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Abstract

The QCD gauge field is modeled as an ensemble of statistically independent
selfdual and antiselfdual regions. This model is motivated from instanton physics.
The scale anomaly then allows to relate the topological susceptibility to the gluon
condensate. With the help of Wittens formula for mη′ and an estimate of the
suppression of the gluon condensate due to light quarks the mass of the η′ can be
related to fπ and the physical gluon condensate. We get the quite satisfactory value
mη′ = 884±116 MeV. Using the physical η′ mass as an input it is in princple possible
to get information about the interaction between instantons and anti-instantons.
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1 Introduction

In many channels a direct calculation of the meson correlators in the instanton liquid
model and a spectral fit lead to reasonable results for the masses of the lightest mesons
[1]. This method even works in the axial triplet channel because the model correctly
describes spontaneous breaking of chiral symmetry. In the axial singlet channel a strong
repulsion prevents the formation of a meson [2, 9]. The conclusion is, that there is no
massless Goldstone boson in this channel, but the mass of the η′ remains undetermined.
In this letter I want to calculate the mass of the η′ by combining quite different techniques.
With the help of

• current algebra theorems for the η′,
• 1/Nc expansion,
• instanton model,
• scale anomaly

we are able to relate the η′ mass to the pion coupling constant fπ and the physical gluon
condensate.

2 Wittens formula

In leading order in 1/Nc it is possible to relate the η′ mass to the Θ dependence of the
topological susceptibility2 d2E/dΘ2 of QCD without quarks [3]:

m2
η′ =

4Nf

f2
π

(
d2E

dΘ2

)no quarks
Θ=0

,
d2E

dΘ2
=
∫
d4x 〈0|T Q(x)Q(0)|0〉conn (1)

Q(x) =
αs
4π

trcGG̃(x) , Q =
∫
d4xQ(x) ∈ ZZ

Q(x) is the topological charge density and Q the total charge. This formula is derived
by arguing, that for large Nc the topological susceptibility is dominated by the η′ state,
utilizing the axial anomaly [8] and the relation fπ = fη′, which is exact for Nc →∞.

3 Selfdual QCD

The next step is to relate the topological susceptibility to the gluon condensate 〈0|N(0)|0〉:

N(x) =
αs
4π

trcGG(x) , N =
∫
d4xN(x)

2 〈AB〉conn = 〈AB〉 − 〈A〉〈B〉
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In instanton models the gluon field consists of instantons of charge Q = ±1. The exact
N instanton solutions (Q = N) are selfdual (Gµν = G̃µν) and

〈0|T Q(x)Q(0)|0〉conn = 〈0|T N(x)N(0)|0〉conn . (2)

The exact anti-instanton solutions (Q = −N) are anti-selfdual (Gµν = −G̃µν) and (2)
holds too, because the two minus signs cancel. Unfortunately these exact solutions are
not the most important contributions to the partition function.

The dominating configurations are instantons and anti-instantons in mixed combination.
The simplest model is a dilute sum A =

∑
I AI of instantons of mixed charge. Gµν is

then approximately selfdual near the instanton centers, approximately anti-selfdual near
the anti-instanton centers and small far away from any instanton. In leading order in the
instanton density we have

Gµν(x) = ±G̃µν(x) (3)

where the sign now depends on x! Let us define N±(x) in the following way:

N(x) = N+(x) +N−(x) , Q(x) = N+(x)−N−(x)

N+(x) is a sum of bumps near the centers of instantons and N−(x) near the centers of
anti-instantons. (2) has to be replaced by the relation

〈0|T Q(x)Q(0)|0〉conn = 〈0|T N(x)N(0)|0〉conn − 4〈0|T N+(x)N−(0)|0〉conn (4)

Assuming independence of instantons and anti-instantons (〈N+N−〉 = 〈N+〉〈N−〉) the
equation reduces again to (2). We will see that this is a crucial assumption.

4 The Scale Anomaly

The next ingredient is the scaling behaviour of QCD. Classical chromodynamics is scale
invariant and the Noether theorem leads to a conserved scale current. In quantum theory
the scale invariance is anomalously broken (like the axial singlet current). Ward identities
can be derived, especially [6]∫

d4x 〈0|T N(x)N(0)|0〉conn =
4

b
〈0|N(0)|0〉 , b =

11

3
Nc (5)

Therefore in a self(anti)dual background the topological susceptibility d2E/dΘ2 is pro-
portional to the gluon condensate:

d2E

dΘ2
=

4

b
〈0|N(0)|0〉 (6)

The relation is still valid, when there are statistically independent regions of selfduality
and selfantiduality, as discussed above. It is in fact sufficient to assure independence of the
total instanton/anti-instanton number N±. I have checked (6) by using the theoretical one
loop instanton density D(ρ) calculated in [10]. Only the ρ dependence D(ρ) ∼ ρ−5(ρΛ)b is
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important. Due to the infrared divergence it is neccessary to introduce an infrared cutoff,
but one has to assure not to break scale invariance. A minimal change is to introduce two
cutoffs f± in the total instanton/anti-instanton packing fraction. The packing fraction is
the spacetime volume ocupied by the instantons and is a dimensionless quantity. Scale
invariance and independence of instantons and anti-instantons are ensured. The partition
function Z is

Z =
∑

N+N−

Z+
N+
Z−N− (7)

Z±N± =
V N±

4

N±!

