphisms: the optimal actions of the member histories
are mapped to the same abstract optimal action at the corresponding state of the
surrogate MDP.

Versus ESA. We borrow some notation and techniques from Hutter [6]. But this
work is crucially different from ESA. Apart from the obvious difference of being
a generalization to homomorphisms, there are also some other key differences. In
ESA, the policy Π is required to be state uniform for various of the main results [6,
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Theorems 1,5,6 and 9], whereas we do not make any such assumption. Moreover, at
the first instance our results might look almost similar to ESA but the important
difference is in the definition of ε(s) which is not a simple addition of both state and
action representation errors. It is a non-trivial weighted average of representation
errors. The extra conditions on Theorems 9 and 10 are weaker than the policy-
uniformity condition, cf. [6, Theorems 6 and 9], and do not have direct counterparts
in ESA.

Versus Options. As briefly addressed in the introduction section, the options
framework does not have any provable performance guarantees, yet. Whereas our
restriction of uplifting a state-based policy and using a deceptively “spatial-looking”
abstraction of actions have such guarantees. Since we allow the action mapping part
of ψ to be a function of history, which is arguably a function of time, our framework
also admits temporal dependencies. It enables ψ to model much more than mere
renaming of the original action space distributions. A thorough comparison between
these two approaches is left for future work.

6.1 Outlook

The results in this work are quite general but there are various open questions left
for future research.

Reinforcement Learning (Learning Problem). For a given homomorphism ψ,
the most obvious question we left open is the choice of B. We call this the learning
problem. Two of the three main results in this work (Theorems 6ii and 8ii) are valid
for any choice of B, so any fixed B would suffice. But the third main result (Theorem
10ii) is very much involved with the choice of B. However, it is not a strong result
in itself. Nevertheless, in a state-abstraction context, B facilitates learning of the
surrogate MDP from the induced abstract process [6]. Therefore, it is an intriguing
direction to explore for homomorphisms.

Feature Reinforcement Learning (Discovery Problem). The focus of this
paper is to provide performance guarantees for a given homomorphism. While in
practice, the agent has to learn such a reduction/model from experience. It is
known as the discovery problem [9] in RL and Feature Reinforcement Learning (FRL)
[5] in the GRL context. It is non-trivial to solve this problem even in a state-
abstraction framework [6]. Our result can help to build such an FRL algorithm for
homomorphisms, e.g. during the model learning/building, the algorithm may use
the bounds from this work to select/discard a candidate model.

Special Environment Classes. In general, we do not use/exploit structure of the
underlying original process. However, effects of a specific model class can be ex-
pressed in terms of the (action-)value functions. For example, if the original process
is a finite state POMDP then our results provide the performance-loss guarantee
by representing a belief-state based value function of the POMDP by a state-based
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value function. A similar argument can be rendered for various other types of model
classes. Since the results in this work are general, they are not expected to gracefully
scale down to some class specific tight performance bounds. Nevertheless, it is an
important agenda to get the scaled-down variants of these results for some specific
model classes.

Continuous state-action space. The results in this paper easily extend to the
continuous state-action space homomorphisms for the measurable maps. The sum-
mations change to integrals and the measurability constraint make sure that these
integrals are well-defined. In this case, a homomorphism map has a natural inter-
pretation of being a discretization of the underlying space. However, it is sometimes
desirable to use a restricted continuity condition, e.g. Lipschitz or Holder continuity,
rather than the weak measurability constraint. A continuous state-action homomor-
phism under some restricted continuity constraints would be a nice generalization
of our results.

Fully Generalized Homomorphism. In a sense our results are not fully general
since we assumed a structure on the homomorphism. A fully generalized homomor-
phism formulation with no ψ(h,a) = (f(h),b) assumption would be an interesting
extension of this work. However, lifting this condition may lead to some bizarre
non-causal effects, e.g. the current abstract state would be decided by the next
action!

6.2 Conclusion

In conclusion, our results show that in GRL the near-optimal performance guarantee
is not limited only to MDP homomorphisms. It is sometimes possible to have
non-MDP models, i.e. Q-uniform homomorphisms, with bounded performance loss
guarantees. We also relax the strong policy-uniformity condition in ESA to allow
stochastic policies.
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A Omitted Proofs

We provide all omitted proofs in this appendix. We use ≶ to denote a two side
inequality, e.g. if |x−y|≤ ε, which in effect implies −ε≤x−y≤ ε, we denote it as
x≶y±ε to express both inequalities at the same time.

