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Abstract

After a general discussion on the choice of gauge, we compare the quark prop-
agator in the background of one instanton in regular and singular gauge with a
gauge invariant propagator obtained by inserting a path-ordered gluon exponential.
Using a gauge motivated by this analysis, we were able to obtain a finite result
for the quark condensate without introducing an infrared cutoff nor invoking some
instanton model.
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1 Introduction

A variety of predictions concerning chiral symmetry breaking and concerning the lightest
hadrons in various channels can be made within the instanton liquid model. Although
there are various attempts to derive this model from first principles, it is still an open
question, whether instantons melt or not. Thus the infrared problem remains unsolved.

In section 3, I present a small calculation of the quark condensate. I get a finite result by
choosing an approriate gauge and performing a self energy resummation.

Because the finiteness essentially depends on the choice of gauge, I give a more general
discussion in section 2 of how to choose a gauge when calculating gauge dependent quan-
tities. The quark propagator in the background of one instanton in the well known regular
and singular gauge is compared to a gauge invariant (GI) propagator, for which explicit
expressions are calculated in this work.

The rest of section 1 contains a summary of well known instanton formulas, which are
used in the subsequent sections.
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Instantons in QCD

The solutions of the euclidian Yang-Mills equations fall into topology classes N ∈ ZZ and
are called N instanton2 solutions. The one instanton solution has the well-known form

Aa
Iµ(x) = Oab

I η
QI
bµν

(x− zI)ν
(x− zI)2

2ρ2

(x− zI)2 + ρ2
in singular gauge

Aa
Iµ(x) = Oab

I η
−QI
bµν

2(x − zI)ν
(x− zI)2 + ρ2

in regular gauge

γI = (zI, OI , ρI , QI) = (location, orientation, radius, topological charge)

The parameters γI of the instanton simply reflect the symmetries of the Lagrangian
(translation, rotation, scale invariance, parity). The partition function in semiclassical
approximation is [1],[2]

Z1 =
1

2

∑
QI=±1

∫
d4zIdOIdρI D(ρI) = V4

∫ ∞
0
dρD(ρ) = V4D̄

D(ρ) =
CNc
ρ5

S2Nc
0 e−S1(ρ) = CNcρ

−5S2Nc
0 (ρΛ)b

CNc =
4.6e−1.679Nc

π2(Nc − 1)!(Nc − 2)!

S0 =
8π2

g2
0

, S1(ρ) =
8π2

g2(ρ)
= b ln

1

ρΛ
, Λ = ΛPV

S2(ρ) =
8π2

g2(ρ)
= b ln

1

ρΛ
+
b′

b
ln ln

1

ρΛ
+O(

1

ln 1
ρΛ

) ,

D(ρ) is the density of instantons of size ρ, g(ρ) the running coupling constant, b = 11
3
Nc

and b′ = 17
3
N2
c . S0 is the classical instanton action and g0 is the unrenormalized tree level

coupling constant. Whenever g0 appears in some formulas, one has to guess its value. This
unlucky situation may be improved by using the two loop expression for D(ρ) replacing
S0 by S1 and S1 by S2. But this is only an improvement for a small coupling. When ρ
reaches the QCD scale Λ one should rely on a low order calculation to have a chance to
get sensible results.

The Infrared Problem

The sum of widely separated instantons is also an approximate solution of the YM equa-
tions.

A =
N∑
I=1

AI , S[A] ≈ NS0

2In this work instantons (N > 0) and anti-instantons (N < 0) will both be called instantons and are
distinguished by their topological charge Q = N .
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The partition function of this so called instanton gas is

Z =
∞∑
N=0

ZN , ZN ≈
1

N !
(V4D̄)N

The sum is dominated by an instanton density N/V4 = D̄. Unfortunately D̄ is infinite and
the assumption of a dilute instanton gas is inconsistent. This infinite density is caused
by the divergence of D(ρ) for large ρ, which in fact is a consequence of the increasing
coupling constant at large distances.

There were several suggestions to overcome this problem. The most primitive is to intro-
duce a cut-off ρc and ignore large instantons:

D̄ρc =
∫ ρc

0
dρD(ρ) .