∫ ∞
0
dρ1 . . . dρN± D(ρ1) . . . D(ρN±) Θ

f± − 1

V4

N±∑
i=1

ρ4
i


A lengthy, but quite standard calculation of statistical physics, leads to

Z±N± =
(
c±N±
V4Λ4

)− bN±
4

where c± = c±(f±, b) are constants independent of N±. Differentiation of lnZ w.r.t. ln c±
two times leads to (6). The result is independent of f±. An attractive interaction would
lower the susceptibility (compared to the density). This can be seen in the following
way: In the extrem case of a very attractive interaction, all instantons will be bound
to intanton-anti-instanton molecules, thus N+ = N− and Q ≡ 0. On the other hand a
repulsive interaction would increase the susceptibility:

d2E

dΘ2
<

4

b
〈0|N(0)|0〉 for attractive II interaction (8)

d2E

dΘ2
>

4

b
〈0|N(0)|0〉 for repulsive II interaction (9)

Therefore the violation of (6) is a measure of the II interaction.

All this should be compared to Dyakonov [4], where the relation

d2E/dΘ2 = 〈0|N(0)|0〉 (10)

has been derived, which is similar to (6). In this work a simple sum ansatz A =
∑
AI

has been made. This ansatz leads to a strong repulsion between close instantons, which
is the origin of the missing factor 4/b. The result on its own and the comparison with
(9) shows that some repulsive interaction is at work. Verbaarshot [5] has shown that
this repulsion is an artefact of the simple sum ansatz. Using the much more accurate
and elaborate streamline ansatz he showed, that the interaction strongly depends on the
orientation and the average interaction is about 14 times smaller than those obtained in
[4]. Therefore the best thing one can do today is to assume no intercation at all and cut
the packing fraction at some small value. There is also a more general argument that the
relation derived in [4] must be wrong. The topological susceptibility is of O(N0

c ), whereas
the gluon condensate is of O(Nc). (6) is consistent with Nc →∞ considerations only due
to the presence of the 4/b factor.
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5 The Mass of the η′ meson

Let us now continue with the calculation of mη′. The physical gluon condensate in the
presence of light quarks is

〈0|N(0)|0〉phys = (200MeV)4 . (11)

Due to the presence of light quarks it is reduced by a factor α < 1.

〈0|N(0)|0〉phys = α〈0|N(0)|0〉no quarksΘ=0 (12)

Combining (1), (2), (5) and (12), we get the final formula for the η′ mass is

m2
η′ =

4Nf

f2
π

12

11Nc

1

α
〈0|N(0)|0〉phys (13)

One can see that m2
η′ ∼ 1/Nc because f2

π and the gluon condensate are proportional to
Nc. The largest uncertanty lies in the determination of α. Using again the instanton
model, α is the determinant of the Dirac operator with the current quark masses replaced
by effective masses:

α =
∏

i=u,d,s

1.34meff
i ρ ≈ 0.4 . . . 0.7 (14)

We have set the effective masses to the constituent masses

meff
u = meff

d = 300 . . . 350 MeV , meff
s = 400 . . . 500 MeV (15)

and ρ to the value of the instanton liquid model (ρ = 600 MeV−1). This estimate is
consistent with the estimate of [7]. Inserting Nf = 3 and fπ = 132 MeV into (13) we get

mη′ = 884± 116MeV (16)

which is in good agreement to the experimental value of 958 MeV. This result in turn
confirms the assumption, that the interaction between selfdual and anti-selfdual regions
is small. The large uncertanty in α prevents more accurate statements, but (10) can
definitely be excluded.

Using mη′ as an input we can determine the gluon condensate in pure QCD

αs
4π
〈trcGG〉no quarks = (246 MeV)4 (17)

where we have again set Nf to 3.

6 Conclusions

We have calculated η′ successfully in a model of seldual QCD. The factor 4/b in (6)
is the essential term to get the correct Nc dependence of mη′ and agreement with the
experimental mass. The discussion has shown, that the η′ channel can be an experimental
device for testing the independence of selfdual and antiselfdual regions in QCD, which is
an assumption in the simplest instanton models. It might turm out some day that the
details of instanton models are wrong but the assumption of independent self(anti)dual
regions remain valid.
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