A.1 Proof of Theorem 4

Proof. Let δ := sup
h̃,ã,s̃,b̃:ψ(h̃,ã)=(s̃,b̃)

∣∣∣qπ(s̃,b̃)−QΠ(h̃,ã)
∣∣∣, and for any ψ(h)=s we have,

∣∣vπ(s)− V Π(h)
∣∣ (a)

≤

∣∣∣∣∣∣
∑
b̃∈B

qπ(s, b̃)π(b̃|s)−
∑
b̃∈B

QΠ(ψ−1(s, b̃))π(b̃|s)

∣∣∣∣∣∣+ εQ(s) +
εΠ(s)

1− γ

≤
∑
b̃∈B

∣∣∣qπ(s, b̃)−QΠ(ψ−1(s, b̃))
∣∣∣ π(b̃|s) + εQ(s) +

εΠ(s)

1− γ

≤ δ + εQ(s) +
εΠ(s)

1− γ
(21)

(a) follows from the definition of vπ(s) and Lemma 11. Now for any ψ(h,a)=(s,b),
we have,

QΠ(h, a) ≡
∑

õ∈O,r̃∈R

P (õr̃|ha)(r̃ + γV Π(h̃)) [h̃ = haõr̃]

(b)

≶
∑

s̃∈S,r̃∈R

Pψ(s̃r̃|ha) (r̃ + γvπ(s̃))± γ
(
δ + εQ(s̃) +

εΠ(s̃)

1− γ

)
(15)
=

∑
s̃∈S,r̃∈R

p(s̃r̃|sb) (r̃ + γvπ(s̃))± γ
(
δ + εQ(s̃) +

εΠ(s̃)

1− γ

)
≶ qπ(s, b)± γ(δ + εmax)

(b) follows from value function error bound (21) and definition of Pψ given by (7).
Since, δ≡ sup

∣∣qπ(s,b)−QΠ(h,a)
∣∣≤ γ(δ+εmax) therefore, δ≤ γεmax

1−γ , hence completes
the proof.

A.2 Proof of Theorem 6

Proof. (i) Let δ := sup
h,a,s,b:ψ(h,a)=(s,b)

|q∗(s,b)−Q∗(h,a)|. Now for any ψ(h)=s we have,

|v∗(s)− V ∗(h)|
(a)

≤
∣∣∣∣max
b̃∈B

q∗(s, b̃)−max
b̃∈B

Q∗(ψ−1(s, b̃))

∣∣∣∣+ εQ(s)

(b)

≤ δ (22)
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(a) follows from the definitions of v∗(s) and Lemma 12, and (b) is due to Lemma 13.

Q∗(h, a) ≡
∑

õ∈O,r̃∈R

P (õr̃|ha)(r̃ + γV ∗(h̃)) [h̃ = haõr̃]

(22)

≶
∑

s̃∈S,r̃∈R

Pψ(s̃r̃|ha)(r̃ + γv∗(s̃))± γδ

(15)
=

∑
s̃∈S,r̃∈R

p(s̃r̃|sb)(r̃ + γv∗(s̃))± γδ

≡ q∗(s, b)± γδ

Therefore, δ≤γδ, therefore δ=0 which completes the proof.
(ii) For ψ(h)=s and Π̆(h) :∈ψ−1

s (π∗(s)),

V ∗(h)
(i)
= v∗(s) ≡ q∗(s, π∗(s))

(i)
= Q∗

(
h, Π̆(h)

)
which implies Q∗

(
h,Π̆(h)

)
=V ∗(h) and Lemma 16 concludes the proof.