The cut-off is chosen small enough to make the spacetime fraction f filled with instantons
less than 1 so that the dilute gas model is justified

f =
2

Nc

∫ ρc

0
dρ

1

2
π2ρ4D(ρ) < 1

This simple cut-off procedure can be improved by introducing a scale invariant hardcore
repulsion between instantons, which effectively supresses large instantons [3]. This pro-
cedure has the advantage of respecting the scaling Ward identities which are otherwise
violated by the simple cut-off ansatz. In [4] such an repulsion has been found leading
to a phenomenologically welcomed packing fraction. Unfortunately this repulsion is an
artefact of the sum-ansatz as has been shown by [7]. Therefore the infrared problem is
still unsolved.

Nevertheless it is possible to make successful predictions by simply assuming a certain
instanton density and some average radius. This instanton liquid model has been very
successful in describing the physics of light hadrons [5],[6].

In high energy processes involving momenta p of 1− 10GeV, D(ρ) is usually multiplied
by a function sharply peaked at ρ ∼ p−1. The integral over ρ is now dominated by small
instantons and infrared convergent. The results are therefore independent of the cut-off
and no model has to be invented.

2 On the Choice of Gauge

Generalities

Gauge symmetry is a rather large symmetry, an infinite product of SU(Nc) in the case of
QCD. A physicist is always happy of having symmetries because they can be exploited to
make predictions even without solving the theory. Gauge symmetry is neccessary to get a
physical vector particle spectrum. As long as one does not make an approximation which
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manifestly breaks gauge symmetry one can choose a comfortable gauge for calculations
because the result is GI. But it is very difficult not to break GI, especially in a non-
abelian gauge theory. It is not easy to find a GI regularization and furthermore, the gluon
propagator, the primary object in perturbation theory, is not GI. Of course it is meanwhile
well known how to perform GI calculations in every order perturbation theory using FP-
ghosts and dimensional regularization. Every new approach beyond perturbation theory
is again confronted with the problem of GI. In lattice theory the Wilson action had to
be invented. In Schwinger-Dyson and Bethe-Salpeter type selfconsistency equations GI
is still an open problem. In instanton physics when going beyond the one instanton
approximation the choice of gauge is also important. This will be discussed in the next
paragraph. There is a related problem when considering non-GI objects from the very
beginning like the gluon or quark propagator. Strictly speaking they are only defined when
relying to a certain gauge. In principle one should not give them any physical meaning at
all. Often one is tempted to do so and therefore it is necessary to give some motivation
of choosing this or that gauge.

A Natural Gauge

The gauge field Aa
µ describes the connection between neighbouring vector bundles over the

spacetime manifold IR4. Thus a choice of gauge is like the choice of a coordinate system
in general relativity with connection Γµνρ. When choosing a crooked coordinate system,
although being in a smooth universe, there will appear fictitious accelerations towering
above the real physical accelerations

ẍµphys = ẍµfict + Γµνρẋ
ν ẋρ .

When making general covariant calculations these fictitious accelerations and the Γ con-
tribution will cancel out thus leading to the correct small result. But the slightest un-
systematic approximation will produce gross errors. The natural solution of this problem
is to use a coordinate system as smooth as possible to avoid fictitious accelerations, e.g.
to choose Γµνρ as small as possible. To make this statement more quantitative we may
try to minimize (ẍµphys − ẍ

µ
fict)

2 simultaneously for all curves. This is done by choosing a
coordinate system which minimizes3

||Γ||2 :=
∫

Γ νρ
µ Γµνρ d

4x

This obviously measures the crookedness of the coordinate system.

Let us now transfere this to QCD. The analog norm for the gauge potential is

||A||2 :=
∫
trcAµA

µ d4x

A stationary point is found by variating ||A|| w.r.t. gauge transformations

δAµ = i[Aµ,Ω] + ∂µΩ , δ||A||2 = 2i
∫
tr(∂µA

µ)Ωd4x = 0 ∀Ω ⇐⇒ ∂µA
µ = 0

3In Euclidian space this is a positive definite norm
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Therefore in Lorentz gauge, Aa
µ contains as few pure gauge as possible, if the stationary

point is a minimum. An expansion in A is thus most rapidly convergent in Lorentz gauge.
In applications where A is not needed in total e.g. when only a certain momentum region
is probed, different norms and different gauges may be optimal in the sense discussed
above. Especially one should include derivatives of A into the norm in order to guarantee
a smooth A which is important for high energies.

On the Gauge in Instanton Physics

When calculating GI quantities in the background of one instanton in a GI way the choice
of gauge is only a matter of convenience. But one can see that there are large cancelations
between different terms in regular gauge at large distances due to their slow decay and in
singular gauge at small distances due to the topological singularity at the instanton center.
For non-GI invariant quantities like the gluon or quark propagator, or when making some
unsystematic approximation, the lesson is to use singular/regular gauge when dealing
with low/high energies to avoid these cancelations. This is consistent with the discussion
given above. Singular as well as regular gauge fulfill the Lorentz condition. ||Asing|| is
finite and a minimum. Asing is therefore a good choice for low energies. For high energies
it is important to have a smooth A which is obviously only satisfied by the regular gauge.

To linearly superpone instantons they have to decay rapidly enough. Therefore one has
to use singular gauge. This argument can in principle be circumvented by superponing
two fields AN and AN the former/latter being an exact multi-instanton/anti-instanton
configuration in regular gauge. Despite this, for low energies singular gauge is in any
case a good choice and for high energies a one instanton approximation is already a good
approximation.

The Quark Propagator in Axial Gauge

A specific example to test the gauge dependence is the quark propagator. The contri-
bution of one instanton of radius ρ to M(p) = ip2S̄I(p) which usually is interpreted as
a constituent quark mass is shown in figure 1 in regular, singular and axial gauge. The
regular graph is larger than the singular at low momentum and the singular graph shows
the slow decay (only polynomial in 1/p) for large momenta. The analytical expressions
are well known and are listed in appendix A together with expressions in axial gauge
which will be derived and discussed below.

A correlator containing color-non-singlet operators can be made GI by connecting distant
points with a special path-ordered exponential containing the gauge field. The exponen-
tial ensures the parallel transport of color from one point to the other. The GI quark
propagator may symbolically written as

Sax(x, y) = 〈0|Ψ(x)P exp
(
i
∫ y

x
dz ·A(z)

)
Ψ̄(y)|0〉 (1)
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P denotes path-ordering. We have already defined Sax to be its color singlet part because
only the singlet part is GI. Sax will be called the axial propagator because in axial gauge
with nµ = xµ−yµ the exponential vanishes. In the one instanton background in zeromode
approximation we get

Sax(x, y) =
11c
Nc

trc

[
P exp

(
i
∫ y

x
dz ·A(z)

)
ψ(x)ψ̄(y)

]
where A is now the instanton field and ψ is the zeromode in any gauge. In a coordinate
system where the instanton sits at the origin and x− y is in time direction4 (x = y = z)
the path ordered exponential reduces to an ordinary exponential. Alternatively we could
have tried to find a gauge transformation which transforms the regular gauge in axial
gauge. In both cases we get:

Sax(x, y) =
1

Nc
trc
[
ψax(x)ψ̄ax(y)

]
, ψax(x) = R(x)ψreg(x), (2)

R(x) = e
±iα(x) τ·x|x| = cosα(x)± iτ ·x|x| sinα(x) =: ±iτ±µ ·x̃(x) (3)

α(x) =
|x|√

x2 + ρ2
arctan

x0√
x2 + ρ2

(4)

α(x) may also be written in a covariant form

α(x) = ±
(

1 +
ρ2(x− y)2

x2y2 − (xy)2

)−1/2

arctan

√√√√ (x2 − (xy))2

x2y2 − (xy)2 + ρ2(x− y)2

but now α(x) depends also on y and the expression for the propagator no longer factorizes.
The reason for this is that the axial gauge is not covariant, but the definition of the
propagator is. Inserting (3) and (12) into (2) we get

Sax(x, y) =
1

Nc

(
(x̃ỹ)− 1

2
x̃µỹνσ

µν
)

1± γ5

2
ϕreg(x)ϕreg(y) (5)

Inserting (3), (4) and (12) into (5) the space-time averaged propagator can be expressed
as an integral over elementary functions

S̄(x− y) =
∫ ∞

0
dr
∫ ∞
−∞
dt 4πr2 cos

[
r

R

(
arctan

t+ |x− y|
R

− arctan
t

R

)]
·

· 1

2Nc

ρ2

π2(R2 + (t+ |x− y|)2)3/2(R2 + t2)3/2
, R2 = r2 + ρ2

The difference between the propagator in regular and axial gauge is the insertion of the
cos[. . .] factor. Therefore the axial propagator is everywhere smaller than the regular
propagator, except at x = y where they coincide because the path-ordered exponential

4 Although working in Euclidian space we will adopt the Minkowskian language (x0,x) = (time,
space).
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is one. At large distances it is smaller by a factor π/4. Instead of performing the inte-
gration in coordinate space, let us go directly to the more interesting momentum space
representation:

S̄I(p) =
1

2Nc
ϕµax(p)ϕ

µ†
ax(p) , ϕµax(p) =

∫
x̃µ(x)ϕreg(x)eipxdx

Although ϕµax does not transform like a vector, we can choose a convenient direction of p
because ϕϕ† is a Lorentz scalar. For pure spacelike p the spacial components of ϕ vanish
because the integrand is anti-symmetric w.r.t time reflection. Only the time component
is nontrivial

ϕ0
ax(p) =

∫
d3r

∫
dt cos

[
r

R
arctan

t

R

]
ρ

π(R2 + t2)3/2
eip·r

With the following hints

cos(γ arctan x) = Re
(

1 + ix

1− ix

)γ/2
∫ ∞
−∞

(R− it)−α(R+ it)−βdt = 2π(2R)1−α−β Γ(α + β − 1)

Γ(α)Γ(β)

Γ(
3

2
− x)Γ(

3

2
+ x) =

(1/4 − x2)π

cos πx∫
d3r eip·rf(r) =

2π

p

∫ ∞
0
f(r) sin(pr)r dr (6)

the reader should be able to perform the t and the angular integration dΩr,

ϕ0
ax(p) =

8

pρ

∫ ∞
0
cos

(
πr

2R

)
sin(pr)r dr

I was not able to perform this last integral analytically, but for small momenta it is easy to
see that ϕ0

ax(p) behaves like π2ρ/p. For large p it decays like∼ e−pρ with a non-polynomial
coefficient because of an essential singularity at r = ±iρ. Comparing ϕreg, ϕsing and ϕax
plotted in figure 1 we see that the axial ϕ lies somewhat in between the regular and the
singular. So one may conclude that axial gauge is a good compromise for all momenta.

The calculation of the GI propagator seems to make the discussion of its gauge dependent
partners obsolet. I will now argue that this is not the case. The reason is that there
are a huge number of GI definitions of a quark propagator and (1) is only one possible
choice. One obvious generalization is to choose a more complicated path from x to y than
a straight line. The next thing one could do is not to restrict oneself to a specific path, but
to take into account all paths one is interested in and average the results with arbitrary
weights. Another possibility is to let the path depend on the gauge field itself, as long as
this choice is made in a GI way. Finally one can combine both generalizations. I am sure
that it is possible to produce any result for the propagator with a suitable generalized
definition. The advantage of the standard axial propagator is, that the definition is simple
and that the non local operator has a physical interpretation. It creates a quark-antiquark
pair connected by a thin gluon flux tube. This might be a good choice for a non-local
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meson creation operator. But it is also plausible that one of the generalizations given
above is even better. The only thing I want to point out is, that the GI definition for
the propagator given above is nothing more than to work in axial gauge. One still has to
choose the right gauge using more sophisticated arguments.

3 The Quark Condensate

Nc →∞

The only reason for performing the Nc → ∞ limit is to make the Nc dependence of the
resulting formulas simple. The accuracy has been checked to be within the standard
10% for Nc = 3 usually achieved by 1/Nc expansion. Here the accuracy can simply be
understood. The actual expansion parameter is not 1/Nc = 1/3 itself but 1/b ≈ 1/11.
The following asymptotic formulas will be used

Nc!
1/Nc •= Nc/e , b

•
=

11

3
Nc , C

1/b
Nc

•
= 2.22b−6/11

ρ5D(ρ) ∼ (2.22(S0/b)
6/11ρΛ)b , S0/b =

24π2

11
(g2

0Nc)
−1 (7)

Every equality in the large Nc limit will be marked with a dot. Notice that in this limit
instantons of size ρ < 1

2.22
(S0/b)−6/11Λ−1 are completely suppressed. Above this threshold

the instanton density gets infinite. S0/b is independent of Nc because g0 ∼ 1/
√
Nc.

Effective Quark Mass

In the presense of one light quark flavor the instanton density D(ρ) has to be multiplied
with the functional determinant of the Dirac operator

Det(iD/ + im) ≈ 1.34mρ

which is proportional to m because of a zeromode of D/. The quark propagator in the
background of one instanton is dominated by this zeromode

SI(p, q) =
ψI(p)ψ

†
I(q)

im

Averaging this expression over all collective coordinates γI one gets

M(p) := ip2S̄I(p) =
1.34

2Nc

∫ ∞
0
dρ p2ρD(ρ)ϕ2(p)

Summing the contribution to the propagator of 0, 1, 2, 3, . . . instantons, which is the analog
of a selfenergy resummation in perturbation theory,