A.3 Proof of Theorem 5

Proof. Let δ := sup
h,h′:ψ(h)=ψ(h′),a,a′

|QΠ(h,a)−QΠ(h′,a′)|, then for all ψ(h)=ψ(h′),

∣∣V Π(h)− V Π(h′)
∣∣ ≡ ∣∣∣∣∣∑

ã∈A

QΠ(h, ã)Π(ã|h)−
∑
ã∈A

QΠ(h′, ã)Π(ã|h′)

∣∣∣∣∣
(a)
=

∣∣∣∣∣∑
ã∈A

(
QΠ(h, ã)−QΠ(h′, ã)

)
Π(ã|h)

∣∣∣∣∣ ≤ δ (23)

(a) follows from the assumption. Now for all ψ(h,a)=ψ(h′,a′)=(s,b),

∣∣QΠ(h, a)−QΠ(h′, a′)
∣∣ (b)

=

∣∣∣∣∣ ∑
s̃∈S,r̃∈R

Pψ(s̃r̃|ha)
(
r̃ + γV Π(h̃)

)
−

∑
s̃∈S,r̃∈R

Pψ(s̃r̃|h′a′)
(
r̃ + γV Π(h̃′)

)∣∣∣∣∣
(15)
= γ

∣∣∣∣∣ ∑
s̃∈S,r̃∈R

p(s̃r̃|sb)
(
V Π(h̃)− V Π(h̃′)

)∣∣∣∣∣
(23)

≤ γδ (24)

(b) follows from the definition and h̃= haõr̃ and h̃′= h′a′õr̃, and ψ(h̃) =ψ(h̃′) = s̃.
From the inequality (24), we have δ≤γδ⇒δ=0. Therefore, QΠ(h,a)=QΠ(h′,a′) for
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all ψ(h,a)=ψ(h′,a′). Note that this also implies, εQ=0 and εΠ =0 by assumption.

A.4 Proof of Theorem 7

Proof. Let δ := sup
h̃,ã,s̃,b̃:ψ(h̃,ã)=(s̃,b̃)

∣∣∣QΠ(h̃,ã)−qπ(s̃,b̃)
∣∣∣, and for any ψ(h)=s we have,

V Π(h)− vπ(s)
Lem.11

≶
∑
b̃∈B

(
QΠ(ψ−1(s, b̃))π(b̃|s)− qπ(s, b̃)π(b̃|s)

)
±
(
εQ(s) +

εΠ(s)

1− γ

)
=

∑
b̃∈B

(
QΠ(ψ−1(s, b̃))− qπ(s, b̃)

)
π(b̃|s)±

(
εQ(s) +

εΠ(s)

1− γ

)
(a)

≶ ±
(
δ + εQ(s) +

εΠ(s)

1− γ

)
(25)

(a) follows from the definition of δ and the fact that π(b̃|s)-average is smaller than
the b̃-supremum. Using the above inequality (25) and Lemma 14 we get,

|〈QΠ(ψ−1(s, b))〉B − qπ(s, b)| ≤ γ

(
δ + εQ(s) +

εΠ(s)

1− γ

)
. (26)

We exploit the theorem’s assumption and derive a key relationship between the
B average and any instance of action value.

〈QΠ(ψ−1(s, b))〉B ≡
∑

h̃∈H,ã∈A

QΠ(h̃, ã)B(h̃ã|sb)

(a)

≶
∑

h̃∈H,ã∈A

(
QΠ(ψ−1(s, b))± ε

)
B(h̃ã|sb)

= QΠ(ψ−1(s, b))± ε (27)

(a) follows from the theorem’s assumption. Since, QΠ(ψ−1(s,b)) is a rep-
resentative member in the pre-image set of (s,b); it is equivalent to say
QΠ(ψ−1(s,b)) = QΠ(h,a) for any ψ(h,a) = (s,b). Therefore, combining (26)

and (26) we get
∣∣QΠ(h,a)−qπ(s,b)

∣∣≤γ(δ+εQ(s)+ εΠ(s)
1−γ )+ε, hence δ≤ ε+γεQ(s)+

γεΠ(s)

1−γ
1−γ .
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A.5 Proof of Theorem 9

Proof. Let δ := sup
s̃,h̃:ψ(h̃)=s̃

∣∣∣V Π(h̃)−vπ(s̃)
∣∣∣ then for any ψ(h)=s, we have,

∑
b̃∈B

〈QΠ(ψ−1(s, b̃))〉Bπ(b̃|s) (a)
=

∑
h̃∈H

BH(h̃|s)
∑
ã∈A

QΠ(h̃, ã)
∑
b̃∈B

BA(ãb̃|sh̃)π(b̃|s)