S(p) =
1

p/
+

1

p/

M(p)

i

1

p/
+

1

p/

M(p)

i

1

p/

M(p)

i

1

p/
+ . . . =

1

p/ + iM(p)

9



justifies to call M(p) a dynamical quark mass. Expressions of ϕ in various gauges are
given in appendix A. The graphs of ϕ(p) in singular and regular gauge cross over at

ϕsing(p) = ϕreg(p) ⇐⇒ 2pρ ≈ 2.5

Therefore one should use regular gauge for large ρ and singular gauge for small ρ. This
choice of gauge also makes the integral convergent for large ρ. At this stage we have no
infrared problem. Using regular gauge in the whole integration interval we get

Mreg(p) = Bp(
Λ

2p
)b , B = 1.34 · 16π2(CNcb

2Nc)(S0/b)
6b/11Ib/Nc

Ib =
∫ ∞

0
dz zb−2e−z = (b− 2)! , z = 2pρ

The integral is sharply dominated by

z
•
= b± b1/2 >> 2.5

therefore the result is independent of the choice of gauge for z < 2.5 justifying our use of
regular gauge over the whole integration interval. Axial gauge would lead to nearly the
same result as can be seen from figure 1. Using singular gauge for large ρ would produce
a divergent integral dominated by arbitrary large instantons inconsistent with the choice
of gauge discussed above. The infrared ”problem” shows up in the rapid raise of M(p)
for low p, which effectively supresses the propagation of quarks with low virtuality p2.
Consider some process involving quarks at distances x = 1/pc. The effective quarkmass
M(1/x) is dominated by instantons of much larger size

ρ = ρc(1± b−1/2) >> x , ρc =
b

2pc
.

In other words, given an instanton of radius ρ influences the physics at a much smaller
scale x = 2

b
ρ << ρ. Therefore the interior of the instanton is probed and one should avoid

the singularity at its center by using regular gauge.

The Quark Condensate

Let us now calculate a real physical gauge invariant observable, the quark condensate

〈ψ̄ψ〉 := lim
x→0

trCD(S(x)− S0(x)) = −4iNc

∫ M(p)

p2 +M2(p)

d4p

(2π)4

Inserting M(p) and performing the angular integration we get

|〈ψ̄ψ〉| = Nc

16π2
B3/bJbΛ

3

Jb =
∫ ∞

0

zb+2

1 + z2b
dz =

π

2b sin( b+3
2b
π)

•
=

π

2b
, p = B1/bΛ

2
z

10



The integral is finite and sharply dominated by z
•
= 1 ± b−1. Without resummation of

the selfenergies the integral Jb and thus condensate would have turned out to be infinite.
The condensate is dominated by quark wavefunctions with momenta

p = pc(1± b−1) , pc = βb
Λ

2
, β :=

1

b
B1/b •=

2.22

e
(S0/b)

6/11

and depends on Λ and g0

|〈ψ̄ψ〉|1/3 = 0.139βbΛ .

Discussion

Expressing pc and ρc in terms of |〈ψ̄ψ〉| by eliminating β we get our main result

pc = 3.59|〈ψ̄ψ〉|1/3

ρc =
1.96

Nc
|〈ψ̄ψ〉|1/3 (8)

2.22NcΛ = (g2
0Nc)

6/11|〈ψ̄ψ〉|1/3 (9)

A weak point is the experimental extraction of g0. It should be extracted from a reliable
treelevel process at low energies presumably of the order of ρc. In QCD improved Bag-
Models the main nonperturbative effect is modeled by the bag and the hyperfinesplitting
is caused by a one gluon exchange. g0 extracted from ∆−N splitting is [8]

gbag0 ≈ 2.6

Let me also give a theoretical guess of g0. The change to a two loop expression for the
instanton density S0/1 ; S1/2 can be effectively performed by only replacing S0 in the
following way

(S0/b)
6/11
; (ln

1

ρΛ
)α , α =

15

121

Because α is very small (ln 1
ρΛ

)α is approximately one in a large range of values for ρΛ.
and for

gguess0 = 2.7
√

3/Nc

the two 2 loop density coincides with the one loop density. Because we do not believe
that the 2 loop density is an improvement, one should not take gguess0 too seriously. At
least it is not in contradiction with gbag0 .