(b)

≶
∑

h̃:ψ(h̃)=s

BH(h̃|s)
(
V Π(h̃)± εB

)
(c)

≶
∑

h̃:ψ(h̃)=s

BH(h̃|s)
(
V Π(h)± (ε+ εB)

)
= V Π(h)± (ε+ εB) (28)

(a) follows from the chain rule of joint distributions and since the history is action
independently mapped; (b) and (c) follow from the theorem’s assumptions. Further,
we have,∣∣∣∣∣∣
∑
b̃∈B

〈QΠ(ψ−1(s, b̃))〉Bπ(b̃|s)− vπ(s)

∣∣∣∣∣∣ ≡
∣∣∣∣∣∣
∑
b̃∈B

(
〈QΠ(ψ−1(s, b̃))〉B − qπ(s, b̃)

)
π(b̃|s)

∣∣∣∣∣∣
(d)

≤
∑
b̃∈B

∣∣∣〈QΠ(ψ−1(s, b̃))〉B − qπ(s, b̃)
∣∣∣ π(b̃|s)

(e)

≤ γδ (29)

(d) follows from the simple mathematical fact that |
∑

xf(x)| ≤
∑

x|f(x)|; (e) uses
Lemma 14. Now we prove the main result. Together with (28) and (29) we have,

∣∣V Π(h)− vπ(s)
∣∣ ≤

∣∣∣∣∣∣V Π(h)−
∑
b̃∈B

〈QΠ(ψ−1(s, b̃))〉Bπ(b̃|s)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑
b̃∈B

〈QΠ(ψ−1(s, b̃))〉Bπ(b̃|s)− vπ(s)

∣∣∣∣∣∣
≤ γδ + ε+ εB

Hence, δ≤ ε+εB
1−γ and completes the proof.

A.6 Proof of Theorem 8

Proof. (i) The proof follows the same steps as the proof of Theorem 7, replacing Π
with Π∗ and π with π∗ and using Lemma 12 instead of Lemma 11. In the end we
use Lemma 15 to conclude the proof.
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(ii) For ψ(h)=s and Π̆(h) :∈ψ−1
s (π∗(s)),

V ∗(h)± 2ε

1− γ
(i)

≶ v∗(s) ≡ q∗(s, π∗(s))
(i)

≶ Q∗
(
h, Π̆(h)

)
± 2ε

1− γ

which implies
∣∣∣Q∗(h,Π̆(h)

)
−V ∗(h)

∣∣∣≤ 4ε
1−γ and Lemma 16 concludes the proof.

A.7 Proof of Theorem 10

Proof. Let us define πh(s) such that (s,πh(s)) :=ψ(h,Π∗(h)) for ψ(h)=s. Then,

qπh (s, πh(s)) = vπh(s)
(a)

≶ V ∗(h)± ε+ εB
1− γ

(30)

(a) follows from Theorem 9 applied to Π=Π∗ (with π=πh). Now we derive a bound
for any b∈B.

qπh(s, b)− γ(ε+ εB)

1− γ
Thm.9

≤ 〈Q∗
(
ψ−1(s, b)

)
〉B ≡

∑
h̃∈H,ã∈A

Q∗(h̃, ã)B(h̃ã|sb)

=
∑
h̃∈H

BH(h̃|s)
∑
ã∈A

Q∗(h̃, ã)BA(ã|sbh̃)

(b)

≤
∑
h̃∈H

BH(h̃|s)
∑
ã∈A

Q∗(h̃,Π∗(h̃))BA(ã|sbh̃)

=
∑

h̃:ψ(h̃)=s

BH(h̃|s)V ∗(h̃)

(c)

≤ V ∗(h) + ε (31)

(b) is due to the definition of optimal value and (c) follows form the theorem’s
assumptions. Together (30) and (31) imply,

vπh(s) = qπh (s, πh(s)) ≤ max
b̃∈B

qπh(s, b̃)
(31)

≤ V ∗(h) +
ε+ γεB
1− γ

(30)

≤ vπh(s) +
2(ε+ εB)

1− γ
(32)

(ii) For ε=εB=0, the previous equation implies vπh(s)=maxb̃∈Bq
πh(s,b̃). It shows

that πh(s)=π∗(s) for all ψ(h)=s.

(i) Now for general ε+εB>0 case. For all s∈S and b∈B we have,

0 ≤ q∗(s, b)− qπh(s, b) ≡
∑

s̃∈S,r̃∈R

p(s̃r̃|sb)γ (v∗(s̃)− vπh(s̃))
(d)

≤ γmax
s̃∈S

(v∗(s̃)− vπh(s̃))
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0 ≤ v∗(s)− vπh(s)
(e)

≤ max
b̃∈B

q∗(s, b̃)−max
b̃∈B

qπh(s, b̃) +
2(ε+ εB)

1− γ
(f)

≤ max
b̃∈B

(
q∗(s, b̃)− qπh(s, b̃)

)
+

2(ε+ εB)

1− γ

(d) expectation is replace by maximum operation; (e) follows from the definition
of v∗(s) and (32); (f) is a simple mathematical fact of maximization operation.
Together this implies,

max
s̃∈S

(v∗(s̃)− vπh(s̃)) ≤ γmax
s̃∈S

(v∗(s̃)− vπh(s̃)) +
2(ε+ εB)

1− γ

⇒ max
s̃∈S

(v∗(s̃)− vπh(s̃)) ≤ 2(ε+ εB)

(1− γ)2
(33)

Hence for any ψ(h)=s, we have,

V ∗(h)− ε+ εB
1− γ

(30)

≤ vπh(s)

(g)

≤ v∗(s)
(33)

≤ vπh(s) +
2(ε+ εB)

(1− γ)2

(30)

≤ V ∗(h) +
ε+ εB
1− γ

+
2(ε+ εB)

(1− γ)2
≤ V ∗(h) +

3(ε+ εB)

(1− γ)2

(g) holds by definition. Hence, the main results follows by using Lemma 14 with Π
replaced by Π∗ and π by π∗.

B Lemmas

In this section, we establish a couple of important lemmas that bound the (optimal)
value loss when we evaluate the action-value function only at the representatives.

Lemma 11. For any policy Π, and ψ(h)=s the following holds,∣∣∣∣∣∣V Π(h)−
∑
b̃∈B

QΠ(ψ−1(s, b̃))πR(b̃|s)

∣∣∣∣∣∣ ≤ εQ(s) +
εΠ(s)

1− γ
.
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Proof. For any ψ(h)=s, we start from the value function of the original process,

V Π(h) ≡
∑
ã∈A

QΠ(h, ã)Π(ã|h)

(a)
=

∑
b̃∈B

∑
ã∈ψ−1

s (b̃)

QΠ(h, ã)Π(ã|h)

=
∑
b̃∈B

∑
ã∈ψ−1

s (b̃)

(
QΠ(h, ã) +QΠ(ψ−1(s, b̃))−QΠ(ψ−1(s, b̃))

)
Π(ã|h)

=
∑
b̃∈B

QΠ(ψ−1(s, b̃))
∑

ã∈ψ−1
s (b̃)

Π(ã|h) +
∑
b̃∈B

∑
ã∈ψ−1

s (b̃)

(
QΠ(h, ã)−QΠ(ψ−1(s, b̃))

)
Π(ã|h)

(b)

≤
∑
b̃∈B

QΠ(ψ−1(s, b̃))Πψ(b̃|h) + εQ(s)

=
∑
b̃∈B

QΠ(ψ−1(s, b̃))
(

Πψ(b̃|h) + πR(b̃|s)− πR(b̃|s)
)

+ εQ(s)

=
∑
b̃∈B

QΠ(ψ−1(s, b̃))πR(b̃|s) +
∑
b̃∈B

QΠ(ψ−1(s, b̃))
(

Πψ(b̃|h)− πR(b̃|s)
)

+ εQ(s)

(c)

≤
∑
b̃∈B

QΠ(ψ−1(s, b̃))πR(b̃|s) +
εΠ(s)

1− γ
+ εQ(s)

(a) follows from the fact that the mapping is defined to be surjective; (b) from (8)
and (17), (c) uses (14) and the fact that action-value function is bounded, so is the
representative. It is easy to get the other side of the inequality from similar steps.