The condensate is well known to be |〈ψ̄ψ〉|1/3 = 240MeV. Setting Nc = 3 and taking
g0 = 2.6 for granted we get

pc ±∆p = (860± 80)MeV

ρc ±∆ρ = (160± 50)−1MeV (10)

ΛPV ≈ 190MeV

The most interesting thing is, that the condensate is sharply dominated by quark field
wave functions of rahter large momentum pc. On the other hand the dominating instan-
tons have a very large radius ρc, 4 times larger than usually assumed in instanton liquid
models. Nevertheless the predicted value of ΛPV , which of course must be assigned a large
error because of the rough estimate of g0, is in agreement with experiment.
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4 Conclusion

Whenever one is calculating gauge dependent objects or when making gauge breaking ap-
proximations, one is confronted with the problem of choosing a ”good” gauge. Specializing
the general discussion of section 2 to the case of instantons, we came to the conclusion
that the regular gauge is appropriate for small distances and the singular gauge for pro-
cesses involving large distances. The GI propagator was defined, calculated and compared
to the propagator in singular and regular gauge (figure 1). The conclusion was, that the
GI propagator is not a-priori a good choice, but lies somewhat in between regular and
singular gauge.

Using an appropriate gauge along the lines discussed in section 2 we were able to derive
a finite quark condensate without taking an infrared cut-off for the instanton radius nor
relying on some instanton model. The linear relation between |〈ψ̄ψ〉|1/3 and the QCD
scale Λ is in agreement with experiment. The condensate if formed by quark fields of
high momenta pc = 860MeV mainly lying within the sharp region ∆p = 80MeV. The
dominating instantons are very large (ρc = 160MeV).

Acknowledgements I want to thank the ”Deutsche Forschungs-Gemeinschaft” for sup-
porting this work.

A Instantons in Singular, Regular and Axial Gauge

The instanton at the origin in standard orientation is given in singular, regular and axial
gauge:

Asing
µ (x) = η±µν

xν
x2

ρ2

x2 + ρ2
, τ±µ τ

∓
ν = δµν + iη±µν

Areg
µ (x) = η∓µν

xν
x2 + ρ2

, τ±µ = (±i, τ )

Aax
µ (x) = R(x)Areg

µ (x)R†(x) + iR(x)∂µR
†(x) (11)

The upper/lower sign corresponds to an instanton/anti-instanton (Q = ±1).

R(x) = ±iτ±µ x̃µ(x) , x̃µ(x) =

(
cosα(x)

x
|x| sinα(x)

)

α(x) =
|x|√

x2 + ρ2
arctan

x0√
x2 + ρ2

The covariant derivative D/ has one zeromode

iD/ψ = (i∂/− A/)ψ = 0

12



where the zeromode has the following form:

ψsing(x) =
√

2ϕsing(x)x/χ , ϕsing(x) =
ρ

π|x|(x2 + ρ2)3/2

ψreg(x) =
√

2ϕreg(x)χ , ϕreg(x) =
ρ

π(x2 + ρ2)3/2
(12)

ψax(x) =
√

2ϕregR(x)χ

χ is a color Dirac spinor given by

χ±χ̄± =
1

16
γµγν

1± γ5

2
τ∓µ τ

±
ν

For light quarks the propagator is dominated by the zeromode. When averaged over the
instanton orientation, position and charge the propagator is diagonal in momentum space
and given by

〈ψ(p)ψ†(p)〉 =
1

2Nc

ϕ2(p)

where

ϕsing(p) = πρ2 d

dz
[I1(z)K1(z)− I0(z)K0(z)]z=pρ/2

ϕreg(p) =
4πρ

p
e−pρ

ϕax(p) =
8

pρ

∫ ∞
0
cos

(
πr

2
√
r2 + ρ2

)
sin(pr)r dr (13)

The asymptotics are given in the following table

p
ρ
ϕ(p) singular regular axial

pρ� 1 2π 4π π2

pρ� 1 12π
(pρ)3 4πe−pρ ∼ e−pρ

Table 1: Asymptotic behaviour of p
ρ
ϕ(p)

The constituent mass of a quark in the gas approximation is

M(p) = ip2S̄(p) = 1.34
∫ ∞

0
dρ ρD(ρ)〈ψ(p)ψ†(p)〉

Only when the instanton radius is kept fixed, the mass is proportional to

M(p) ∼ p2ϕ2(p) .

p2ϕ2(p) is plotted in figure 1 in all three gauges.
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Figure 1: Constituent quark mass M(p) ∼ p2ϕ2(p) in singular, regular and axial gauge
for fixed instanton radius ρ in arbitrary normalization. For a given momentum the cor-
responding lowest curve may be interpreted as the ”most physical” one.
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