Now, we bound the error of evaluating the action-value function only at the
representatives of the mapping when the agent is following the optimal policy in the
original process.

Lemma 12. For the optimal policy Π∗, and for all ψ(h)=s the following holds,∣∣∣∣V ∗(h)−max
b̃∈B

Q∗(ψ−1(s, b̃))

∣∣∣∣ ≤ εQ(s).

Proof. For any ψ(h)=s we have,

V ∗(h) ≡ max
ã∈A

Q∗(h, ã)
(a)
= max

b̃∈B
max

ã∈ψ−1
s (b̃)

Q∗(h, ã)

(17)

≶ max
b̃∈B

Q∗(ψ−1(s, b̃))± εQ(s)

(a) follows from the fact that mapping is defined to be surjective.
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Lemma 13. Let Pψ be an MDP then Q∗(h,a)=Q∗(h′,a′) for all ψ(h,a)=ψ(h′,a′).

Proof. Let δ := sup
h,h′,:ψ(h)=ψ(h′),a,a′

|Q∗(h,a)−Q∗(h′,a′)|, then for all ψ(h)=ψ(h′),

|V ∗(h)− V ∗(h′)| ≡
∣∣∣∣max
ã∈A

Q∗(h, ã)−max
ã∈A

Q∗(h′, ã)

∣∣∣∣
(a)

≤ max
ã∈A
|Q∗(h, ã)−Q∗(h′, ã)| ≤ δ (34)

(a) follows from simple mathematical fact of maximum value. Now for all ψ(h,a)=
ψ(h′,a′)=(s,b),

|Q∗(h, a)−Q∗(h′, a′)| (b)
=

∣∣∣∣∣ ∑
s̃∈S,r̃∈R

Pψ(s̃r̃|ha)(r̃ + γV ∗(h̃))

−
∑

s̃∈S,r̃∈R

Pψ(s̃r̃|h′a′)(r̃ + γV ∗(h̃′))

∣∣∣∣∣
(15)
= γ

∣∣∣∣∣ ∑
s̃∈S,r̃∈R

p(s̃r̃|sb)
(
V ∗(h̃)− V ∗(h̃′)

)∣∣∣∣∣
(34)

≤ γδ (35)

(b) follows from the definition and h̃= haõr̃ and h̃′= h′a′õr̃, and ψ(h̃) =ψ(h̃′) = s̃.
By (35) we have δ≤γδ⇒δ=0.

The following lemma is a stepping stone for the main results. It establishes a
link between the value functions loss and the action-value functions loss.

Lemma 14. (〈Q〉B−q) Let |V Π(h)−vπ(s)|≤ ε for all ψ(h) = s. Then for all s∈S
and b∈B it holds: ∣∣〈QΠ(ψ−1(s, b))〉B − qπ(s, b)

∣∣ ≤ γε.

Proof. We begin with the action value of the representative of any (s,b) as

〈QΠ(ψ−1(s, b))〉B ≡
∑

h̃∈H,ã∈A

B(h̃ã|sb)
∑

õ∈O,r̃∈R

P (õr̃|h̃ã)
(
r̃ + γV Π(h̃ãõr̃)

)
(a)
=

∑
h̃∈H,ã∈A

B(h̃ã|sb)
∑
s̃∈S

∑
r̃∈R,õ:ψ(h̃ãõr̃)=s̃

P (õr̃|h̃ã)
(
r̃ + γV Π(h̃ãõr̃)

)
(b)

≶
∑

h̃∈H,ã∈A

B(h̃ã|sb)
∑

s̃∈S,r̃∈R

Pψ(s̃r̃|h̃ã) (r̃ + γvπ(s̃)± γε)

≡
∑

s̃∈S,r̃∈R

pB(s̃r̃|sb) (r̃ + γvπ(s̃))± γε ≡ qπ(s, b)± γε
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(a) follows since ψ is surjective; (b) follows from the assumption.

Lemma 15. (εQΠ) Let |QΠ(h,a)−QΠ(h′,a′)| ≤ ε for all ψ(h,a) = ψ(h′,a′). Then
εQ(s)≤ε for all s∈S.

Proof. For all s∈S,

εQ(s) ≡ sup
h̃,ã,b̃:ψ(h̃,ã)=(s,b̃)

|QΠ(ψ−1(s, b̃))−QΠ(h̃, ã)|
(a)

≤ ε

(a) follows from the assumption and the fact that QΠ(ψ−1(s,b)) can be any member
in the pre-image set of (s,b).

Moreover, we need Lemma 8 from [6]. For completeness, we state the lemma
in this work without repeating the proof. It gives value loss-bounds between the
optimal policy and a policy that has bounded one-step action-value loss.

Lemma 16. ([6] Lemma 8. Π(h) 6= Π∗(h)) If Q∗(h,Π(h))≥V ∗(h)−ε for all h and
some policy Π, then for all h and a it follows:

0 ≤ Q∗(h, a)−QΠ(h, a) ≤ γε

1− γ
and 0 ≤ V ∗(h)− V Π(h) ≤ ε

1− γ
.

C List of Notation

Symbol Explanation

R set of real numbers

× Cartesian product

∆(X) probability distribution over a set X

XT transpose of matrix X

x̃ local variable

x′ different member of a set

P original process

A,O,R continuous action, observation and reward spaces of the original process

a,o,r action, observation and reward tuple ∈A×O×R
H set of all histories

h history ∈H
Q,V,Π (action-)value function and policy of the original process

Π∗ optimal policy of the original process

Π̆ elevated policy on the original process from the abstract-process

γ discount factor
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ψ homomorphism map

Pψ marginalized abstract-process

pB surrogate MDP process

pMDP abstract MDP process

S,B finite state and action spaces of the abstract-process

s,b state action pair ∈S×B
q,v,π (action-)value function and policy of the surrogate MDP process

π∗ optimal policy of the surrogate MDP process

Πψ history-dependent abstract policy

ψ−1
b (s) set of histories mapped to (s,b) pair

ψs(b) history-dependent set of (original) actions mapped to an (s,b) pair

QΠ(ψ−1(s,b))action value representative of an (s,b) partition

εΠ maximum variation among abstracted policy members

εQ maximum variation among abstracted action value members

B stochastic inverse of the homomorphism map

Bπ B and π induced measure on the original action space

〈·〉B B average

ε,εB,εmax small positive error constants

D Example Aggregations

In this section, we provide a toy example to illustrate the possibility of approximately
joint state-action aggregation beyond MDPs. In the example, contrary to ESA, we
also aggregate the approximately similar policy state-action pairs. These pairs are
not aggregated in ESA due to the exact policy similarity condition, cf. Theorem 5
of [6].

For simplicity, we assume that actions and histories are mapped independently
and the original environment P is an MDP. We define the original action and ob-
servation spaces as A = O = {1,2,3,4}. Moreover, S = {X,Y }, B = {α,β}. The
original state-action pairs are represented by dots and the shaded regions indicate
the mapping function. The dynamics are (fictitious) region constant (see Figure 4)9.

We assume an arbitrary policy which may depend on the history rather than only
on the last observation. This allows complex dynamics for the proof of concept. We

9Only the dots are elements of the joint space and the regions are fictitious. The aggregated
pair (s,b) is indicated adjacent to each region.

30



a

o

R1 R2

R3R4a

R4b

(X,α) (X,β)

(Y,α) (Y,β)

a

o

R1 R2

R3R4a

R4b

(X,α) (X,β)

(Y,α) (Y,β)

a

o

R1 R2a

R2b

R3a

R3b

R4a

R4b

(X,α) (X,β)

(Y,α) (Y,β)

Figure 4: (Left): Non-MDP aggregation, (Middle): Approximate aggregation,
(Right): Violating policy uniformity condition

express the environment as

P (o′|oa) =
∑
ã∈A

P (o′|oa)Π(ã|oao′)

=
∑
ã∈A

PΠ(o′ã|oa).

We express the dynamics with a joint measure PΠ and do not distinguish be-
tween the policy and the environment unless otherwise stated. Let the rewards be
a function of the originating region and the problem has a finite set of real-valued
rewards. We present three cases in this example: non-MDP dynamics, approximate
action-values and policy disagreement.

Non-MDP Example. In the first case, this example (see Figure 4:Left) demon-
strates a non-MDP aggregation. Let the problem have the following region uniform
transition probability matrix in the observation-action space:

PΠ =


0 1 0 0 0
0 0 1 0 0
0 0 0 1/2 1/2
1 0 0 0 0

1/2 0 0 1/4 1/4

 (36)

where PΠ
ij is the probability of reaching region Rj if the current (o,a)∈Ri

10. Formally,
PΠ
ij =

∑
(õ,ã)∈RjP

Π(õã|oa∈Rj). The marginalized process is expressed as

Pψ(X|ha) = Pψ(X|oa) =
∑

õ:ψ(oaõ)=X,ã∈A

PΠ(õã|oa).

10The indexes should be read in order — i.e. 1,2,3,4a,4b.
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This is not even approximately an MDP. It is evident from the following proba-
bilities of reaching state X from itself.

Pψ(X|oa ∈ R4a) = PΠ
4a3 + PΠ

4a4a + PΠ
4a4b = 0

Pψ(X|oa ∈ R4b) = PΠ
4b3 + PΠ

4b4a + PΠ
4b4b =

1

2

The above equations show that reaching state X from the regions R4a and R4b

are different. But, we can still aggregate the regions if they have similar action-
values. Let the regional rewards are r=

[
0 0 0 γ 0

]
. The regional action values

can be expressed as

QΠ(o, a) = r(oa) + γ
∑

õ∈O,ã∈A

QΠ(õ, ã)PΠ(õã|oa). (37)

It translates into a vectorization form with each region i has the action value
expressed as

Qi = ri + γ
∑
j

PΠ
ijQj. (38)

By solving this system of equations we get the following region uniform action-value
vector,

Q =
[
c− 2 γ2c γc c c

]
(39)

where c= 2
1−γ3≥2. Hence, the example shows that even the regions R4a and R4b have

non-MDP dynamics, they can still be aggregated due to the same action-values.

Approximate Q-value Example. Now for the second case, we perform an ap-
proximate aggregation in region R3 (see Figure 4:Middle). Let the reward in R3b

is ε. The updated reward vector is r=
[
0 0 0 ε γ 0

]
. By keeping everything

same as in the first example, the new transition matrix is given as

PΠ =


0 1 0 0 0 0
0 0 1/2 1/2 0 0
0 0 0 0 1/2 1/2
0 0 0 0 1/2 1/2
1 0 0 0 0 0

1/2 0 0 0 1/4 1/4

 (40)

Similar to the first case, we get the aggregated action-values as

Q =
[
c− 2 γε

2
+ γ2c γc γc+ ε c c

]
(41)

where c= γ2ε+4
2(1−γ3)

≥2. It shows that the regions R3a and R3b can be approximately
aggregated together.

Approximate Policy Example. As the last case, let us divide the region R2 into
two regions with different policies (see Figure 4:Right). Let the policy is approxi-
mately similar, i.e. |Π(a|o∈R2a)−Π(a|o∈R2b)|=ε′ for all ψ(o,a)=(Y,β). It makes
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region R1 approachable from itself because ε′ weight of the aggregated action β in
region R2b is distributed to the aggregated action α in region R1. This effectively
translates into the following region uniform transition matrix,

PΠ =



ε′ 1/2 1/2− ε′ 0 0 0 0
0 0 0 1/2 1/2 0 0
0 0 0 1/2 1/2 0 0
0 0 0 0 0 1/2 1/2
0 0 0 0 0 1/2 1/2
1 0 0 0 0 0 0

1/2 0 0 0 0 1/4 1/4


The reward structure is the same as in the previous case, r =[

0 0 0 0 ε γ 0
]
. Finally, we get the action-value vector as

Q =



γ2g(ε′)(ε/2 + γc)
γε
2

+ γ2c
γε
2

+ γ2c
γc

γc+ ε
c
c



T

(42)

where c= 4+γ2εg(ε′)
2(1−γ3g(ε′))

and g(ε′):= 1−ε′
1−γε′ . This final case shows that although the regions

R2a and R2b have different policies they still have same action-values. Hence, the
regions can be aggregated together exactly. It allows us to have coarser maps than
ESA permits.
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